Search results for: glass structure and properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15404

Search results for: glass structure and properties

3764 An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity

Authors: Hongbin Yang, Mingxue Liao, Changwen Zheng, Mengyao Kong, Chaohui Liu

Abstract:

Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework.

Keywords: bidirectional reflection distribution function, BRDF, geometric attenuation term, multiple scattering, V-cavity model

Procedia PDF Downloads 116
3763 Investigation of Pollution and the Physical and Chemical Condition of Polour River, East of Tehran, Iran

Authors: Azita Behbahaninia

Abstract:

This research has been carried out to determine the water quality and physico-chemical properties Polour River, one of the most branch of Haraz River. Polour River was studied for a period of one year Samples were taken from different stations along the main branch of River polour. In water samples determined pH, DO, SO4, Cl, PO4, NO3, EC, BOD, COD, Temprature, color and number of Caliform per liter. ArcGIS was used for the zoning of phosphate concentration in the polour River basin. The results indicated that the river is polluted in polour village station, because of discharge domestic wastewater and also river is polluted in Ziar village station, because of agricultural wastewater and water is contaminated in aquaculture station, because of fish ponds wastewater. Statistical analysis shows that between independent traits and coliform regression relationship is significant at the 1% level. Coefficient explanation index indicated independent traits control 80% coliform and 20 % is for unknown parameters. The causality analysis showed Temperature (0.6) has the most positive and direct effect on coliform and sulfate has direct and negative effect on coliform. The results of causality analysis and the results of the regression analysis are matched and other forms direct and indirect effects were negligible and ignorable. Kruskal-Wallis test showed, there is different between sampling stations and studied characters. Between stations for temperature, DO, COD, EC, sulfate and coliform is at 1 % and for phosphate 5 % level of significance.

Keywords: coliform, GIS, pollution, phosphate, river

Procedia PDF Downloads 468
3762 Antibacterial Activity of Melaleuca Cajuputi Oil against Resistant Strain Bacteria

Authors: R. M. Noah, N. M. Nasir, M. R. Jais, M. S. S. Wahab, M. H. Abdullah, A. S. S. Raj

Abstract:

Infectious diseases are getting more difficult to treat due to the resistant strains of bacteria. Current generations of antibiotics are most likely ineffective against multi-drug resistant strains bacteria. Thus, there is an urgent need in search of natural antibiotics in particular from medicinal plants. One of the common medicinal plants, Melaleuca cajuputi, has been reported to possess antibacterial properties. The study was conducted to evaluate and justify the presence of antibacterial activity of Melaleuca cajuputi essential oil (EO) against the multi-drug resistant bacteria. Clinical isolates obtained from the teaching hospital were re-assessed to confirm the exact identity of the bacteria to be tested, namely methicillin-resistant staphylococcus aureus (MRSA), carbapenem-resistant enterobacteriaceae (CRE), and extended-spectrum beta-lactamases producer (ESBLs). A well diffusion method was done to observe the inhibition zones of the essential oil against the bacteria. Minimum inhibitory concentration (MIC) was determined using the microdilution method in 96-well flat microplate. The absorbance was measured using a microplate reader. Minimum bactericidal concentration (MBC) was performed using the agar medium method. The zones of inhibition produced by the EO against MRSA, CRE, and ESBL were comparable to that of generic antibiotics used, gentamicin and augmentin. The MIC and MBC results highlighted the antimicrobial efficacy of the EO. The outcome of this study indicated that the EO of Melaleuca cajuputi had antibacterial activity on the multi-drug resistant bacteria. This finding was eventually substantiated by electron microscopy work.

Keywords: melaleuca cajuputi, antibacterial, resistant bacteria, essential oil

Procedia PDF Downloads 122
3761 Kinetic Study on Extracting Lignin from Black Liquor Using Deep Eutectic Solvents

Authors: Fatemeh Saadat Ghareh Bagh, Srimanta Ray, Jerald Lalman

Abstract:

Lignin, the largest inventory of organic carbon with a high caloric energy value is a major component in woody and non-woody biomass. In pulping mills, a large amount of the lignin is burned for energy. At the same time, the phenolic structure of lignin enables it to be converted to value-added compounds.This study has focused on extracting lignin from black liquor using deep eutectic solvents (DESs). Therefore, three choline chloride (ChCl)-DESs paired with lactic acid (LA) (1:11), oxalic acid.2H₂O (OX) (1:4), and malic acid (MA) (1:3) were synthesized at 90oC and atmospheric pressure. The kinetics of lignin recovery from black liquor using DES was investigated at three moderate temperatures (338, 353, and 368 K) at time intervals from 30 to 210 min. The extracted lignin (acid soluble lignin plus Klason lignin) was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR studies included comparing the extracted lignin with a model Kraft lignin. The extracted lignin was characterized spectrophotometrically to determine the acid soluble lignin (ASL) [TAPPI UM 250] fraction and Klason lignin was determined gravimetrically using TAPPI T 222 om02. The lignin extraction reaction using DESs was modeled by first-order reaction kinetics and the activation energy of the process was determined. The ChCl:LA-DES recovered lignin was 79.7±2.1% at 368K and a DES:BL ratio of 4:1 (v/v). The quantity of lignin extracted for the control solvent, [emim][OAc], was 77.5+2.2%. The activation energy measured for the LA-DES system was 22.7 KJ mol⁻¹, while the activation energy for the OX-DES and MA-DES systems were 7.16 KJ·mol⁻¹ and 8.66 KJ·mol⁻¹ when the total lignin recovery was 75.4 ±0.9% and 62.4 ±1.4, % respectively.

Keywords: black liquor, deep eutectic solvents, kinetics, lignin

Procedia PDF Downloads 148
3760 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 182
3759 Experimental Study on Performance of a Planar Membrane Humidifier for a Proton Exchange Membrane Fuel Cell Stack

Authors: Chen-Yu Chen, Wei-Mon Yan, Chi-Nan Lai, Jian-Hao Su

Abstract:

The proton exchange membrane fuel cell (PEMFC) becomes more important as an alternative energy source recently. Maintaining proper water content in the membrane is one of the key requirements for optimizing the PEMFC performance. The planar membrane humidifier has the advantages of simple structure, low cost, low-pressure drop, light weight, reliable performance and good gas separability. Thus, it is a common external humidifier for PEMFCs. In this work, a planar membrane humidifier for kW-scale PEMFCs is developed successfully. The heat and mass transfer of humidifier is discussed, and its performance is analyzed in term of dew point approach temperature (DPAT), water vapor transfer rate (WVTR) and water recovery ratio (WRR). The DPAT of the humidifier with the counter flow approach reaches about 6°C under inlet dry air of 50°C and 60% RH and inlet humid air of 70°C and 100% RH. The rate of pressure loss of the humidifier is 5.0×10² Pa/min at the torque of 7 N-m, which reaches the standard of commercial planar membrane humidifiers. From the tests, it is found that increasing the air flow rate increases the WVTR. However, the DPAT and the WRR are not improved by increasing the WVTR as the air flow rate is higher than the optimal value. In addition, increasing the inlet temperature or the humidity of dry air decreases the WVTR and the WRR. Nevertheless, the DPAT is improved at elevated inlet temperatures or humidities of dry air. Furthermore, the performance of the humidifier with the counter flow approach is better than that with the parallel flow approach. The DPAT difference between the two flow approaches reaches up to 8 °C.

Keywords: heat and mass transfer, humidifier performance, PEM fuel cell, planar membrane humidifier

Procedia PDF Downloads 307
3758 The Effect of Different Concentrations of Trichoderma harzianum Fungus on the Phytochemical and Antioxidative Parameters of Cauliflower (Brassica oleracea convar.botrytisl) in Soils Contaminated with Lead

Authors: Mohammad Javad Shakori, Esmaeil Babakhanzadeh Sajirani, Vajihe Esmaili

Abstract:

Today, the increasing contamination is an environmental concern. There is relationship between plants and microorganisms many years ago. In this regard, an experiment was conducted in order to investigate the effect of different levels of lead across three levels ‘zero, 50, and 100 mg/L’ and Trichoderma Harzanium fungus across three levels ‘5, 10, and 15%’ in a factorial design in the form of fully randomized blocks in three replications under form conditions in the climatic conditions of Shahroud in Dehlama Village. This research was performed in 2014-2015 on cauliflower. In this experiment, chlorophyll a, b, total, cartenoid, phenol, flavonoid, and antioxidant properties of cauliflowers were measured. The results indicated that the greatest level of chlorophyll a (75.723 mg/wet weight), chlorophyll b (27.378 mg/wet weight), and total chlorophyll (109.074 mg/wet weight) was related to the interactive effects of 5% treatment of Trichoderma fungus and 0mg/L lead. The results also indicated that the greatest amount of antioxidant (79.88% of free radical) and flavonoides (22.889 mg of coercetin/g of dry weight) was related to the interactive effects of lead 50 mg/L and the treatment of Trichoderma fungus 5%. Further, the greatest level of phenol (21.33 mg of Gaelic acid/ dry weight) was related to the interactive effects of lead 100 mg/L and Trichoderma fungus 5% . As carotenoids are a type of antioxidant and precursor of vitamin A, with the development of alignment effect with other antioxidants such as the total phenol, flavonoid, achieved desirable levels of antioxidant.

Keywords: antioxidant, lead, flavonoid, cauliflower, chlorophyll

Procedia PDF Downloads 276
3757 Application of Active Chitosan Coating Incorporated with Spirulina Extract as a Potential Food Packaging Material for Enhancing Quality and Shelf Life of Shrimp

Authors: Rafik Balti, Nourhene Zayoud, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse

Abstract:

Application of edible films and coatings with natural active compounds for enhancing storage stability of food products is a promising active packaging approach. Shrimp are generally known as valuable seafood products around the world because of their delicacy and good nutritional. However, shrimp is highly vulnerable to quality deterioration associated with biochemical, microbiological or physical changes during postmortem storage, which results in the limited shelf life of the product. Chitosan is considered as a functional packaging component for maintaining the quality and increasing the shelf life of perishable foods. The present study was conducted to evaluate edible coating of crab chitosan containing variable levels of ethanolic extract of Spirulina on microbiological (mesophilic aerobic, psychrotrophic, lactic acid bacteria, and enterobacteriacea), chemical (pH, TVB-N, TMA-N, PV, TBARS) and sensory (odor, color, texture, taste, and overall acceptance) properties of shrimp during refrigerated storage. Also, textural and color characteristics of coated shrimp were performed. According to the obtained results, crab chitosan in combination with Spirulina extract was very effective in order to extend the shelf life of shrimp during storage in refrigerated condition.

Keywords: food packaging, chitosan, spirulina extract, white shrimp, shelf life

Procedia PDF Downloads 210
3756 Computational Fluid Dynamics Simulation of a Nanofluid-Based Annular Solar Collector with Different Metallic Nano-Particles

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

Motivation- Solar energy constitutes the most promising renewable energy source on earth. Nanofluids are a very successful family of engineered fluids, which contain well-dispersed nanoparticles suspended in a stable base fluid. The presence of metallic nanoparticles (e.g. gold, silver, copper, aluminum etc) significantly improves the thermo-physical properties of the host fluid and generally results in a considerable boost in thermal conductivity, density, and viscosity of nanofluid compared with the original base (host) fluid. This modification in fundamental thermal properties has profound implications in influencing the convective heat transfer process in solar collectors. The potential for improving solar collector direct absorber efficiency is immense and to gain a deeper insight into the impact of different metallic nanoparticles on efficiency and temperature enhancement, in the present work, we describe recent computational fluid dynamics simulations of an annular solar collector system. The present work studies several different metallic nano-particles and compares their performance. Methodologies- A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressible laminar flow comprising water- (and other) based nanofluid containing a variety of metallic nanoparticles (copper oxide, aluminum oxide, and titanium oxide nanoparticles) is examined. The Tiwari-Das model is deployed for which thermal conductivity, specific heat capacity and viscosity of the nanofluid suspensions is evaluated as a function of solid nano-particle volume fraction. Radiative heat transfer is also incorporated using the ANSYS solar flux and Rosseland radiative models. The ANSYS FLUENT finite volume code (version 18.1) is employed to simulate the thermo-fluid characteristics via the SIMPLE algorithm. Mesh-independence tests are conducted. Validation of the simulations is also performed with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation achieved. The influence of volume fraction on temperature, velocity, pressure contours is computed and visualized. Main findings- The best overall performance is achieved with copper oxide nanoparticles. Thermal enhancement is generally maximized when water is utilized as the base fluid, although in certain cases ethylene glycol also performs very efficiently. Increasing nanoparticle solid volume fraction elevates temperatures although the effects are less prominent in aluminum and titanium oxide nanofluids. Significant improvement in temperature distributions is achieved with copper oxide nanofluid and this is attributed to the superior thermal conductivity of copper compared to other metallic nano-particles studied. Important fluid dynamic characteristics are also visualized including circulation and temperature shoots near the upper region of the annulus. Radiative flux is observed to enhance temperatures significantly via energization of the nanofluid although again the best elevation in performance is attained consistently with copper oxide. Conclusions-The current study generalizes previous investigations by considering multiple metallic nano-particles and furthermore provides a good benchmark against which to calibrate experimental tests on a new solar collector configuration currently being designed at Salford University. Important insights into the thermal conductivity and viscosity with metallic nano-particles is also provided in detail. The analysis is also extendable to other metallic nano-particles including gold and zinc.

