Search results for: aqueous chemical growth (ACG)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11209

Search results for: aqueous chemical growth (ACG)

10069 Epitaxial Growth of Crystalline Polyaniline on Reduced Graphene Oxide

Authors: D. Majumdar, M. Baskey, S. K. Saha

Abstract:

Graphene has already been identified as a promising material for future carbon based electronics. To develop graphene technology, the fabrication of a high quality P-N junction is a great challenge. In the present work, we have described a simple and general technique to grow single crystalline polyaniline (PANI) films on graphene sheets using in situ polymerization via the oxidation-reduction of aniline monomer and graphene oxide, respectively, to fabricate a high quality P-N junction, which shows diode-like behavior with a remarkably low turn-on voltage (60 mV) and high rectification ratio (1880:1) up to a voltage of 0.2 Volt. The origin of these superior electronic properties is the preferential growth of a highly crystalline PANI film as well as lattice matching between the d-values [~2.48 Å] of graphene and {120} planes of PANI.

Keywords: epitaxial growth, PANI, reduced graphene oxide, rectification ratio

Procedia PDF Downloads 289
10068 External Sector and Its Impact on Economic Growth of Pakistan (1990-2010)

Authors: Rizwan Fazal

Abstract:

This study investigates the behavior of external sector of Pakistan economy and its impact on economic growth, using quarterly data for the period 1990:01-2010:04. External sector indices used in this study are financial integration, net foreign assets and trade integration. Augmented Ducky fuller confirms that all variables of external sector are non-stationary at level, but at first difference it becomes stationary. The co-integration test suggests one co-integrating variables in the study. The analysis is based on Vector Auto Regression model followed by Vector Error Correction Model. The empirical findings show that financial integration play important role in increasing economic growth in Pakistan economy while trade integration has negative effect on economic growth of Pakistan in the long run. However, the short run confirms that output lag accounts for error correction. The estimated CUSUM and CUSUMQ stability test provide information that the period of the study equation remains stable.

Keywords: financial integration, trade integration, net foreign assets, gross domestic product

Procedia PDF Downloads 272
10067 Suitability of Class F Flyash for Construction Industry: An Indian Scenario

Authors: M. N. Akhtar, J. N. Akhtar

Abstract:

The present study evaluates the properties of class F fly ash as a replacement of natural materials in civil engineering construction industry. The low-lime flash similar to class F is the prime variety generated in India, although it has significantly smaller volumes of high-lime fly ash as compared to class C. The chemical and physical characterization of the sample is carried out with the number of experimental approaches in order to investigate all relevant features present in the samples. For chemical analysis, elementary quantitative results from point analysis and scanning electron microscopy (SEM)/dispersive spectroscopy (EDS) techniques were used to identify the element images of different fractions. The physical properties found very close to the range of common soils. Furthermore, the fly ash-based bricks were prepared by the same sample of class F fly ash and the results of compressive strength similar to that of Standard Clay Brick Grade 1 available in the local market of India.

Keywords: fly ash, class F, class C, chemical, physical, SEM, EDS

Procedia PDF Downloads 181
10066 Evaluation of the Quality of Groundwater in the Zone of the Irrigated Perimeter Guelma-Bouchegouf, Northeast of Algeria

Authors: M. Benhamza, M. Touati, M. Aissaoui

Abstract:

The Guelma-Bouchegouf irrigated area is located in the north-east of the country; it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, physico-chemical and organic analyzes were carried out during the low water period in November 2017, at the level of fourteen wells in the Guelma-Bouchegouf irrigation area. The interpretation of the results of the chemical analyzes shows that the waters of the study area belong to two dominant chemical facies: sulphated-chlorinated-calcium and Sulfated-chlorinated-sodium. The mineral quality of the groundwater in the study area shows that Ca²⁺, Cl⁻ and SO₄²⁻ indicate little to significant pollution, Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. NO₃⁻ and NH⁴⁺ show little to significant pollution throughout the study area. Phosphate represents a significant pollution, with excessive values exceeding the allowable standard. Phosphate concentrations indicate pollution caused by agricultural practices in the irrigated area, following the use of phosphates in the form of chemical fertilizers or pesticides.

