Search results for: cost of energy (COE)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13204

Search results for: cost of energy (COE)

1834 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production

Authors: Behnam Mahdiyan Nasl

Abstract:

In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.

Keywords: biogas, cheese whey, cattle manure, energy

Procedia PDF Downloads 334
1833 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction

Authors: Hicham Idriss

Abstract:

Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.

Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic

Procedia PDF Downloads 253
1832 Pesticide Use Practices among Female Headed Households in the Amhara Region, Ethiopia

Authors: Birtukan Atinkut Asmare, Bernhard Freyer, Jim Bingen

Abstract:

Though it is possible to transform the farming system towards a healthy, sustainable, and toxic-free food system by reducing pesticide use both in the field and postharvest, pesticides, including those that have been banned or severely restricted from use in developed countries, are indiscriminately used in African agriculture. Drawing on social practice theory, this study is about pesticide use practices in smallholder farms and its adverse impacts on women’s health and the environment, with reference to Africa, with an empirical focus on Ethiopia. Data have been collected via integrating diverse quantitative and qualitative approaches such as household surveys (n= 318), focus group discussions (n=6), field observations (n=30), and key informant interviews (n=18), with people along the pesticide value chain, including sellers and extension workers up to women farmers. A binary logistic regression model was used to investigate the factors that influence the adoption of personal protective equipment among female headed households. The findings show that Female-headed households carried out risky and unsafe practices from pesticide purchasing up to disposal, largely motivated by material elements (such as labor, income, time, and the provisioning system) but were notably shaped by competences (skills and knowledge), and meanings (norms, values, rules, and shared ideas). The main meaning or material aspect for pesticide purchasing were the perceptions of efficacy on pests, diseases, and weeds (65%), cost and availability in smaller quantities (60.7%), and a woman’s available time and mobility (58.9%). Pesticide hazards to human health or the environment seem not to be relevant for most female headed households. Unsafe practices of pesticide use among women led to the loss of biodiversity and ecosystem degradation, let alone their and family’s health. As the regression results show, the significant factors that influenced PPE adoption among female headed households were age and retailer information (p < 0.05). In line with the empirical finding, in addition to changing individual competences through advisory services and training, a foundational shift is needed in the sociocultural environment (e.g., policy, advisory), or a change in the meanings (social norms), where women are living and working.

Keywords: biodiversity, competences, ecosystems, ethiopia, female headed households, materials, meanings, pesticide purchasing, pesticide using, social practice theory

Procedia PDF Downloads 77
1831 Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes

Authors: Valery Gulyayev, Sergey Glazunov, Elena Andrusenko, Nataliya Shlyun

Abstract:

Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization.

Keywords: curvilinear drilling, drill string tripping in and out, contact forces, resistance forces

Procedia PDF Downloads 146
1830 Experimental Research of Smoke Impact on the Performance of Cylindrical Eight Channel Cyclone

Authors: Pranas Baltrėnas, Dainius Paliulis

Abstract:

Cyclones are widely used for separating particles from gas in energy production objects. Efficiency of normal centrifugal air cleaning devices ranges from 85 to 90%, but weakness of many cyclones is low collection efficiency of particles less than 10 μm in diameter. Many factors have impact on cyclone efficiency – humidity, temperature, gas (air) composition, airflow velocity and etc. Many scientists evaluated only effect of origin and size of PM on cyclone efficiency. Effect of gas (air) composition and temperature on cyclone efficiency still demands contributions. Complex experimental research on efficiency of cylindrical eight-channel system with adjustable half-rings for removing fine dispersive particles (< 20 μm) was carried out. The impact of gaseous smoke components on removal of wood ashes was analyzed. Gaseous components, present in the smoke mixture, with the dynamic viscosity lower than that of same temperature air, decrease the d50 value, simultaneously increasing the overall particulate matter removal efficiency in the cyclone, i.e. this effect is attributed to CO2 and CO, while O2 and NO have the opposite effect. Air temperature influences the d50 value, an increase in air temperature yields an increase in d50 value, i.e. the overall particulate matter removal efficiency declines, the reason for this being an increasing dynamic air viscosity. At 120 °C temperature the d50 value is approximately 11.8 % higher than at air temperature of 20 °C. With an increase in smoke (gas) temperature from 20 °C to 50 °C, the aerodynamic resistance in a 1-tier eight-channel cylindrical cyclone drops from 1605 to 1380 Pa, from 1660 to 1420 Pa in a 2-tier eight-channel cylindrical cyclone, from 1715 to 1450 Pa in a 3-tier eight-channel cylindrical cyclone. The reason for a decline in aerodynamic resistance is the declining gas density. The aim of the paper is to analyze the impact of gaseous smoke components on the eight–channel cyclone with tangential inlet.

