Search results for: best linear unbiased predictor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3836

Search results for: best linear unbiased predictor

2696 Linearization of Y-Force Equation of Rigid Body Equation of Motion and Behavior of Fighter Aircraft under Imbalance Weight on Wings during Combat

Authors: Jawad Zakir, Syed Irtiza Ali Shah, Rana Shaharyar, Sidra Mahmood

Abstract:

Y-force equation comprises aerodynamic forces, drag and side force with side slip angle β and weight component along with the coupled roll (φ) and pitch angles (θ). This research deals with the linearization of Y-force equation using Small Disturbance theory assuming equilibrium flight conditions for different state variables of aircraft. By using assumptions of Small Disturbance theory in non-linear Y-force equation, finally reached at linearized lateral rigid body equation of motion; which says that in linearized Y-force equation, the lateral acceleration is dependent on the other different aerodynamic and propulsive forces like vertical tail, change in roll rate (Δp) from equilibrium, change in yaw rate (Δr) from equilibrium, change in lateral velocity due to side force, drag and side force components due to side slip, and the lateral equation from coupled rotating frame to decoupled rotating frame. This paper describes implementation of this lateral linearized equation for aircraft control systems. Another significant parameter considered on which y-force equation depends is ‘c’ which shows that any change bought in the weight of aircrafts wing will cause Δφ and cause lateral force i.e. Y_c. This simplification also leads to lateral static and dynamic stability. The linearization of equations is required because much of mathematics control system design for aircraft is based on linear equations. This technique is simple and eases the linearization of the rigid body equations of motion without using any high-speed computers.

Keywords: Y-force linearization, small disturbance theory, side slip, aerodynamic force drag, lateral rigid body equation of motion

Procedia PDF Downloads 492
2695 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 140
2694 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing

Authors: John Eric C. Bargas, Maria Cecilia M. Marcos

Abstract:

One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.

Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing

Procedia PDF Downloads 38
2693 Saliva Cortisol and Yawning as a Predictor of Neurological Disease

Authors: Simon B. N. Thompson

Abstract:

Cortisol is important to our immune system, regulates our stress response, and is a factor in maintaining brain temperature. Saliva cortisol is a practical and useful non-invasive measurement that signifies the presence of the important hormone. Electrical activity in the jaw muscles typically rises when the muscles are moved during yawning and the electrical level is found to be correlated with the cortisol level. In two studies using identical paradigms, a total of 108 healthy subjects were exposed to yawning-provoking stimuli so that their cortisol levels and electrical nerve impulses from their jaw muscles was recorded. Electrical activity is highly correlated with cortisol levels in healthy people. The Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details were collected and exclusion criteria applied for voluntary recruitment: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. Significant differences were found between the saliva cortisol samples for the yawners as compared with the non-yawners between rest and post-stimuli. Significant evidence supports the Thompson Cortisol Hypothesis that suggests rises in cortisol levels are associated with yawning. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.

Keywords: cortisol, diagnosis, neurological disease, thompson cortisol hypothesis, yawning

Procedia PDF Downloads 334
2692 The Link between Childhood Maltreatment and Psychological Distress: The Mediation and Moderation Roles of Cognitive Distortion, Alexithymia, and Eudemonic Well-Being

Authors: Siqi Fang, Man Cheung Chung

Abstract:

This study examined the inter-relationship between childhood maltreatment, cognitive distortion, alexithymia, eudemonic well-being, and psychological distress. One hundred and eighty-two university students participated in the study and completed an online survey comprising the Childhood Trauma Questionnaire, Cognitive Distortion Scale, Toronto Alexithymia Scale, Psychological Well-Being Scale, and General Health Questionnaire-28. Hierarchical multiple regression analysis showed that child maltreatment, perceptions of hopelessness and helplessness, preoccupation with danger, personal growth, and purpose in life predicted psychological distress. However, alexithymia was not a significant predictor. Further analysis using the regression models with bootstrapping procedure showed that feeling hopeless, helpless and preoccupation with danger mediated the path between child maltreatment and psychological distress. Meanwhile, coping with beliefs in personal growth and life purpose moderated the mediation effects of distorted cognition on psychological distress. To conclude, childhood maltreatment is associated with psychological distress. This relationship is influenced by people’s perceptions of life being hopeless, helpless or dangerous. At the same time, the effect of hopelessness, helplessness, and feelings of danger also depends on the degree of using coping strategies of positive psychological functioning.