Keywords: Algeria, groundwater, irrigated perimeter, pollution

Procedia PDF Downloads 121
10065 A Study on the Computation of Gourava Indices for Poly-L Lysine Dendrimer and Its Biomedical Applications

Authors: M. Helen

Abstract:

Chemical graph serves as a convenient model for any real or abstract chemical system. Dendrimers are novel three dimensional hyper branched globular nanopolymeric architectures. Drug delivery scientists are especially enthusiastic about possible utility of dendrimers as drug delivery tool. Dendrimers like poly L lysine (PLL), poly-propylene imine (PPI) and poly-amidoamine (PAMAM), etc., are used as gene carrier in drug delivery system because of their chemical characteristics. These characteristics of chemical compounds are analysed using topological indices (invariants under graph isomorphism) such as Wiener index, Zagreb index, etc., Prof. V. R. Kulli motivated by the application of Zagreb indices in finding the total π energy and derived Gourava indices which is an improved version over Zagreb indices. In this paper, we study the structure of PLL-Dendrimer that has the following applications: reduction in toxicity, colon delivery, and topical delivery. Also, we determine first and second Gourava indices, first and second hyper Gourava indices, product and sum connectivity Gourava indices for PLL-Dendrimer. Gourava Indices have found applications in Quantitative Structure-Property Relationship (QSPR)/ Quantitative Structure-Activity Relationship (QSAR) studies.

Keywords: connectivity Gourava indices, dendrimer, Gourava indices, hyper GouravaG indices

Procedia PDF Downloads 138
10064 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 139
10063 Onmanee Prajuabjinda, Pakakrong Thondeeying, Jipisute Chunthorng-Orn, Bhanuz Dechayont, Arunporn Itharat

Authors: Ekrem Erdem, Can Tansel Tugcu

Abstract:

Improved resource efficiency of production is a key requirement for sustainable growth, worldwide. In this regards, by considering the energy and tourism as the extra inputs to the classical Coub-Douglas production function, this study aims at investigating the efficiency changes in the North African countries. To this end, the study uses panel data for the period 1995-2010 and adopts the Malmquist index based on the data envelopment analysis. Results show that tourism increases technical and scale efficiencies, while it decreases technological and total factor productivity changes. On the other hand, when the production function is augmented by the energy input, technical efficiency change decreases, while the technological change, scale efficiency change and total factor productivity change increase. Thus, in order to satisfy the needs for sustainable growth, North African governments should take some measures for increasing the contribution that the tourism makes to economic growth and some others for efficient use of resources in the energy sector.

Keywords: data envelopment analysis, economic efficiency, North African countries, sustainable growth

Procedia PDF Downloads 343
10062 Substitution of Fish Meal by Local Vegetable Raw Materials in the Feed of Juvenile Nile Tilapia (Oreochromis Niloticus, Linne, 1758) in Senegal

Authors: Mamadou Sileye Niang

Abstract:

The study is a contribution to the development of a feed for juvenile tilapia Oreochromis niloticus, from local raw materials in order to reduce the cost of feeding farmed tilapia in Senegal. Three feeds were formulated from local raw materials. The basic composition of the tested feeds is as follows: A1 (peanut meal, rice bran, millet bran, maize meal and no fish meal); A2 (peanut meal, rice bran, millet bran, maize meal and 10% fish meal) and A3 (peanut meal, rice bran, millet bran, maize meal and 25% fish meal). All feeds contain 31% protein. The trial compared three batches, in 2 replicates, with different diets. The initial weight of the juveniles was 0.37± 0.5g. The daily ration was distributed at 9 am and 4 pm. After 90 days of the experiment, the final mean weights were 2.45 ± 0.5g; 2.75±0.5g; and 4.67 ± 0.5g for A1, A2, and A3, respectively. A performance test, of which the objective was to compare growth parameters, was conducted. The results of the growth parameters of juveniles fed A3 were significantly higher (p < 0.05) than those fed A1 and A2. The weight growth study shows similar growth during the first month. However, from this date onwards, juveniles fed A3 show a faster growth, which is maintained throughout the experiment. On the other hand, the Protein Efficiency Coefficient and the Survival Rate showed no significant difference. The zootechnical parameters are not significantly different (p > 0.05) between the two tanks for the same feed treatment.