Keywords: cyclone, adjustable half-rings, particulate matter, efficiency, gaseous compounds, smoke

Procedia PDF Downloads 289
1829 Microalgae Bacteria Granules, an Alternative Technology to the Conventional Wastewater Treatment: Structural and Metabolic Characterization

Authors: M. Nita-Lazar, E. Manea, C. Bumbac, A. Banciu, C. Stoica

Abstract:

The population and economic growth have generated a significant new number of pollutant compounds which have to be degraded before reaching the environment. The wastewater treatment plants (WWTPs) have been the last barrier between the domestic and/or industrial wastewaters and the environment. At present, the conventional WWTPs have very high operational costs, most of them linked to the aeration process (60-65% from total energy costs related to wastewater treatment). In addition, they have had a low efficiency in pollutants removal such as pharmaceutical and other resilient anthropogenic compounds. In our study, we have been focused on new wastewater treatment strategies to enhance the efficiency of pollutants removal and decrease the wastewater treatment operational costs. The usage of mixed microalgae-bacteria granules technology generated high efficiency and low costs by a better harvesting and less expensive aeration. The intertrophic relationships between microalgae and bacteria have been characterized by the structure of the population community to their metabolic relationships. The results, obtained by microscopic studies, showed well-organized and stratified microalgae-bacteria granules where bacteria have been enveloped in the microalgal structures. Moreover, their population community structure has been modulated as well as their nitrification, denitrification processes (analysis based on qPCR genes expression) by the type of the pollutant compounds and amounts. In conclusion, the understanding and modulation of intertrophic relationships between microalgae and bacteria could be an economical and technological viable alternative to the conventional wastewater treatment. Acknowledgements: This research was supported by grant PN-III-P4-ID-PCE-2016-0865 from the Romanian National Authority for Scientific Research and Innovation CNCS/CCCDI-UEFISCDI.

Keywords: activated sludge, bacteria, granules, microalgae

Procedia PDF Downloads 123
1828 Selecting the Best Risk Exposure to Assess Collision Risks in Container Terminals

Authors: Mohammad Ali Hasanzadeh, Thierry Van Elslander, Eddy Van De Voorde

Abstract:

About 90 percent of world merchandise trade by volume being carried by sea. Maritime transport remains as back bone behind the international trade and globalization meanwhile all seaborne goods need using at least two ports as origin and destination. Amid seaborne traded cargos, container traffic is a prosperous market with about 16% in terms of volume. Albeit containerized cargos are less in terms of tonnage but, containers carry the highest value cargos amongst all. That is why efficient handling of containers in ports is very important. Accidents are the foremost causes that lead to port inefficiency and a surge in total transport cost. Having different port safety management systems (PSMS) in place, statistics on port accidents show that numerous accidents occur in ports. Some of them claim peoples’ life; others damage goods, vessels, port equipment and/or the environment. Several accident investigation illustrate that the most common accidents take place throughout transport operation, it sometimes accounts for 68.6% of all events, therefore providing a safer workplace depends on reducing collision risk. In order to quantify risks at the port area different variables can be used as exposure measurement. One of the main motives for defining and using exposure in studies related to infrastructure is to account for the differences in intensity of use, so as to make comparisons meaningful. In various researches related to handling containers in ports and intermodal terminals, different risk exposures and also the likelihood of each event have been selected. Vehicle collision within the port area (10-7 per kilometer of vehicle distance travelled) and dropping containers from cranes, forklift trucks, or rail mounted gantries (1 x 10-5 per lift) are some examples. According to the objective of the current research, three categories of accidents selected for collision risk assessment; fall of container during ship to shore operation, dropping container during transfer operation and collision between vehicles and objects within terminal area. Later on various consequences, exposure and probability identified for each accident. Hence, reducing collision risks profoundly rely on picking the right risk exposures and probability of selected accidents, to prevent collision accidents in container terminals and in the framework of risk calculations, such risk exposures and probabilities can be useful in assessing the effectiveness of safety programs in ports.