Keywords: alexithymia, childhood maltreatment, cognitive distortion, eudemonic well-being, psychological distress

Procedia PDF Downloads 342
2691 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 171
2690 Antecedents of Sport Commitment: A Comparison Based on Demographic Factors

Authors: Navodita Mishra, T. J. Kamalanabhan

Abstract:

Purpose: The primary purpose of this study was to identify the antecedents of sports commitment among cricket players and to understand demographic variables that may impact these factors. Commitment towards one’s sports plays a crucial role in determining discipline and efforts of the player. Moreover, demographic variables would seem to play an important role in determining which factors or predictors have the greatest impact on commitment level. Design /methodology/approach: This study hypothesized the effect of demographic factors on sports commitment among cricket players. It attempts to examine the extent to which demographic factors can differentially motivate players to exhibit commitment towards their respective sport. Questionnaire survey method was adopted using purposive sampling technique. Using Multiple Regression, ANOVA, and t-test, the hypotheses were tested based on a sample of 350 players from Cricket Academy. Findings: Our main results from the multivariate analysis indicated that enjoyment and leadership of coach and peer affect the level of commitment to a greater extent whereas personal investment is a significant predictor of commitment among rural background players Moreover, level of sport commitment among players is positively related to household income, the rural background players participate in sports to a greater extent than the urban players, there is no evidence of regional differentials in commitment but age differences (i.e. U-19 vs. U-25) play an important role in the decision to continue the participation in sports.

Keywords: Individual Sports Commitment, demographic indicators, cricket, player motivation

Procedia PDF Downloads 473
2689 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 453
2688 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 328
2687 Geospatial Curve Fitting Methods for Disease Mapping of Tuberculosis in Eastern Cape Province, South Africa

Authors: Davies Obaromi, Qin Yongsong, James Ndege

Abstract:

To interpolate scattered or regularly distributed data, there are imprecise or exact methods. However, there are some of these methods that could be used for interpolating data in a regular grid and others in an irregular grid. In spatial epidemiology, it is important to examine how a disease prevalence rates are distributed in space, and how they relate with each other within a defined distance and direction. In this study, for the geographic and graphic representation of the disease prevalence, linear and biharmonic spline methods were implemented in MATLAB, and used to identify, localize and compare for smoothing in the distribution patterns of tuberculosis (TB) in Eastern Cape Province. The aim of this study is to produce a more “smooth” graphical disease map for TB prevalence patterns by a 3-D curve fitting techniques, especially the biharmonic splines that can suppress noise easily, by seeking a least-squares fit rather than exact interpolation. The datasets are represented generally as a 3D or XYZ triplets, where X and Y are the spatial coordinates and Z is the variable of interest and in this case, TB counts in the province. This smoothing spline is a method of fitting a smooth curve to a set of noisy observations using a spline function, and it has also become the conventional method for its high precision, simplicity and flexibility. Surface and contour plots are produced for the TB prevalence at the provincial level for 2012 – 2015. From the results, the general outlook of all the fittings showed a systematic pattern in the distribution of TB cases in the province and this is consistent with some spatial statistical analyses carried out in the province. This new method is rarely used in disease mapping applications, but it has a superior advantage to be assessed at subjective locations rather than only on a rectangular grid as seen in most traditional GIS methods of geospatial analyses.