Keywords: nutrition, feed, fingerlings, Oreochromis, local raw materials, feed cost

Procedia PDF Downloads 72
10061 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 444
10060 Effect of Different Commercial Diets and Temperature on the Growth Performance, Feed Intake and Feed Conversion Ratio of Sobaity Seabream Sparidentex hasta

Authors: Seemab Zehra, A. H. W. Mohammed, E. Pantanella, J. L. Q. Laranja, P. H. De Mello, R. Saleh, A. A. Siddik, A. Al Shaikhi, A. M. Al-Suwailem

Abstract:

Two separate feeding trials were conducted to determine the effects of using different commercial diets and water temperatures on the growth performance, feed intake, feed conversion ratio (FCR) and condition factor of sobaity seabream Sparidentex hasta. In experiment I, growth performance, feed intake, protein efficiency ratio (PER), feed conversion ratio (FCR) and survival (%) of sobaity seabream Sparidentex hasta (330.5±2.6 g; 26.9±1.0 cm) were evaluated by four different commercial diets (1, 2, 3 and 4) for 80 days. The daily weight gain was around 3.2 g day-1 with an SGR of 0.7% day-1. Both the FCR and PER in the fish were significantly better in diet 2 that contained 46.36% crude protein and 12.54% crude fat. In experiment II, (99±2.6 g; 17.1±1.0 cm). The fish were cultured in 1m3 tanks supplied with seawater from the Red Sea wherein three different rearing temperatures were set as treatments (24, 28 and 32°C). Fish were fed with a commercial diet based on the results of experiment I (46.4% protein; 20.1 MJ kg-1 energy) to satiation for 96 days. Total weight gain was significantly higher for the fish reared in the 32°C group (158.57 g) followed by the 28°C group (138.25 g), while the lowest weight gain was observed in the 24°C group (116.98 g). The FCR was significantly lower in the 32°C group (1.62) as compared to 28 (1.8) and 24°C (1.85) groups. Based on the results obtained from these preliminary studies (experiment I and II), sobaity seabream can attain better growth performance, FCR and PER at 32°C in the Red Sea by feeding commercial diet 2.

Keywords: Sparidentex hasta, nutrition, FCR, Red Sea, growth performance

Procedia PDF Downloads 78
10059 Effects of Ophiocordyceps dipterigena BCC 2073 β-Glucan as a Prebiotic on the in vitro Growth of Probiotic and Pathogenic Bacteria

Authors: Wai Prathumpai, Pranee Rachtawee, Sutamat Khajeeram, Pariya Na Nakorn

Abstract:

The  β-glucan produced by Ophiocordyceps dipterigena BCC 2073 is a (1, 3)-β-D-glucan with highly branching O-6-linkedside chains that is resistant to acid hydrolysis (by hydrochloric acid and porcine pancreatic alpha-amylase). This β-glucan can be utilized as a prebiotic due to its advantageous structural and biological properties. The effects of using this β-glucan as the sole carbon source for the in vitro growth of two probiotic bacteria (L. acidophilus BCC 13938 and B. animalis ATCC 25527) were investigated. Compared with the effect of using 1% glucose or fructo-oligosaccharide (FOS) as the sole carbon source, using 1% β-glucan for this purpose showed that this prebiotic supported and stimulated the growth of both types of probiotic bacteria and induced them to produce the highest levels of metabolites during their growth. The highest levels of lactic and acetic acid, 10.04 g·L-1 and 2.82 g·L-1, respectively, were observed at 2 h of cultivation using glucose as the sole carbon source. Furthermore, the fermentation broth obtained using 1% β-glucan as the sole carbon source had greater antibacterial activity against selected pathogenic bacteria (B. subtilis TISTR 008, E. coli TISTR 780, and S. typhimurium TISTR 292) than did the broths prepared using glucose or FOS as the sole carbon source. The fermentation broth obtained by growing L. acidophilus BCC 13938 in the presence of β-glucan inhibited the growth of B. subtilis TISTR 008 by more than 70% and inhibited the growth of both S. typhimurium TISTR 292 and E. coli TISTR 780 by more than 90%. In conclusion, O. dipterigena BCC 2073 is a potential source of a β-glucan prebiotic that could be used for commercial production in the near future.