Keywords: container terminal, collision, seaborne trade, risk exposure, risk probability

Procedia PDF Downloads 374
1827 The Potential of Sown Pastures as Feedstock for Biofuels in Brazil

Authors: Danilo G. De Quadros

Abstract:

Biofuels are a priority in the renewable energy agenda. The utilization of tropical grasses to ethanol production is a real opportunity to Brazil reaches the world’s leadership in biofuels production because there are 100 million hectares of sown pastures, which represent 20% of all land and 80% of agricultural areas. Basically, nowadays tropical grasses are used to raise livestock. The results obtained in this research could bring tremendous advance not only to national technology and economy but also to improve social and environmental aspects. Thus, the objective of this work was to estimate, through well-established international models, the potential of biofuels production using sown tropical pastures as feedstocks and to compare the results with sugarcane ethanol, considering state-of-art of conversion technology, advantages and limitations factors. There were used data from national and international literature about forage yield and biochemical conversion yield. Some scenarios were studied to evaluate potential advantages and limitations for cellulosic ethanol production, since non-food feedstock appeal to conversion strategies, passing through harvest, densification, logistics, environmental impacts (carbon and water cycles, nutrient recycling and biodiversity), and social aspects. If Brazil used only 1% of sown pastures to ethanol production by biochemical pathway, with average dry matter yield of 15 metric tons per hectare per year (there are results of 40 tons), resulted annually in 721 billion liters, that represents 10 times more than sugarcane ethanol projected by the Government in 2030. However, more research is necessary to take the results to commercial scale with competitive costs, considering many strategies and methods applied in ethanol production using cellulosic feedstock.

Keywords: biofuels, biochemical pathway, cellulosic ethanol, sustainability

Procedia PDF Downloads 263
1826 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 116
1825 Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines

Authors: Stephen Daniel Iduh, Evans Chidi Egwin, Oluwatosin Kudirat Shittu

Abstract:

The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy.

Keywords: biosynthesis, gold nanoparticles, characterization, calotropis procera, cytotoxicity

Procedia PDF Downloads 490
1824 Data Analytics in Hospitality Industry

Authors: Tammy Wee, Detlev Remy, Arif Perdana

Abstract:

In the recent years, data analytics has become the buzzword in the hospitality industry. The hospitality industry is another example of a data-rich industry that has yet fully benefited from the insights of data analytics. Effective use of data analytics can change how hotels operate, market and position themselves competitively in the hospitality industry. However, at the moment, the data obtained by individual hotels remain under-utilized. This research is a preliminary research on data analytics in the hospitality industry, using an in-depth face-to-face interview on one hotel as a start to a multi-level research. The main case study of this research, hotel A, is a chain brand of international hotel that has been systematically gathering and collecting data on its own customer for the past five years. The data collection points begin from the moment a guest book a room until the guest leave the hotel premises, which includes room reservation, spa booking, and catering. Although hotel A has been gathering data intelligence on its customer for some time, they have yet utilized the data to its fullest potential, and they are aware of their limitation as well as the potential of data analytics. Currently, the utilization of data analytics in hotel A is limited in the area of customer service improvement, namely to enhance the personalization of service for each individual customer. Hotel A is able to utilize the data to improve and enhance their service which in turn, encourage repeated customers. According to hotel A, 50% of their guests returned to their hotel, and 70% extended nights because of the personalized service. Apart from using the data analytics for enhancing customer service, hotel A also uses the data in marketing. Hotel A uses the data analytics to predict or forecast the change in consumer behavior and demand, by tracking their guest’s booking preference, payment preference and demand shift between properties. However, hotel A admitted that the data they have been collecting was not fully utilized due to two challenges. The first challenge of using data analytics in hotel A is the data is not clean. At the moment, the data collection of one guest profile is meaningful only for one department in the hotel but meaningless for another department. Cleaning up the data and getting standards correctly for usage by different departments are some of the main concerns of hotel A. The second challenge of using data analytics in hotel A is the non-integral internal system. At the moment, the internal system used by hotel A do not integrate with each other well, limiting the ability to collect data systematically. Hotel A is considering another system to replace the current one for more comprehensive data collection. Hotel proprietors recognized the potential of data analytics as reported in this research, however, the current challenges of implementing a system to collect data come with a cost. This research has identified the current utilization of data analytics and the challenges faced when it comes to implementing data analytics.