Keywords: linear, biharmonic splines, tuberculosis, South Africa

Procedia PDF Downloads 237
2686 Stress Hyperglycemia: A Predictor of Major Adverse Cardiac Events in Non-Diabetic Patients With Acute Heart Failure

Authors: Fahad Raj Khan, Suleman Khan

Abstract:

There is a lack of consensus about the predictive value of raised blood glucose levels in terms of major adverse cardiac events (MACEs) in non-diabetic patients admitted for acute decompensated heart failure. The purpose of this research was to examine the long-term prognosis of acute decompensated heart failure (ADHF) in non-diabetic persons who had increased blood glucose levels, i.e., stress hyperglycemia, at the time of their ADHF hospitalization. The research involved 650 non-diabetic patients. Based on their admission stress hyperglycemia, they were divided into two groups.ie with and without (SHGL). The two groups' one-year outcomes for major adverse cardiac events (MACEs) were compared, and key predictors of MACEs were discovered. For statistical analysis, the two-tailed Mann-Whitney U test, Fisher's exact test, and binary logistic regression analysis were utilized. SHGL was found in 353 (54.3%) individuals. It was more frequent in men than in women. About 27% of patients with SHGL had previously been admitted for ADHF. Almost 62% were hypertensive, whereas 14 % had CKD. MACEs were significantly predicted by SHGL, HTN, prior hospitalization for ADHF, CKD, and cardiogenic shock upon admission. SHGL at the time of ADHF admission, independent of DM status, may be a predictive indication of MACEs.

Keywords: stress hyperglycemia, acute heart failure, major adverse cardiac events, MACEs

Procedia PDF Downloads 93
2685 Neural Synchronization - The Brain’s Transfer of Sensory Data

Authors: David Edgar

Abstract:

To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.

Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)

Procedia PDF Downloads 120
2684 Synthesis of Pd@ Cu Core−Shell Nanowires by Galvanic Displacement of Cu by Pd²⁺ Ions as a Modified Glassy Carbon Electrode for the Simultaneous Determination of Dihydroxybenzene Isomers Speciation

Authors: Majid Farsadrouh Rashti, Parisa Jahani, Amir Shafiee, Mehrdad Mofidi

Abstract:

The dihydroxybenzene isomers, hydroquinone (HQ), catechol (CC) and resorcinol (RS) have been widely recognized as important environmental pollutants due to their toxicity and low degradability in the ecological environment. Speciation of HQ, CC and RS is very important for environmental analysis because they co-exist of these isomers in environmental samples and are too difficult to degrade as an environmental contaminant with high toxicity. There are many analytical methods have been reported for detecting these isomers, such as spectrophotometry, fluorescence, High-performance liquid chromatography (HPLC) and electrochemical methods. These methods have attractive advantages such as simple and fast response, low maintenance costs, wide linear analysis range, high efficiency, excellent selectivity and high sensitivity. A novel modified glassy carbon electrode (GCE) with Pd@ Cu/CNTs core−shell nanowires for the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RS) is described. A detailed investigation by field emission scanning electron microscopy and electrochemistry was performed in order to elucidate the preparation process and properties of the GCE/ Pd/CuNWs-CNTs. The electrochemical response characteristic of the modified GPE/LFOR toward HQ, CC and RS were investigated by cyclic voltammetry, differential pulse voltammetry (DPV) and Chronoamperometry. Under optimum conditions, the calibrations curves were linear up to 228 µM for each with detection limits of 0.4, 0.6 and 0.8 µM for HQ, CC and RS, respectively. The diffusion coefficient for the oxidation of HQ, CC and RS at the modified electrode was calculated as 6.5×10⁻⁵, 1.6 ×10⁻⁵ and 8.5 ×10⁻⁵ cm² s⁻¹, respectively. DPV was used for the simultaneous determination of HQ, CC and RS at the modified electrode and the relative standard deviations were 2.1%, 1.9% and 1.7% for HQ, CC and RS, respectively. Moreover, GCE/Pd/CuNWs-CNTs was successfully used for determination of HQ, CC and RS in real samples.