Keywords: beta-glucan, Ophiocordyceps dipterigena, prebiotic, probiotic, antimicrobial

Procedia PDF Downloads 152
10058 Introduction of Knowledge Management in a Public Sector Organization in India

Authors: Siddharth Vashisth, Varun Mathur

Abstract:

This review provides an overview of the impact that implementation of various Knowledge Management (KM) strategies has had on the growth of a department in a Public Sector Company in India. In a regulated utility controlled by the government, the growth of an organization such as Hindustan Petroleum Corporation Limited (HPCL) had depended largely on the efficiencies of the systems and its people. However, subsequent to the de-regularization & to the entry of the private competition, the need for a ‘systematic templating’ of knowledge was recognized. This necessitated the introduction of Knowledge Management Centre (KMC). Projects & Pipelines Department (P&P) of HPCL introduced KMC that contributed significantly towards KM by adopting various strategies such as standardization, leveraging information system, competency enhancement, and improvements & innovations. These strategies gave both tangible as well as intangible benefits towards KM. Knowledge, technology & people are the three pillars that need to be catered for effective knowledge management in any organization. In HPCL, the initiative of KMC has served as an intermediary between these three major pillars as each activity of the strategy was centered on them and contributed significantly to their growth and up-gradation, ensuring overall growth of KM in the department.

Keywords: knowledge, knowledge management, public sector organization, standardization, technology, people, skill, information system, innovation, competency, impact

Procedia PDF Downloads 454
10057 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 358
10056 CFD Analysis of Flow Regimes of Non-Newtonian Liquids in Chemical Reactor

Authors: Nenashev Yaroslav, Russkin Oleg

Abstract:

The mixing process is one of the most important and critical stages in many industrial sectors, such as chemistry, pharmaceuticals, and the food industry. When designing equipment with mixing impellers, technology developers often encounter working environments with complex physical properties and rheology. In such cases, the use of computational fluid dynamics tools is an excellent solution to mitigate risks and ensure the stable operation of the equipment. The research focuses on one of the designed reactors with mixing impellers intended for polymer synthesis. The study describes an approach to modeling reactors of similar configurations, taking into account the complex properties of the mixed liquids using the computational fluid dynamics (CFD) method. To achieve this goal, a complex 3D model was created, accurately replicating the functionality of chemical equipment. The model allows for the assessment of the hydrodynamic behavior of the reaction mixture inside the reactor, consideration of heat release due to the reaction, and the heat exchange between the reaction mixture and the cooling medium. The results indicate that the choice of the type and size of the mixing device significantly affects the efficiency of the mixing process inside the chemical reactor.

Keywords: CFD, mixing, blending, chemical reactor, non-Newton liquids, polymers

Procedia PDF Downloads 35
10055 Obtaining High Purity Hydroxyapatite from Bovine Bone: Effect of Chemical and Thermal Treatments

Authors: Hernandez Pardo Diego F., Guiza Arguello Viviana R., Coy Echeverria Ana, Viejo Abrante Fernando

Abstract:

The biological hydroxyapatite obtained from bovine bone arouses great interest in its application as a material for bone regeneration due to its better bioactive behavior in comparison with synthetic hydroxyapatite. For this reason, the objective of the present investigation was to determine the effect of chemical and thermal treatments in obtaining biological bovine hydroxyapatite of high purity and crystallinity. Two different chemical reagents were evaluated (NaOH and HCl) with the aim to remove the organic matrix of the bovine cortical bone. On the other hand, for analyzing the effect of thermal treatment temperature was ranged between 500 and 1000°C for a holding time of 4 hours. To accomplish the above, the materials before and after the chemical and thermal treatments were characterized by elemental compositional analysis (CHN), infrared spectroscopy by Fourier transform (FTIR), RAMAN spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and energy dispersion X-ray spectroscopy (EDS). The results allowed to establish that NaOH is more effective in the removal of the organic matrix of the bone when compared to HCl, whereas a thermal treatment at 700ºC for 4 hours was enough to obtain biological hydroxyapatite of high purity and crystallinity.