Keywords: data analytics, hospitality industry, customer relationship management, hotel marketing

Procedia PDF Downloads 179
1823 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics

Authors: Said Belaaouad

Abstract:

This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.

Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 97
1822 Innovative Technologies for Aeration and Feeding of Fish in Aquaculture with Minimal Impact on the Environment

Authors: Vasile Caunii, Andreea D. Serban, Mihaela Ivancia

Abstract:

The paper presents a new approach in terms of the circular economy of technologies for feeding and aeration of accumulations and water basins for fish farming and aquaculture. Because fish is and will be one of the main foods on the planet, the use of bio-eco-technologies is a priority for all producers. The technologies proposed in the paper want to reduce by a substantial percentage the costs of operation of ponds and water accumulation, using non-polluting technologies with minimal impact on the environment. The paper proposes two innovative, intelligent systems, fully automated that use a common platform, completely eco-friendly. One system is intended to aerate the water of the fish pond, and the second is intended to feed the fish by dispersing an optimal amount of fodder, depending on population size, age and habits. Both systems use a floating platform, regenerative energy sources, are equipped with intelligent and innovative systems, and in addition to fully automated operation, significantly reduce the costs of aerating water accumulations (natural or artificial) and feeding fish. The intelligent system used for feeding, in addition, to reduce operating costs, optimizes the amount of food, thus preventing water pollution and the development of bacteria, microorganisms. The advantages of the systems are: increasing the yield of fish production, these are green installations, with zero pollutant emissions, can be arranged anywhere on the water surface, depending on the user's needs, can operate autonomously or remotely controlled, if there is a component failure, the system provides the operator with accurate data on the issue, significantly reducing maintenance costs, transmit data about the water physical and chemical parameters.

Keywords: bio-eco-technologies, economy, environment, fish

Procedia PDF Downloads 150
1821 Hydrological Benefits Sharing Concepts in Constructing Friendship Dams on Transboundary Tigris River Between Iraq and Turkey

Authors: Thair Mahmood Altaiee

Abstract:

Because of the increasing population and the growing water requirements from the transboundary water resources within riparian countries in addition to un-proper management of these transboundary water resources, it is likely that a conflicts on the water will be occurred. So it is mandatory to search solutions to mitigate the action and probabilities of these undesired conflicts. One of the solutions for these crises may be sharing the riparian countries in the management of their transboundary water resources and share benefit. Effective cooperation on a transboundary river is any action by the riparian countries that lead to improve management of the river to their mutual acceptance. In principle, friendship dams constructed by riparian countries may play an important role in preventing conflicts like the Turkish-Syrian friendship dam on Asi river (Orontes), Iranian-Tukmenistan dam on Hariroud river, Bulgarian-Turkish dam on Tundzha river, Brazil-Paraguay dam on Parana river, and Aras dam between Iran and Azerbaijan. The objective of this study is to focus the light on the hydrological aspects of cooperation in constructing dams on the transboundary rivers, which may consider an option to prevent conflicts on water between the riparian countries. The various kinds of benefits and external impacts associated with cooperation in dams construction on the transboundary rivers with a real examples will be presented and analyzed. The hydrological benefit sharing from cooperation in dams construction, which type of benefit sharing mechanisms are applicable to dams, and how they vary were discussed. The study considered the cooperative applicability to dams on shared rivers according to selected case study of friendship dams in the world to illustrate the relevance of the cooperation concepts and the feasibility of such propose cooperation between Turkey and Iraq within the Tigris river. It is found that the opportunities of getting benefit from cooperation depend mainly on the hydrological boundary and location of the dam in relation to them. The desire to cooperate on dams construction on transboundary rivers exists if the location of a dam upstream will increase aggregate net benefits. The case studies show that various benefit sharing mechanisms due to cooperation in constructing friendship dams on the riparian countries border are possible for example when the downstream state (Iraq) convinces the upstream state (Turkey) to share building a dam on Tigris river across the Iraqi –Turkish border covering the cost and sharing the net benefit derived from this dam. These initial findings may provide guidance for riparian states engaged in and donors facilitating negotiation on dam projects on transboundary rivers.