Keywords: dihydroxybenzene isomers, galvanized copper nanowires, electrochemical sensor, Palladium, speciation

Procedia PDF Downloads 126
2683 Understanding Willingness to Engage in pro-Environmental Behaviour among Recreational Anglers in South Africa

Authors: Kelvin Mwaba, Nicole Strickland

Abstract:

Background and Objectives: Overexploitation and illegal fishing have been identified as the primary cause of the global decline in the fish stock. While commercial companies and small-scale fishing sectors are strictly regulated in South Africa, recreational anglers are not. The underlying assumption seems to be that recreational anglers can self-regulate. The aim of the present study was to investigate the relationship that recreational anglers have with nature and how this relationship can predict unlawful fishing practices. Methods: Using a survey design, 99 self-identified recreational anglers were recruited through convenient sampling. The anglers were accessed from fishing tackle shops around False Bay in the Western Cape province of South Africa. Data was collected using a self-administered questionnaire that consisted of pro-environmental behavior survey and the Nature Relatedness Scale. Results: Data analyses indicated that significant differences with regard to nature relatedness on the basis of participants’ age and level of education. Older and more educated anglers scored higher on nature relatedness than younger and less educated anglers. Logistic regression analysis showed that nature relatedness was a significant predictor of pro-environmental behaviors (R²= 0.061). Discussion and Conclusion: The findings of the present study provide support regarding the importance of encouraging healthy and sustainable relationships between humans and nature. Combating harmful fishing practices can achieve through understanding and promoting human care for nature among anglers and others involved in fishing.

Keywords: pro-environmental, behavior, anglers, South Africa

Procedia PDF Downloads 366
2682 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models

Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru

Abstract:

Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.

Keywords: maize, stem borers, density, RapidEye, GLM

Procedia PDF Downloads 494
2681 Mediation Effect of Mindful Parenting on Parental Self Efficacy and Parent-Child Attachment in Hong Kong

Authors: Man Chung Chu

Abstract:

In the dynamic family interaction, parental self-efficacy is connected with parent-child attachment. Parental self-efficacy and its corresponding behavior played an influential role in the lifespan development of the child. Recently, Mindful parenting is popularly addressed as it lightens parents’ awareness to their own thoughts feelings and behaviors by adapting a nonjudgmental attitude in the present moment being with the child. The effectiveness of mindful parent is considerably significant in enhancing parent-child relationship as well as family functioning. Parenting in early developmental stage is always challenging and essential for later growth, however, literature is rarely exploring the mediation of mindful parenting on the effect of parent self-efficacy on parent-child attachment in preschoolers’ families. The mediation effect of the research shed light on how mindful parenting should head, where parental self-efficacy training should be incorporated together with mindful family program in attempt to yield the best outcome in the family of young-aged children. Two hundred and eight (208) parents, of two to six years old children, were participated in the study and results supported the significance in the mediator effect of mindful parenting in both facets, i.e. Parent-focused - ‘Mindful Discipline’ and Child-focused – ‘Being in the moment with the child’ where parental self-efficacy is a significant predictor of mindful parenting. The implication of the result suggests that mindful parenting would be a therapeutic framework in promoting family functioning and child’s well-being, it would also be a ‘significant helping hand’ in maintaining continuous secure attachment relationship and growing their mindful children in a family.

Keywords: mediation effect, mindful parenting, parental self efficacy, parent-child attachment, preschoolers

Procedia PDF Downloads 195
2680 The Complex Relationship Between IQ and Attention Deficit Hyperactivity Disorder Symptoms: Insights From Behaviors, Cognition, and Brain in 5,138 Children With Attention Deficit Hyperactivity Disorder

Authors: Ningning Liu, Gaoding Jia, Yinshan Wang, Haimei Li, Xinian Zuo, Yufeng Wang, Lu Liu, Qiujin Qian

Abstract:

Background: There has been speculation that a high IQ may not necessarily provide protection against attention deficit hyperactivity disorder (ADHD), and there may be a U-shaped correlation between IQ and ADHD symptoms. However, this speculation has not been validated in the ADHD population in any study so far. Method: We conducted a study with 5,138 children who have been professionally diagnosed with ADHD and have a wide range of IQ levels. General Linear Models were used to determine the optimal model between IQ and ADHD core symptoms with sex and age as covariates. The ADHD symptoms we looked at included the total scores (TO), inattention (IA) and hyperactivity/impulsivity (HI). Wechsler Intelligence scale were used to assess IQ [Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ)]. Furthermore, we examined the correlation between IQ and the execution function [Behavior Rating Inventory of Executive Function (BRIEF)], as well as between IQ and brain surface area, to determine if the associations between IQ and ADHD symptoms are reflected in executive functions and brain structure. Results: Consistent with previous research, the results indicated that FSIQ and VIQ both showed a linear negative correlation with the TO and IA scores of ADHD. However, PIQ showed an inverted U-shaped relationship with the TO and HI scores of ADHD, with 103 as the peak point. These findings were also partially reflected in the relationship between IQ and executive functions, as well as IQ and brain surface area. Conclusion: To sum up, the relationship between IQ and ADHD symptoms is not straightforward. Our study confirms long-standing academic hypotheses and finds that PIQ exhibits an inverted U-shaped relationship with ADHD symptoms. This study enhances our understanding of symptoms and behaviors of ADHD with varying IQ characteristics and provides some evidence for targeted clinical intervention.

Keywords: ADHD, IQ, execution function, brain imaging

Procedia PDF Downloads 61
2679 Hypersonic Flow of CO2-N2 Mixture around a Spacecraft during the Atmospheric Reentry

Authors: Zineddine Bouyahiaoui, Rabah Haoui

Abstract:

The aim of this work is to analyze a flow around the axisymmetric blunt body taken into account the chemical and vibrational nonequilibrium flow. This work concerns the entry of spacecraft in the atmosphere of the planet Mars. Since the equations involved are non-linear partial derivatives, the volume method is the only way to solve this problem. The choice of the mesh and the CFL is a condition for the convergence to have the stationary solution.

Keywords: blunt body, finite volume, hypersonic flow, viscous flow

Procedia PDF Downloads 231
2678 Linear Decoding Applied to V5/MT Neuronal Activity on Past Trials Predicts Current Sensory Choices

Authors: Ben Hadj Hassen Sameh, Gaillard Corentin, Andrew Parker, Kristine Krug

Abstract:

Perceptual decisions about sequences of sensory stimuli often show serial dependence. The behavioural choice on one trial is often affected by the choice on previous trials. We investigated whether the neuronal signals in extrastriate visual area V5/MT on preceding trials might influence choice on the current trial and thereby reveal the neuronal mechanisms of sequential choice effects. We analysed data from 30 single neurons recorded from V5/MT in three Rhesus monkeys making sequential choices about the direction of rotation of a three-dimensional cylinder. We focused exclusively on the responses of neurons that showed significant choice-related firing (mean choice probability =0.73) while the monkey viewed perceptually ambiguous stimuli. Application of a wavelet transform to the choice-related firing revealed differences in the frequency band of neuronal activity that depended on whether the previous trial resulted in a correct choice for an unambiguous stimulus that was in the neuron’s preferred direction (low alpha and high beta and gamma) or non-preferred direction (high alpha and low beta and gamma). To probe this in further detail, we applied a regularized linear decoder to predict the choice for an ambiguous trial by referencing the neuronal activity of the preceding unambiguous trial. Neuronal activity on a previous trial provided a significant prediction of the current choice (61% correc, 95%Cl~52%t), even when limiting analysis to preceding trials that were correct and rewarded. These findings provide a potential neuronal signature of sequential choice effects in the primate visual cortex.

Keywords: perception, decision making, attention, decoding, visual system

Procedia PDF Downloads 133
2677 Shear Strength of Reinforced Web Openings in Steel Beams

Authors: K. S. Sivakumaran, Bo Chen

Abstract:

The floor beams of steel buildings, cold-formed steel floor joists, in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, finite element analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced opening. This paper presents that the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced openings. The study considered thin simply supported rectangular plates subjected to inplane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Lagrangian (TL) with large displacement/small strain formulation was used for such analysis. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration. The paper briefly compares the analysis results with the experimental results.