Keywords: bovine bone, hydroxyapatite, biomaterials, thermal treatment

Procedia PDF Downloads 116
10054 Electrochemical Synthesis of Copper Nanoparticles

Authors: Juan Patricio Ibáñez, Exequiel López

Abstract:

A method for synthesizing copper nanoparticles through an electrochemical approach is proposed, employing surfactants to stabilize the size of the newly formed nanoparticles. The electrolyte was made up of a matrix of H₂SO₄ (190 g/L) having Cu²⁺ (from 3.2 to 9.5 g/L), sodium dodecyl sulfate -SDS- (from 0.5 to 1.0 g/L) and Tween 80 (from 0 to 7.5 mL/L). Tween 80 was used in a molar relation of 1 to 1 with SDS. A glass cell was used, which was in a thermostatic water bath to keep the system temperature, and the electrodes were cathodic copper as an anode and stainless steel 316-L as a cathode. This process was influenced by the control exerted through the initial copper concentration in the electrolyte and the applied current density. Copper nanoparticles of electrolytic purity, exhibiting a spherical morphology of varying sizes with low dispersion, were successfully produced, contingent upon the chemical composition of the electrolyte and current density. The minimum size achieved was 3.0 nm ± 0.9 nm, with an average standard deviation of 2.2 nm throughout the entire process. The deposited copper mass ranged from 0.394 g to 1.848 g per hour (over an area of 25 cm²), accompanied by an average Faradaic efficiency of 30.8% and an average specific energy consumption of 4.4 kWh/kg. The chemical analysis of the product employed X-ray powder diffraction (XRD), while physical characteristics such as size and morphology were assessed using atomic force microscopy (AFM). It was identified that the initial concentration of copper and the current density are the variables defining the size and dispersion of the nanoparticles, as they serve as reactants in the cathodic half-reaction. The presence of surfactants stabilizes the nanoparticle size as their molecules adsorb onto the nanoparticle surface, forming a thick barrier that prevents mass transfer with the exterior and halts further growth.

Keywords: copper nanopowder, electrochemical synthesis, current density, surfactant stabilizer

Procedia PDF Downloads 63
10053 Firm's Growth Leading Dimensions of Blockchain Empowered Information Management System: An Empirical Study

Authors: Umang Varshney, Amit Karamchandani, Rohit Kapoor

Abstract:

Practitioners and researchers have realized that Blockchain is not limited to currency. Blockchain as a distributed ledger can ensure a transparent and traceable supply chain. Due to Blockchain-enabled IoTs, a firm’s information management system can now take inputs from other supply chain partners in real-time. This study aims to provide empirical evidence of dimensions responsible for blockchain implemented firm’s growth and highlight how sector (manufacturing or service), state's regulatory environment, and choice of blockchain network affect the blockchain's usefulness. This post-adoption study seeks to validate the findings of pre-adoption studies done on the blockchain. Data will be collected through a survey of managers working in blockchain implemented firms and analyzed through PLS-SEM.

Keywords: blockchain, information management system, PLS-SEM, firm's growth

Procedia PDF Downloads 126
10052 Physico-Chemical Parameters and Economic Evaluation of Bio-Ethanol Produced from Waste of Starting Dates in South Algeria

Authors: Insaf Mehani, Bachir Bouchekima

Abstract:

The fight against climate change and the replacement of fossil energies nearing exhaustion gradually emerge as major societal and economic challenges. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.

Keywords: bio-energy, waste dates, bio ethanol, Algeria

Procedia PDF Downloads 365
10051 Selection of Lead Mobilizing Bacteria from Contaminated Soils and Their Potential in Promoting Plant Growth through Plant Growth Promoting Activity

Authors: Maria Manzoor, Iram Gul, Muhammad Arshad

Abstract:

Bacterial strains were isolated from contaminated soil collected from Rawalpindi and Islamabad. The strains were investigated for lead resistance and their effect on Pb solubility and PGPR activity. Incubation experiments were carried for inoculated and unoculated soil containing different levels of Pb. Results revealed that few stains (BTM-4, BTM-11, BTM-14) were able to tolerate Pb up to 600 mg L-1, whereas five strains (BTM-3, BTM-6, BTM-10, BTM-21 and BTM-24) showed significant increase in solubility of Pb when compared to all other strains and control. The CaCl2 extractable Pb was increased by 13.6, 6.8, 4.4 and 2.4 folds compared to un-inoculated control soil at increased soil Pb concentration (500, 1000, 1500 and 200 mg kg-1, respectively). The selected bacterial strains (11) were further investigated for plant growth promotion activity through PGPR assays including. Germination and root elongation assays were also conducted under elevated metal concentration in controlled conditions to elucidate the effects of microbial strains upon plant growth and development. The results showed that all the strains tested in this study, produced significantly varying concentrations of IAA, siderophores and gibberellic acid along with ability to phosphorus solubilization index (PSI). The results of germination and root elongation assay further confirmed the beneficial role of the microbial strains in elevating metal stress through PGPR activity. Among all tested strains, BTM-10 significantly improved plant growth. 1.3 and 2.7 folds increase in root and shoot length was observed when compared to control. Which may be attributed to presence of important plant growth promoting enzymes (IAA 74.6 μg/ml; GA 19.23 μg/ml; Sidrophore units 49% and PSI 1.3 cm). The outcome of this study indicates that these Pb tolerant and solubilizing strains may have the potential for plant growth promotion under metal stress and can be used as mediator when coupled with heavy metal hyperaccumulator plants for phytoremediation of Pb contaminated soil.

Keywords: Pb resistant bacteria, Pb mobilizing bacteria, Phytoextraction of Pb, PGPR activity of bacteria

Procedia PDF Downloads 219
10050 Deciphering Suitability of Rhamnolipids as Emulsifying Agent for Hydrophobic Pollutants

Authors: Asif Jamal, Samia Sakindar, Ramla Rehman

Abstract:

Biosurfactants are amphiphilic surface active compounds obtained from natural resources such as plants and microorganisms. Because of their diverse physicochemical characteristics biosurfactant are replacing synthetic compounds in various commercial applications. In present study, a strain of P. aeruginosa was isolated from crude oil contaminated soil as efficient biosurfactant producers. The biosurfactant production was analyzed as a function of surface tension reduction, oil spreading capacity, emulsification index and hemolysis assay. This bacterial strain showed excellent emulsion activity of EI24 85%, surface tension reduction up to 28.6 mNm-1 and 7.0 mm oil displacement zone. Physicochemical and biological properties of extracted rhamnolipid were also investigated in current study. The chemical composition of product from strain PSS was analyzed by FTIR spectroscopy. The results revealed that extracted biosurfactant was rhamnolipid type in nature having RL-1 and RL-2 homologues. The surface behavior of rhamnolipid in aqueous phase was investigated varying extreme pH, temperature, salt conditions and with various hydrocarbons. The results indicated that biosurfactant produced by strain PSS Which showed stability during high temperature up to 121 C, salt concentrations up to 20% and pH range between (4—14). The emulsification activity with different hydrocarbons was also remarkable. It was concluded that rhamnolipid biosurfactant produced by strain PSS has excellent potential as emulsifying/remediation agent for broad range of hydrophobic pollutants.

Keywords: P. aeruginosa, bioremediation, rhamnolipid, surfactants

Procedia PDF Downloads 281
10049 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 73
10048 Critical Study on the Sensitivity of Corrosion Fatigue Crack Growth Rate to Cyclic Waveform and Microstructure in Marine Steel

Authors: V. C. Igwemezie, A. N. Mehmanparast

Abstract:

The primary focus of this work is to understand how variations in the microstructure and cyclic waveform affect the corrosion fatigue crack growth (CFCG) in steel, especially in the Paris region of the da/dN vs. ΔK curve. This work is important because it provides fundamental information on the modelling, design, selection, and use of steels for various engineering applications in the marine environment. The corrosion fatigue tests data on normalized and thermomechanical control process (TMCP) ferritic-pearlitic steels by the authors were compared with several studies on different microstructures in the literature. The microstructures of these steels are radically different and general comparative fatigue crack growth resistance performance study on the effect of microstructure in these materials are very scarce and where available are limited to few studies. The results, for purposes of engineering application, in this study show less dependency of fatigue crack growth rate (FCGR) on yield strength, tensile strength, ductility, frequency and stress ratio in the range 0.1 – 0.7. The nature of the steel microstructure appears to be a major factor in determining the rate at which fatigue cracks propagate in the entire da/dN vs. ΔK sigmoidal curve. The study also shows that the sine wave shape is the most damaging fatigue waveform for ferritic-pearlitic steels. This tends to suggest that the test under sine waveform would be a conservative approach, regardless of the waveform for design of engineering structures.