Keywords: friendship dams, transboundary rivers, water cooperation, benefit sharing

Procedia PDF Downloads 141
1820 Water Quality Trading with Equitable Total Maximum Daily Loads

Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) strategies usually intend to find economical policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.

Keywords: waste load allocation (WLA), water quality trading (WQT), total maximum daily loads (TMDLs), Haraz River, multi objective particle swarm optimization (MOPSO), equity

Procedia PDF Downloads 394
1819 Developing an Intervention Program to Promote Healthy Eating in a Catering System Based on Qualitative Research Results

Authors: O. Katz-Shufan, T. Simon-Tuval, L. Sabag, L. Granek, D. R. Shahar

Abstract:

Meals provided at catering systems are a common source of workers' nutrition and were found as contributing high amounts calories and fat. Thus, eating daily catering food can lead to overweight and chronic diseases. On the other hand, the institutional dining room may be an ideal environment for implementation of intervention programs that promote healthy eating. This may improve diners' lifestyle and reduce their prevalence of overweight, obesity and chronic diseases. The significance of this study is in developing an intervention program based on the diners’ dietary habits, preferences and their attitudes towards various intervention programs. In addition, a successful catering-based intervention program may have a significant effect simultaneously on a large group of diners, leading to improved nutrition, healthier lifestyle, and disease-prevention on a large scale. In order to develop the intervention program, we conducted a qualitative study. We interviewed 13 diners who eat regularly at catering systems, using a semi-structured interview. The interviews were recorded, transcribed and then analyzed by the thematic method, which identifies, analyzes and reports themes within the data. The interviews revealed several major themes, including expectation of diners to be provided with healthy food choices; their request for nutrition-expert involvement in planning the meals; the diners' feel that there is a conflict between sensory attractiveness of the food and its' nutritional quality. In the context of the catering-based intervention programs, the diners prefer scientific and clear messages focusing on labeling healthy dishes only, as opposed to the labeling of unhealthy dishes; they were interested in a nutritional education program to accompany the intervention program. Based on these findings, we have developed an intervention program that includes: changes in food served such as replacing several menu items and nutritional improvement of some of the recipes; as well as, environmental changes such as changing the location of some food items presented on the buffet, placing positive nutritional labels on healthy dishes and an ongoing healthy nutrition campaign, all accompanied by a nutrition education program. The intervention program is currently being tested for its impact on health outcomes and its cost-effectiveness.

Keywords: catering system, food services, intervention, nutrition policy, public health, qualitative research

Procedia PDF Downloads 194
1818 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data

Authors: Jaehyung An, Sungjoo Lee

Abstract:

Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.

Keywords: NLP, patent analysis, SAO, semantic-analysis

Procedia PDF Downloads 262
1817 The Microstructural and Mechanical Characterization of Organo-Clay-Modified Bitumen, Calcareous Aggregate, and Organo-Clay Blends

Authors: A. Gürses, T. B. Barın, Ç. Doğar

Abstract:

Bitumen has been widely used as the binder of aggregate in road pavement due to its good viscoelastic properties, as a viscous organic mixture with various chemical compositions. Bitumen is a liquid at high temperature and it becomes brittle at low temperatures, and this temperature-sensitivity can cause the rutting and cracking of the pavement and limit its application. Therefore, the properties of existing asphalt materials need to be enhanced. The pavement with polymer modified bitumen exhibits greater resistance to rutting and thermal cracking, decreased fatigue damage, as well as stripping and temperature susceptibility; however, they are expensive and their applications have disadvantages. Bituminous mixtures are composed of very irregular aggregates bound together with hydrocarbon-based asphalt, with a low volume fraction of voids dispersed within the matrix. Montmorillonite (MMT) is a layered silicate with low cost and abundance, which consists of layers of tetrahedral silicate and octahedral hydroxide sheets. Recently, the layered silicates have been widely used for the modification of polymers, as well as in many different fields. However, there are not too much studies related with the preparation of the modified asphalt with MMT, currently. In this study, organo-clay-modified bitumen, and calcareous aggregate and organo-clay blends were prepared by hot blending method with OMMT, which has been synthesized using a cationic surfactant (Cetyltrymethylammonium bromide, CTAB) and long chain hydrocarbon, and MMT. When the exchangeable cations in the interlayer region of pristine MMT were exchanged with hydrocarbon attached surfactant ions, the MMT becomes organophilic and more compatible with bitumen. The effects of the super hydrophobic OMMT onto the micro structural and mechanic properties (Marshall Stability and volumetric parameters) of the prepared blends were investigated. Stability and volumetric parameters of the blends prepared were measured using Marshall Test. Also, in order to investigate the morphological and micro structural properties of the organo-clay-modified bitumen and calcareous aggregate and organo-clay blends, their SEM and HRTEM images were taken. It was observed that the stability and volumetric parameters of the prepared mixtures improved significantly compared to the conventional hot mixes and even the stone matrix mixture. A micro structural analysis based on SEM images indicates that the organo-clay platelets dispersed in the bitumen have a dominant role in the increase of effectiveness of bitumen - aggregate interactions.