Keywords: cold-formed steel, finite element analysis, opening, reinforcement, shear resistance

Procedia PDF Downloads 283
2676 Study on The Pile Height Loss of Tunisian Handmade Carpets Under Dynamic Loading

Authors: Fatma Abidi, Taoufik Harizi, Slah Msahli, Faouzi Sakli

Abstract:

Nine different Tunisian handmade carpets were used for the investigation. The raw material of the carpet pile yarns was wool. The influence of the different structure parameters (linear density and pile height) on the carpet compression was investigated. Carpets were tested under dynamic loading in order to evaluate and observe the thickness loss and carpet behavior under dynamic loads. To determine the loss of pile height under dynamic loading, the pile height carpets were measured. The test method was treated according to the Tunisian standard NT 12.165 (corresponds to the standard ISO 2094). The pile height measurements are taken and recorded at intervals up to 1000 impacts (measures of this study were made after 50, 100, 200, 500, and 1000 impacts). The loss of pile height is calculated using the variation between the initial height and those measured after the number of reported impacts. The experimental results were statistically evaluated using Design Expert Analysis of Variance (ANOVA) software. As regards the deformation, results showed that both of the structure parameters of the pile yarn and the pile height have an influence. The carpet with the higher pile and the less linear density of pile yarn showed the worst performance. Results of a polynomial regression analysis are highlighted. There is a good correlation between the loss of pile height and the impacts number of dynamic loads. These equations are in good agreement with measured data. Because the prediction is reasonably accurate for all samples, these equations can also be taken into account when calculating the theoretical loss of pile height for the considered carpet samples. Statistical evaluations of the experimen¬tal data showed that the pile material and number of impacts have a significant effect on mean thickness and thickness loss variations.

Keywords: Tunisian handmade carpet, loss of pile height, dynamic loads, performance

Procedia PDF Downloads 317
2675 The Relationship between Coping Styles and Internet Addiction among High School Students

Authors: Adil Kaval, Digdem Muge Siyez

Abstract:

With the negative effects of internet use in a person's life, the use of the Internet has become an issue. This subject was mostly considered as internet addiction, and it was investigated. In literature, it is noteworthy that some theoretical models have been proposed to explain the reasons for internet addiction. In addition to these theoretical models, it may be thought that the coping style for stressing events can be a predictor of internet addiction. It was aimed to test with logistic regression the effect of high school students' coping styles on internet addiction levels. Sample of the study consisted of 770 Turkish adolescents (471 girls, 299 boys) selected from high schools in the 2017-2018 academic year in İzmir province. Internet Addiction Test, Coping Scale for Child and Adolescents and a demographic information form were used in this study. The results of the logistic regression analysis indicated that the model of coping styles predicted internet addiction provides a statistically significant prediction of internet addiction. Gender does not predict whether or not to be addicted to the internet. The active coping style is not effective on internet addiction levels, while the avoiding and negative coping style are effective on internet addiction levels. With this model, % 79.1 of internet addiction in high school is estimated. The Negelkerke pseudo R2 indicated that the model accounted for %35 of the total variance. The results of this study on Turkish adolescents are similar to the results of other studies in the literature. It can be argued that avoiding and negative coping styles are important risk factors in the development of internet addiction.

Keywords: adolescents, coping, internet addiction, regression analysis

Procedia PDF Downloads 172
2674 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 82
2673 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 288
2672 A Multi-Objective Decision Making Model for Biodiversity Conservation and Planning: Exploring the Concept of Interdependency

Authors: M. Mohan, J. P. Roise, G. P. Catts

Abstract:

Despite living in an era where conservation zones are de-facto the central element in any sustainable wildlife management strategy, we still find ourselves grappling with several pareto-optimal situations regarding resource allocation and area distribution for the same. In this paper, a multi-objective decision making (MODM) model is presented to answer the question of whether or not we can establish mutual relationships between these contradicting objectives. For our study, we considered a Red-cockaded woodpecker (Picoides borealis) habitat conservation scenario in the coastal plain of North Carolina, USA. Red-cockaded woodpecker (RCW) is a non-migratory territorial bird that excavates cavities in living pine trees for roosting and nesting. The RCW groups nest in an aggregation of cavity trees called ‘cluster’ and for our model we use the number of clusters to be established as a measure of evaluating the size of conservation zone required. The case study is formulated as a linear programming problem and the objective function optimises the Red-cockaded woodpecker clusters, carbon retention rate, biofuel, public safety and Net Present Value (NPV) of the forest. We studied the variation of individual objectives with respect to the amount of area available and plotted a two dimensional dynamic graph after establishing interrelations between the objectives. We further explore the concept of interdependency by integrating the MODM model with GIS, and derive a raster file representing carbon distribution from the existing forest dataset. Model results demonstrate the applicability of interdependency from both linear and spatial perspectives, and suggest that this approach holds immense potential for enhancing environmental investment decision making in future.