Keywords: heat transfer, annular nanofluid solar collector, ANSYS FLUENT, metallic nanoparticles

Procedia PDF Downloads 143
3755 Antioxidant and Antimicrobial Activities of Phenolic Extracts of Endemic Plants Marrubium deserti and Ammodaucus leucotrichus from Algeria

Authors: Sifi Ibrahim, Benaddou Fatima Zohra, Yousfi Mohamed

Abstract:

The Marrubium deserti and Ammodaucus leucotrichus L. an Algerian endemic species, has several applications in traditional medicine for example as a remedy for asthma and diabetes, and was found to have antibacterial properties. In this work, an antioxidant and antimicrobial activities was performed on phenolic extracts of Marrubium deserti, Ammodaucus leucotrichus plants. The yield of methanol maceration of these plants is 12.4% and 20.4% respectively. The content of total polyphenols, flavonoids and anthocyanin in methanolic extracts, are varied between 19.52±1.88 and 59.24±3.45 mg/g gallic acid equivalent, and 2.08±0.29 to 1.46±0.39 mg/g quercetin equivalent, and 0.395 to 1.934µmol/g respectively. The total chlorophylls and carotenoids were be ranged from 0.149±0.20 to 1.537±0.20 g/ml and 1.537±0.20 to 0.149 ± 0.20 g/ml, respectively. According to DPPH and FRAP test, the values of EC50 was shows a higher activity of Marrubium deserti than Ammodaucus leucotrichus with EC50 values (DPPH) were 34.53±0.71 μg/mL and 258.60±15.67 mg/ml respectively. The TEAC values of FRAP test was a highly superior for Marrubium deserti 209.66±0.26 mg Equivalent Trolox/g dry residue than Ammodaucus leucotrichus 45.88±2.93 mg Trolox Equivalent/g dry residue. The antimicrobial activity against nine strains of bacteria (Staphylococcus aureus(+), Staphylococcus aureus (-), Bacillus cereus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi), was showed that the tested extracts are a significant antibacterial activity with inhibition zones ranging from 10 to 50 mm. the value of CMI were ranging from 0.89 to 14.29 mg/ml.

Keywords: phenolic extract, antioxidant activity, antimicrobial activity, Marrubium deserti, Ammodaucus leucotrichus

Procedia PDF Downloads 395
3754 Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application

Authors: Erwin, Cheng-Cheng Chen, Charles J. Salim

Abstract:

One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested.

Keywords: cover plate, earthquake resistant design, lateral torsional buckling, side plate, steel structure

Procedia PDF Downloads 175
3753 Resilience with Spontaneous Volunteers in Disasters-Coordination Using an It System

Authors: Leo Latasch, Mario Di Gennaro

Abstract:

Introduction: The goal of this project was to increase the resilience of the population as well as rescue organizations to make both quality and time-related improvements in handling crises. A helper network was created for this purpose. Methods: Social questions regarding the structure and purpose of helper networks were considered - specifically with regard to helper motivation, the level of commitment and collaboration between populations and agencies. The exchange of information, the coordinated use of volunteers, and the distribution of available resources will be ensured through defined communication and cooperation routines. Helper smartphones will also be used provide a picture of the situation on the ground. Results: The helper network was established and deployed based on the RESIBES information technology system. It consists of a service platform, a web portal and a smartphone app. The service platform is the central element for collaboration between the various rescue organizations, as well as for persons, associations, and companies from the population offering voluntary aid. The platform was used for: Registering helpers and resources and then requesting and assigning it in case of a disaster. These services allow the population's resources to be organized. The service platform also allows for a secure data exchange between services and external systems. Conclusions: The social and technical work priorities have allowed us to cover a full cycle of advance structural work, gaining an overview, damage management, evaluation, and feedback on experiences. This cycle allows experiences gained while handling the crisis to feed back into the cycle and improve preparations and management strategies.

Keywords: coordination, disaster, resilience, volunteers

Procedia PDF Downloads 142
3752 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies

Authors: Salina Budin, Shaira Ismail

Abstract:

Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.

Keywords: learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science

Procedia PDF Downloads 245
3751 Resin-coated Controlled Release Fertilizer (CRF) for Oil Palm: Laboratory and Main Nursery Evaluation

Authors: Umar Adli Amran, Tan Choon Chek, Mohd Shahkhirat Norizan, Then Kek Hoe

Abstract:

Controlled release fertilizer (CRF) enables a regulated nutrients release for more efficient plant uptake compared to the normal granular fertilizer. It reduces nutrients loss via surface run-off and leaching, hence promotes sustainable agriculture. Although the performance of CRF in providing consistent and timely nutrients supply is well known, its expensive price limits it usage in a large scale plantation. This study is conducted to evaluate the properties and performance of bio-based polyurethane (PU)-coated CRF via laboratory and oil palm main nursery trial. The CRF is produced by coating of a normal commercial compound granular fertilizer from FGV Fertiliser Sdn. Bhd., namely Felda 10 (10.5-8-20-3+0.5B), and designated as CRF FGV10. Based on laboratory evaluation, the CRF FGV10 can sustain nutrients release for more than 6 months. Vegetative growth parameters such as girth size, palm height, third frond length, and the total number of fronds produced were recorded. Besides that, dry biomass of the oil palm seedlings was also determined. From the evaluation, it is proved that at 50% reduction of nutrients application rate and for only two times application (T3), CRF FGV10 enabled the oil palm seedlings to achieve similar vegetative growth with the control samples (T1). It is also proven that only PU-coated CRF FGV10 had allowed the reduction of fertilizer rate and application rounds.

Keywords: nutrition, oil palm seedlings, polyurethane, sustainable manuring, vegetative growth

Procedia PDF Downloads 61
3750 Development of the Internal Educational Quality Assurance System of Suan Sunandha Rajabhat University

Authors: Nipawan Tharasak, Sajeewan Darbavasu

Abstract:

This research aims 1) to study the opinion, problems and obstacles to internal educational quality assurance system for individual and the university levels, 2) to propose an approach to the development of quality assurance system of Suan Sunandha Rajabhat University. A study of problems and obstacles to internal educational quality assurance system of the university conducted with sample group consisting of staff and quality assurance committee members of the year 2010. There were 152 respondents. 5 executives were interviewed. Tool used in the research was document analysis. The structure of the interview questions and questionnaires with 5-rate scale. Reliability was 0.981. Data analysis were percentage, mean and standard deviation with content analysis. Results can be divided into 3 main points: (1) The implementation of the internal quality assurance system of the university. It was found that in overall, input, process and output factors received high scores. Each item is considered, the preparation, planning, monitoring and evaluation. The results of evaluation to improve the reporting and improvement according to an evaluation received high scores. However, the process received an average score. (2) Problems and obstacles. It was found that the personnel responsible for the duty still lack understanding of indicators and criteria of the quality assurance. (3) Development approach: -Staff should be encouraged to develop a better understanding of the quality assurance system. -Database system for quality assurance should be developed. -The results and suggestions should be applied in the next year development planning.

Keywords: development system, internal quality assurance, education, educational quality assurance

Procedia PDF Downloads 297
3749 Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design

Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao

Abstract:

Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.

Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL

Procedia PDF Downloads 228
3748 Energy Conservation in Heat Exchangers

Authors: Nadia Allouache

Abstract:

Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.

Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis

Procedia PDF Downloads 288
3747 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 431
3746 Antiangiogenic Potential of Phellodendron amurense Bark Extract Observed on Chorioallantoic Membrane

Authors: Ľudmila Ballová, Slavomír Kurhajec, Eva Petrovová, Jarmila Eftimová

Abstract:

Angiogenesis, a formation of new blood vessels from a pre-existing vasculature, plays an important role in pathologic processes such as the growth and metastasis of tumours. Tumours cannot grow beyond a few millimetres without blood supply from the newly formed blood vessels from the host tissue, a process called tumour-induced angiogenesis. The successful research of antiangiogenic treatment of cancer has focused on nutraceuticals with angiogenesis-modulating properties. Berberine, as a major active component of the bark of Phellodendron amurense Rupr., has shown antitumour activity by intervening into different steps of carcinogenesis. The influence of ethanolic extract of Phellodendron amurese bark on the angiogenesis was tested in vivo on chick chorioallantoic membrane (CAM). The irritancy of the CAM after the application of the crude bark extract dissolved in normal saline (10 mg/mL) was investigated on embryonic day 7. No significant signs of the irritancy, such as vasoconstriction, hyperaemia, haemorrhage or coagulation were observed which indicates the harmless character of the extract. A significant reduction in vessel sprouting and higher percentage of avascular zone was observed in the case of CAM treated with the extract in comparison with non-treated CAM (control), which is a proof of the antiangiogenic potential of the extract. These results could contribute to the development of novel drugs for the treatment of cancer or other diseases, in which angiogenesis plays a significant role.

Keywords: angiogenesis, berberine, chorioallantoic membrane, irritancy, phellodendron amurense

Procedia PDF Downloads 383
3745 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles

Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei

Abstract:

Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.

Keywords: citrate method, gold nanoparticles, Parsival, population balance equations, Turkevich organizer theory

Procedia PDF Downloads 203
3744 An Information-Based Approach for Preference Method in Multi-Attribute Decision Making

Authors: Serhat Tuzun, Tufan Demirel

Abstract:

Multi-Criteria Decision Making (MCDM) is the modelling of real-life to solve problems we encounter. It is a discipline that aids decision makers who are faced with conflicting alternatives to make an optimal decision. MCDM problems can be classified into two main categories: Multi-Attribute Decision Making (MADM) and Multi-Objective Decision Making (MODM), based on the different purposes and different data types. Although various MADM techniques were developed for the problems encountered, their methodology is limited in modelling real-life. Moreover, objective results are hard to obtain, and the findings are generally derived from subjective data. Although, new and modified techniques are developed by presenting new approaches such as fuzzy logic; comprehensive techniques, even though they are better in modelling real-life, could not find a place in real world applications for being hard to apply due to its complex structure. These constraints restrict the development of MADM. This study aims to conduct a comprehensive analysis of preference methods in MADM and propose an approach based on information. For this purpose, a detailed literature review has been conducted, current approaches with their advantages and disadvantages have been analyzed. Then, the approach has been introduced. In this approach, performance values of the criteria are calculated in two steps: first by determining the distribution of each attribute and standardizing them, then calculating the information of each attribute as informational energy.

Keywords: literature review, multi-attribute decision making, operations research, preference method, informational energy

Procedia PDF Downloads 224
3743 Study of Aging Behavior of Parallel-Series Connection Batteries

Authors: David Chao, John Lai, Alvin Wu, Carl Wang

Abstract:

For lithium-ion batteries with multiple cell configurations, some use scenarios can cause uneven aging effects to each cell within the battery because of uneven current distribution. Hence the focus of the study is to explore the aging effect(s) on batteries with different construction designs. In order to systematically study the influence of various factors in some key battery configurations, a detailed analysis of three key battery construction factors is conducted. And those key factors are (1) terminal position; (2) cell alignment matrix; and (3) interconnect resistance between cells. In this study, the 2S2P circuitry has been set as a model multi-cell battery to set up different battery samples, and the aging behavior is studied by a cycling test to analyze the current distribution and recoverable capacity. According to the outcome of aging tests, some key findings are: (I) different cells alignment matrices can have an impact on the cycle life of the battery; (II) symmetrical structure has been identified as a critical factor that can influence the battery cycle life, and unbalanced resistance can lead to inconsistent cell aging status; (III) the terminal position has been found to contribute to the uneven current distribution, that can cause an accelerated battery aging effect; and (IV) the internal connection resistance increase can actually result in cycle life increase; however, it is noteworthy that such increase in cycle life is accompanied by a decline in battery performance. In summary, the key findings from the study can help to identify the key aging factor of multi-cell batteries, and it can be useful to effectively improve the accuracy of battery capacity predictions.