Keywords: hot mix asphalt, stone matrix asphalt, organo clay, Marshall test, calcareous aggregate, modified bitumen

Procedia PDF Downloads 238
1816 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection

Procedia PDF Downloads 64
1815 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel

Authors: M. I. Equbal, R. K. Ohdar, B. Singh, P. Talukdar

Abstract:

Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Micro-alloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.

Keywords: cooling rate, hot forging, micro-alloyed, ring compression

Procedia PDF Downloads 361
1814 Structural Evolution of Electrodeposited Ni Coating on Ti-6Al-4V Alloy during Heat Treatment

Authors: M. Abdoos, A. Amadeh, M. Adabi

Abstract:

In recent decades, the use of titanium and its alloys due to their high mechanical properties, light weight and their corrosion resistance has increased in military and industry applications. However, the poor surface properties can limit their widely usage. Many researches were carried out to improve their surface properties. The most effective technique is based on solid-state diffusion of elements that can form intermetallic compounds with the substrate. In the present work, inter-diffusion of nickel and titanium and formation of Ni-Ti intermetallic compounds in nickel-coated Ti-6Al-4V alloy have been studied. Initially, nickel was electrodeposited on the alloy using Watts bath at a current density of 20 mA/cm2 for 1 hour. The coated specimens were then heat treated in a tubular furnace under argon atmosphere at different temperatures near Ti β-transus to maximize the diffusion rate for various durations in order to improve the surface properties of the Ti-6Al-4V alloy. The effect of temperature and time on the thickness of diffusion layer and characteristics of intermetallic phases was studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and microhardness test. The results showed that a multilayer structure was formed after heat treatment: an outer layer of remaining nickel, an area of intermetallic layers with different compositions and solid solution of Ni-Ti. Three intermetallic layers was detected by EDS analysis, namely an outer layer with about 75 at.% Ni (Ni3Ti), an intermediate layer with 50 at.% Ni (NiTi) and finally an inner layer with 36 at.% Ni (NiTi2). It was also observed that the increase in time or temperature led to the formation of thicker intermetallic layers. Meanwhile, the microhardness of heat treated samples increased with formation of Ni-Ti intermetallics; however, its value depended on heat treatment parameters.

Keywords: heat treatment, microhardness, Ni coating, Ti-6Al-4V

Procedia PDF Downloads 434
1813 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test

Procedia PDF Downloads 260
1812 In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method

Authors: Alireza Jalalvand, Maryam Saleh, Somayeh Behjat Khatouni, Zahra Bahri Najafi, Foroozan Fatahinia, Narges Ismailzadeh, Behrokh Farahmand

Abstract:

Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2.

Keywords: covid-19, drug repositioning, molecular docking, lopinavir, saquinavir

Procedia PDF Downloads 88
1811 Multi Universe Existence Based-On Quantum Relativity using DJV Circuit Experiment Interpretation

Authors: Muhammad Arif Jalil, Somchat Sonasang, Preecha Yupapin

Abstract:

This study hypothesizes that the universe is at the center of the universe among the white and black holes, which are the entangled pairs. The coupling between them is in terms of spacetime forming the universe and things. The birth of things is based on exchange energy between the white and black sides. That is, the transition from the white side to the black side is called wave-matter, where it has a speed faster than light with positive gravity. The transition from the black to the white side has a speed faster than light with negative gravity called a wave-particle. In the part where the speed is equal to light, the particle rest mass is formed. Things can appear to take shape here. Thus, the gravity is zero because it is the center. The gravitational force belongs to the Earth itself because it is in a position that is twisted towards the white hole. Therefore, it is negative. The coupling of black-white holes occurs directly on both sides. The mass is formed at the saturation and will create universes and other things. Therefore, it can be hundreds of thousands of universes on both sides of the B and white holes before reaching the saturation point of multi-universes. This work will use the DJV circuit that the research team made as an entangled or two-level system circuit that has been experimentally demonstrated. Therefore, this principle has the possibility for interpretation. This work explains the emergence of multiple universes and can be applied as a practical guideline for searching for universes in the future. Moreover, the results indicate that the DJV circuit can create the elementary particles according to Feynman's diagram with rest mass conditions, which will be discussed for fission and fusion applications.

Keywords: multi-universes, feynman diagram, fission, fusion

Procedia PDF Downloads 63
1810 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 73
1809 Health State Utility Values Related to COVID-19 Pandemic Using EQ-5D: A Systematic Review and Meta-Analysis

Authors: Xu Feifei

Abstract:

The prevalence of COVID-19 currently is the biggest challenge to improving people's quality of life. Its impact on the health-related quality of life (HRQoL) is highly uncertain and has not been summarized so far. The aim of the present systematic review was to assess and provide an up-to-date analysis of the impact of the COVID-19 pandemic on the HRQoL of participants who have been infected, have not been infected but isolated, frontline, with different diseases, and the general population. Therefore, an electronic search of the literature in PubMed databases was performed from 2019 to July 2022 (without date restriction). PRISMA guideline methodology was employed, and data regarding the HRQoL were extracted from eligible studies. Articles were included if they met the following inclusion criteria: (a) reports on the data collection of the health state utility values (HSUVs) related to COVID-19 from 2019 to 2021; (b) English language and peer-reviewed journals; and (c) original HSUV data; (d) using EQ-5D tool to quantify the HRQoL. To identify studies that reported the effects on COVID-19, data on the proportion of overall HSUVs of participants who had the outcome were collected and analyzed using a one-group meta-analysis. As a result, thirty-two studies fulfilled the inclusion criteria and, therefore, were included in the systematic review. A total of 45295 participants and provided 219 means of HSUVs during COVID-19 were included in this systematic review. The range of utility is from 0.224 to 1. The study included participants from Europe (n=16), North America (n=4), Asia (n=10), South America (n=1), and Africa (n=1). Twelve articles showed that the HRQoL of the participants who have been infected with COVID-19 (range of overall HSUVs from 0.6125 to 0.863). Two studies reported the population of frontline workers (the range of overall HSUVs from 0.82 to 0.93). Seven of the articles researched the participants who had not been infected with COVID-19 but suffered from morbidities during the pandemic (range of overall HSUVs from 0.5 to 0.96). Thirteen studies showed that the HRQoL of the respondents who have not been infected with COVID-19 and without any morbidities (range of overall HSUVs from 0.64 to 0.964). Moreover, eighteen articles reported the outcomes of overall HSUVs during the COVID-19 pandemic in different population groups. The estimate of overall HSUVs of direct COVID-19 experience population (n=1333) was 0.751 (95% CI 0.670 - 0.832, I2 = 98.64%); the estimate of frontline population (n=610) was 0.906 ((95% CI 0.854 – 0.957, I2 = 98.61%); participants with different disease (n=132) were 0.768 (95% CI 0.515 - 1.021, I2= 99.26%); general population without infection history (n=29,892) was 0.825 (95% CI 0.766 - 0.885, I2 =99.69%). Conclusively, taking into account these results, this systematic review might confirm that COVID-19 has a negative impact on the HRQoL of the infected population and illness population. It provides practical value for cost-effectiveness model analysis of health states related to COVID-19.