Keywords: conservation, interdependency, multi-objective decision making, red-cockaded woodpecker

Procedia PDF Downloads 334
2671 Prognostic Value of Serum Matrix Metalloproteinase (MMP-9) in Critically Ill Septic Patients

Authors: Sherif Sabri, Nael Samir, Mohamed Ali, Ahmed ElSakhawy

Abstract:

Introduction: There is growing evidence to support the hypothesis that serum matrix metalloproteinase -9 in could be an early predictor of mortality in septic patients. Aim of the work: Study the relationship of matrix metalloproteinase 9 in patients with SIRS in comparison to septic patients in day 0 and day 2. Patients and Methods: This is a prospective observational study conducted on 40 adult critically ill patients staying more than 24 hours in ICU either surgical or medical department, El Fayoum General Hospital in the period from November 2014 to March 2015. Patients met at least two of the criteria for severe inflammatory response syndrome (SIRS). Diagnostic criteria include several clinical and laboratory findings of sepsis induced tissue hypoperfusion or organ dysfunction. Samples were grouped as drawn either at admission, or at day 2 after admission. Results: Patients were divided into two groups: The non-sepsis (SIRS) group, which included 15 (37.5%) patients with no later evidence of sepsis were enrolled as controls. The Sepsis group, which included 25 patients diagnosed to have SIRS with later evidence of sepsis with positive culture. Exploring serum level of MMP-9 in non-survivors and survivors, there was significant increase in non-survivors if compared to survivors at admission p-value 0.001 (mean value in survivors 4.4mg/dl±4.1mg/dl at admission versus mean value in non-survivors 11.9mg/dl±5.8mg/dl) and after two days of admission was also significant increase p-value 0.001 (mean value in survivors 10.9mg/dl ±9.4mg/dl versus mean value in non-survivors 22.6mg/dl±10.4). Conclusion: MMP-9 levels in septic patients have a beneficial role in ICU for high-risk stratification as it is an independent marker of mortality in severe sepsis.

Keywords: matrix metalloproteinase (MMP-9), sepsis, septic shock, systemic inflamatory response syndrome

Procedia PDF Downloads 221
2670 Addressing Public Concerns about Radiation Impacts by Looking Back in Nuclear Accidents Worldwide

Authors: Du Kim, Nelson Baro

Abstract:

According to a report of International Atomic Energy Agency (IAEA), there are approximately 437 nuclear power stations are in operation in the present around the world in order to meet increasing energy demands. Indeed, nearly, a third of the world’s energy demands are met through nuclear power because it is one of the most efficient and long-lasting sources of energy. However, there are also consequences when a major event takes place at a nuclear power station. Over the past years, a few major nuclear accidents have occurred around the world. According to a report of International Nuclear and Radiological Event Scale (INES), there are six nuclear accidents that are considered to be high level (risk) of the events: Fukushima Dai-chi (Level 7), Chernobyl (Level 7), Three Mile Island (Level 5), Windscale (Level 5), Kyshtym (Level 6) and Chalk River (Level 5). Today, many people still have doubt about using nuclear power. There is growing number of people who are against nuclear power after the serious accident occurred at the Fukushima Dai-chi nuclear power plant in Japan. In other words, there are public concerns about radiation impacts which emphasize Linear-No-Threshold (LNT) Issues, Radiation Health Effects, Radiation Protection and Social Impacts. This paper will address those keywords by looking back at the history of these major nuclear accidents worldwide, based on INES. This paper concludes that all major mistake from nuclear accidents are preventable due to the fact that most of them are caused by human error. In other words, the human factor has played a huge role in the malfunction and occurrence of most of those events. The correct handle of a crisis is determined, by having a good radiation protection program in place, it’s what has a big impact on society and determines how acceptable people are of nuclear.