Keywords: multiple cells battery, current distribution, battery aging, cell connection

Procedia PDF Downloads 80
3742 A Behavioral Approach of Impulse Buying: Application to Algerian Food Stores

Authors: Amel Graa, Maachou Dani El Kebir

Abstract:

This paper investigates the impulse buying behavior of Algerian consumer. In that purpose, we try to better understand processes underlying impulsive buying experiences by examining the theoretical framework and using Mehrabian and Russell’s structure. A model is then proposed and tested on a sample of 1500 shoppers who were recruited among customers of food stores. This model aims to explain the role of some situational variables, personal variables, variables linked to the product characteristics and emotional states on the impulse buying behavior. Following to this empirical study, it was possible to conclude that Algerian consumer has a weak tendency toward impulse buying of food products. The results indicate that seller guidance has a significant impact on the impulse buying, whereas the price of the product was negatively related. According to the results; perception of crowding was associated with scarcity and it was positively linked with impulse buying behavior. This study can help marketers determine the in-store factors that impact purely spontaneous purchases of items that otherwise would not end up in the shopping cart. Our research findings offer important information for benchmarking managerial expectations with regard to product selection and merchandising decisions. As futures perspectives, we propose new research areas related to the impulse buying behavior such as studying different types of stores (for example supermarket), or other types of product (clothing), or studying consumption of food products in religious month of Muslims (Ramadan).

Keywords: impulse buying, situational variables, personal variables, emotional states, PAD model of Merhabian and Russell, Algerian consumer

Procedia PDF Downloads 420
3741 Effect of Steel Fibers on M30 Fly Ash Concrete

Authors: Saksham

Abstract:

Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.

Keywords: concrete, sustainability, durability, compressive strength

Procedia PDF Downloads 52
3740 Prototype Development of Knitted Buoyant Swimming Vest for Children

Authors: Nga-Wun Li, Chu-Po Ho, Kit-Lun Yick, Jin-Yun Zhou

Abstract:

The use of buoyant vests incorporated with swimsuits can develop children’s confidence in the water, particularly for novice swimmers. Consequently, parents intend to purchase buoyant swimming vests for the children to reduce their anxiety to water. Although the conventional buoyant swimming vests can provide the buoyant function to the wearer, their bulkiness and hardness make children feel uncomfortable and not willing to wear. This study aimed to apply inlay knitting technology to design new functional buoyant swimming vests for children. This prototype involved a shell and a buoyant knitted layer, which is the main media to provide buoyancy. Polypropylene yarn and 6.4 mm of Expandable Polyethylene (EPE) foam were fabricated in Full needle stitch with inlay knitting technology and were then linked by sewing to form the buoyant layer. The shell of the knitted buoyant vest was made of Polypropylene circular knitted fabric. The structure of knitted fabrics of the buoyant swimsuit makes them inherently stretchable, and the arrangement of the inlaid material was designed based on the body movement that can improve the ease with which the swimmer moves. Further, the shoulder seam is designed at the back to minimize the irritation of the wearer. Apart from maintaining the buoyant function to them, this prototype shows its contribution in reducing bulkiness and improving softness to the conventional buoyant swimming vest by taking the advantages of a knitted garment. The results in this study are significant to the development of the buoyant swimming vest for both the textile and the fast-growing sportswear industry.