Keywords: COVID-19, health-related quality of life, meta-analysis, systematic review, utility value

Procedia PDF Downloads 82
1808 Use of Recycled Vegetable Oil in the Diet of Lactating Sows

Authors: Juan Manuel Uriarte Lopez, Hector Raul Guemez Gaxiola, Javier Alonso Romo Rubio, Juan Manuel Romo Valdez

Abstract:

The objective of this investigation was to determine the influence of the use of recycled vegetable oil from restaurants in the productive performance of sows in lactation. Twenty-four hybrids lactating sows (Landrace x Yorkshire) were divided into three treatments with eight sows per treatment. On day 107 of gestation, the sows were moved to the mesh floor maternity cages in an environment regulated by the environment regulated (2.4 × 0.6 m) contained an area (2.4 × 0.5 m) for newborn pigs on each side, all diets were provided as a dry powder, and the sows received free access to water throughout the experimental period. After farrowing, the sows were fasted for 12 hours, the daily feed ration gradually increased, and the sows had ad libitum access to feed on the fourth day. The diets used were corn-soybean meal-based, containing 0 (CONT), recycled vegetable oil 1.0 % (RVOL), or recycled vegetable oil 1.5 % (RVOH) for 30 days. The diets contained similar calculated levels of crude protein and metabolizable energy and contained vitamins and minerals that exceeded National Research Council (1998) recommendations; sows were fed three times daily. On day 30, piglets were weaned, and performances of lactating sows and nursery piglets were recorded. Results indicated that average daily feed intake (5.58, 5.55, and 5.49 kg for CONT, RVOL, and RVO, respectively) of sows were not affected (P > 0.05) by different dietary. There was no difference in the average body weight of piglets on the day of birth, with 1.33, 1.36, and 1.35 kg, respectively (P > 0.05). There was no difference in average body weight of piglets on day 30, with 6.91, 6.75, and 7.05 kg, respectively 0.05) between treatments numbers of weaned piglets per sow (9.95, 9.80, and 9.80) were not affected by treatments (P > 0.05).In conclusion, the substitution of virgin vegetable oil for recycled vegetable oil in the diet does not affect the productive performance of lactating sows.

Keywords: lactating, sow, vegetable, oil

Procedia PDF Downloads 300
1807 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure

Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou

Abstract:

A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation.

Keywords: chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure

Procedia PDF Downloads 341
1806 Identification of a Lead Compound for Selective Inhibition of Nav1.7 to Treat Chronic Pain

Authors: Sharat Chandra, Zilong Wang, Ru-Rong Ji, Andrey Bortsov

Abstract:

Chronic pain (CP) therapeutic approaches have limited efficacy. As a result, doctors are prescribing opioids for chronic pain, leading to opioid overuse, abuse, and addiction epidemic. Therefore, the development of effective and safe CP drugs remains an unmet medical need. Voltage-gated sodium (Nav) channels act as cardiovascular and neurological disorder’s molecular targets. Nav channels selective inhibitors are hard to design because there are nine closely-related isoforms (Nav1.1-1.9) that share the protein sequence segments. We are targeting the Nav1.7 found in the peripheral nervous system and engaged in the perception of pain. The objective of this project was to screen a 1.5 million compound library for identification of inhibitors for Nav1.7 with analgesic effect. In this study, we designed a protocol for identification of isoform-selective inhibitors of Nav1.7, by utilizing the prior information on isoform-selective antagonists. First, a similarity search was performed; then the identified hits were docked into a binding site on the fourth voltage-sensor domain (VSD4) of Nav1.7. We used the FTrees tool for similarity searching and library generation; the generated library was docked in the VSD4 domain binding site using FlexX and compounds were shortlisted using a FlexX score and SeeSAR hyde scoring. Finally, the top 25 compounds were tested with molecular dynamics simulation (MDS). We reduced our list to 9 compounds based on the MDS root mean square deviation plot and obtained them from a vendor for in vitro and in vivo validation. Whole-cell patch-clamp recordings in HEK-293 cells and dorsal root ganglion neurons were conducted. We used patch pipettes to record transient Na⁺ currents. One of the compounds reduced the peak sodium currents in Nav1.7-HEK-293 stable cell line in a dose-dependent manner, with IC50 values at 0.74 µM. In summary, our computer-aided analgesic discovery approach allowed us to develop pre-clinical analgesic candidate with significant reduction of time and cost.

Keywords: chronic pain, voltage-gated sodium channel, isoform-selective antagonist, similarity search, virtual screening, analgesics development

Procedia PDF Downloads 123
1805 Relocation of Plastic Hinge of Interior Beam Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames

Authors: P. Wongmatar, C. Hansapinyo, C. Buachart

Abstract:

Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. Past researches shown that the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam–column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.

Keywords: relocation, plastic hinge, intermediate bar, T-section steel, precast concrete frame

Procedia PDF Downloads 273