Keywords: linear-no-threshold (LNT) issues, radiation health effects, radiation protection, social impacts

Procedia PDF Downloads 242
2669 Analysis of a Strengthening of a Building Reinforced Concrete Structure

Authors: Nassereddine Attari

Abstract:

Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building.

Keywords: pushover analysis, earthquake, damage, strengthening

Procedia PDF Downloads 427
2668 Changes in Air Quality inside Vehicles and in Working Conditions of Professional Drivers during COVID-19 Pandemic in Paris Area

Authors: Melissa Hachem, Lynda Bensefa-Colas, Isabelle Momas

Abstract:

We evaluated the impact of the first lockdown restriction measures (March-May 2020) in the Paris area on (1) the variation of in-vehicle ultrafine particle (UFP) and black carbon (BC) concentrations between pre-and post-lockdown period and (2) the professional drivers working conditions and practices. The study was conducted on 33 Parisian taxi drivers. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively, on two typical working days before and after the first lockdown. The job-related characteristics were self-reported. Our results showed that after the first lockdown, the number of clients significantly decreased as well as the taxi driver's journey duration. Taxi drivers significantly opened their windows more and reduced the use of air recirculation. UFP decreased significantly by 32% and BC by 31% after the first lockdown, with a weaker positive correlation compared to before the lockdown. The reduction of in-vehicle UFP was explained mainly by the reduction of traffic flow and ventilation settings, though the latter probably varied according to the traffic condition. No predictor explained the variation of in-vehicle BC concentration between pre-and post-lockdown periods, suggesting different sources of UFP and BC. The road traffic was not anymore the dominant source of BC post-lockdown. We emphasize the role of traffic emissions on in-vehicle air pollution and that preventive measures such as ventilation settings will help to better manage air quality inside a vehicle in order to minimize exposure of professional drivers, as well as passengers, to air pollutants.

Keywords: black carbon, COVID-19, France, lockdown, taxis, ultrafine particles

Procedia PDF Downloads 185
2667 Surface and Subsurface Characterization of a Fault along Boso-Boso River, Rizal

Authors: Marco Jan Rafael C. Sicam, Maria Daniella C. Yambao

Abstract:

The Philippines is a tectonically active archipelagic country situated near the Circum-Pacific Belt. Hence, seismic hazard assessments are important in the nation-building. In 2014, the Philippines Institute of Volcanology and Seismology (PHIVOLCS) mapped a 12-km NW-trending unnamed active fault near Boso-Boso River, Rizal. Given the limited nature of their technical report, they would like to further consolidate relevant data about this fault. As such, this study aims to characterize the surface and subsurface expression of the fault along Boso-Boso River using rangefront morphology, structural criteria, and ground penetrating radar. This fault is subdivided into two segments: the first segment located in the city of Antipolo is mainly manifested in the upper Kinabuan Formation and terminating near Mt. Qutago, and the second segment in Baras, Pinugay, Rizal cuts through recent fluvial deposits and to the Guadalupe Formation. IfSAR-derived DTM data reveals the morphological expression of the fault defined by offset streams and ridges, linear sidehill valleys, and linear valleys. Fault gouges, fault breccia, transtentional flower structures, slickensides, and other shear sense markers observed in the units of the upper Cretaceous Kinabuan Formation indicate a sinistral sense of displacement. GPR radargram profiles revealed the presence of displacement in reflectors at 3-5 meters below the surface which may be suggestive of the fault within the area. Finally, the fault in Boso-Boso river may be a segment of the larger sinistral Montalban Fault in the north or largely affected by the movement from the Marikina Valley Fault System.

Keywords: NW unnamed fault, range-front morphology, shear sense markers, ground penetrating radar, boso-boso river, antipolo

Procedia PDF Downloads 60