Keywords: BS7910, corrosion-fatigue crack growth rate, cyclic waveform, microstructure, steel

Procedia PDF Downloads 155
10047 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine

Authors: Ghulam Murshid

Abstract:

Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids are reported by the researchers as a potential solvent for absorption of carbon dioxide to replace alkanolamines due to its ability to resist oxidative degradation, low volatility due to its ionic structure and higher surface tension. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermophysical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.

Keywords: amino acids, co2, global warming, solubility

Procedia PDF Downloads 414
10046 Microwave-Assisted Synthesis of Silver Nanoparticles from Dioscorea Deltoidea Callus Extract and Evaluation of Its Antimicrobial Activity

Authors: Mujeeb Mohd, Aqil Mohd, A. K. Najmi, Akhtar MMohd, Vasim Mohd

Abstract:

Dioscorea deltoidea belongs to the Dioscoreaceae family, is usually found in the north-western Himalayas and some other parts of the world up to an altitude of 1000–3000 m. D. deltoidea commonly known as yam and is an extensively used medicinal plant in the indigenous system of medicine. It has been reported to contain dioscine a steroidal glycoside in higher concentration. In the present investigation, silver nanoparticles (AgNPs) have been synthesized by a simple, efficient, environmentally benevolent and economic microwave-assisted method. Callus culture of D. deltoidea was developed and maintained on Murashige and skooge basal medium supplemented with different combination and concentration of plant growth regulators. Aqueous extract of callus culture was used as the reducing and stabilizing agent. The synthesized nanoparticles have been characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD analysis. The presence of a characteristic surface plasmon resonance (SPR) absorption band at 430 nm in UV–Vis reveals the reduction of silver metal ions into silver nanoparticles. Whereas FTIR analysis was performed to probe the possible functional group involved in the synthesis of AgNPs. Further extract and AgNPs were evaluated for antimicrobial activity against different pathogenic microorganisms.

Keywords: antimicrobial, Dioscorea deltoidea, microwave, silver, nanoparticles

Procedia PDF Downloads 271
10045 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 267
10044 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat

Abstract:

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle

Procedia PDF Downloads 402
10043 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 104
10042 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel

Procedia PDF Downloads 547
10041 Flame Spray Pyrolysis as a High-Throughput Method to Generate Gadolinium Doped Titania Nanoparticles for Augmented Radiotherapy

Authors: Malgorzata J. Rybak-Smith, Benedicte Thiebaut, Simon Johnson, Peter Bishop, Helen E. Townley

Abstract:

Gadolinium doped titania (TiO2:Gd) nanoparticles (NPs) can be activated by X-ray radiation to generate Reactive Oxygen Species (ROS), which can be effective in killing cancer cells. As such, treatment with these NPs can be used to enhance the efficacy of conventional radiotherapy. Incorporation of the NPs in to tumour tissue will permit the extension of radiotherapy to currently untreatable tumours deep within the body, and also reduce damage to neighbouring healthy cells. In an attempt to find a fast and scalable method for the synthesis of the TiO2:Gd NPs, the use of Flame Spray Pyrolysis (FSP) was investigated. A series of TiO2 NPs were generated with 1, 2, 5 and 7 mol% gadolinium dopant. Post-synthesis, the TiO2:Gd NPs were silica-coated to improve their biocompatibility. Physico-chemical characterisation was used to determine the size and stability in aqueous suspensions of the NPs. All analysed TiO2:Gd NPs were shown to have relatively high photocatalytic activity. Furthermore, the FSP synthesized silica-coated TiO2:Gd NPs generated enhanced ROS in chemico. Studies on rhabdomyosarcoma (RMS) cell lines (RD & RH30) demonstrated that in the absence of irradiation all TiO2:Gd NPs were inert. However, application of TiO2:Gd NPs to RMS cells, followed by irradiation, showed a significant decrease in cell proliferation. Consequently, our studies showed that the X-ray-activatable TiO2:Gd NPs can be prepared by a high-throughput scalable technique to provide a novel and affordable anticancer therapy.

Keywords: cancer, gadolinium, ROS, titania nanoparticles, X-ray

Procedia PDF Downloads 431
10040 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs

Authors: Agata Chelminska, Joanna Goscianska

Abstract:

The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.

Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants

Procedia PDF Downloads 180