Keywords: knitting technology, buoyancy, inlay, swimming vest, functional garment

Procedia PDF Downloads 112
3739 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error

Procedia PDF Downloads 142
3738 Conflict, Confusion or Compromise: Violence against Women, A Case Study of Pakistan

Authors: Farhat Jabeen, Syed Asfaq Hussain Bukhari

Abstract:

In the wake of the contemporary period the basic objective of the research paper points out that socio-cultural scenario of Pakistan reveals that gender-based violence is deep rooted in the society irrespective of language and ethnicity. This paper would reconnaissance the possibility reforms in Pakistan for diminishing of violence. Women are not given their due role, rights, and respect. Furthermore, they are treated as chattels. This presentation will cover the socio-customary practices in the context of discrimination, stigmatization, and violence against women. This paper envisages justice in a broader sense of recognition of rights for women, and masculine structure of society, socio-customary practices and discrimination against women are a very serious concern which needs to be understood as a multidimensional problem. The paper will specially focus on understanding the existing obstacles of women in Pakistan in the constitutional scenario. Women stumble across discrimination and human rights manipulations, voluptuous violation and manipulation including domestic viciousness and are disadvantaged by laws, strategies, and programming that do not take their concerns into considerations. This presentation examines the role of honour killings among Pakistani community. This affects their self-assurance and capability to elevation integrity campaign where gender inequalities and discrimination in social, legal domain are to be put right. This paper brings to light the range of practices, laws and legal justice regarding the status of women and also covers attitude towards compensations for murders/killings, domestic violence, rape, adultery, social behavior and recourse to justice.

Keywords: discrimination, cultural, women, violence

Procedia PDF Downloads 325
3737 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 86
3736 Design of Effective Decoupling Point in Build-To-Order Systems: Focusing on Trade-Off Relation between Order-To-Delivery Lead Time and Work in Progress

Authors: Zhiyong Li, Hiroshi Katayama

Abstract:

Since 1990s, e-commerce and internet business have been grown gradually over the word and customers tend to express their demand attributes in terms of specification requirement on parts, component, product structure etc. This paper deals with designing effective decoupling points for build to order systems under e-commerce environment, which can be realized through tradeoff relation analysis between two major criteria, customer order lead time and value of work in progress. These KPIs are critical for successful BTO business, namely time-based service effectiveness on coping with customer requirements for the first issue and cost effective ness with risk aversive operations for the second issue. Approach of this paper consists of investigation of successful business standing for BTO scheme, manufacturing model development of this scheme, quantitative evaluation of proposed models by calculation of two KPI values under various decoupling point distributions and discussion of the results brought by pattern of decoupling point distribution, where some cases provide the pareto optimum performances. To extract the relevant trade-off relation between considered KPIs among 2-dimensional resultant performance, useful logic developed by former research work, i.e. Katayama and Fonseca, is applied. Obtained characteristics are evaluated as effective information for managing BTO manufacturing businesses.

Keywords: build-to-order (BTO), decoupling point, e-commerce, order-to-delivery lead time (ODLT), work in progress (WIP)

Procedia PDF Downloads 325
3735 Deciphering Suitability of Rhamnolipids as Emulsifying Agent for Hydrophobic Pollutants

Authors: Asif Jamal, Samia Sakindar, Ramla Rehman

Abstract:

Biosurfactants are amphiphilic surface active compounds obtained from natural resources such as plants and microorganisms. Because of their diverse physicochemical characteristics biosurfactant are replacing synthetic compounds in various commercial applications. In present study, a strain of P. aeruginosa was isolated from crude oil contaminated soil as efficient biosurfactant producers. The biosurfactant production was analyzed as a function of surface tension reduction, oil spreading capacity, emulsification index and hemolysis assay. This bacterial strain showed excellent emulsion activity of EI24 85%, surface tension reduction up to 28.6 mNm-1 and 7.0 mm oil displacement zone. Physicochemical and biological properties of extracted rhamnolipid were also investigated in current study. The chemical composition of product from strain PSS was analyzed by FTIR spectroscopy. The results revealed that extracted biosurfactant was rhamnolipid type in nature having RL-1 and RL-2 homologues. The surface behavior of rhamnolipid in aqueous phase was investigated varying extreme pH, temperature, salt conditions and with various hydrocarbons. The results indicated that biosurfactant produced by strain PSS Which showed stability during high temperature up to 121 C, salt concentrations up to 20% and pH range between (4—14). The emulsification activity with different hydrocarbons was also remarkable. It was concluded that rhamnolipid biosurfactant produced by strain PSS has excellent potential as emulsifying/remediation agent for broad range of hydrophobic pollutants.

Keywords: P. aeruginosa, bioremediation, rhamnolipid, surfactants

Procedia PDF Downloads 281