Search results for: pharmaceutical pollutants degradation
1853 Examination of the Reasons for the Formation of Red Oil in Spent Caustic from Olefin Plant
Authors: Mehdi Seifollahi, Ashkan Forootan, Sajjad Bahrami Reyhan
Abstract:
Due to the complexity of olefinic plants, various environmental pollutants exist such as NOx, CO2, Tar Water, and most importantly Spent Caustic. In this paper, instead of investigating ways of treating this pollutant, we evaluated the production in relation to plant’s variable items. We primarily discussed the factors affecting the quality of the output spent caustic such as impurities in the feed of olefin plant, the amount of injected dimethyl disulfide (DMDS) in furnaces, variation in feed composition, differences among gas temperatures and the concentration of caustic solution at the bottom of the tower. The results of the laboratory proved that in the formation of Red Oil, 1,3butadiene and acetaldehyde followed free radical and aldol condensation mechanism respectively. By increasing the injection rate of DMDS, Mercaptide amount increases in the effluent. In addition, pyrolysis gasoline accumulation is directly related to caustic concentration in the tower. Increasing naphtenes in the liquid feed augments the amount of 1,3butadiene, as one of the sources of Red Oil formation. By increasing the oxygenated compound in the feed, the rate of acetaldehyde formation, as the main source of Red Oil formation, increases.Keywords: olefin, spent caustic, red oil, caustic wash tower
Procedia PDF Downloads 4471852 Clogging Reduction Design Factor for Geosynthetics Used in Sustainable Urban Drainage Systems and Roads
Authors: Jaime Carpio-García, Elena Blanco-Fernández, Javier González-Fernández, Daniel Castro-Fresno
Abstract:
Sustainable urban drainage systems (SUDS) are more often used in order to prevent floods, water treatment, fight against pollution, urban heat island effect, and global warming in applications like green roofs, permeable pavements, and others. Furthermore, geosynthetics are also worldwide used as a part of drainage systems in road construction. Geotextiles are an essential part of both, and one of the main geotextile properties in those applications is permeability, whose behavior is not well established along its service life. In this paper, clogging reduction design factors for an estimated service life of 25 years are experimentally obtained for five different geotextiles used in SUDS and roads combined with two different soils and with two pollutants, motor oil, and lime, in order to evaluate chemical clogging, too. The effect of characteristic opening size and other characteristics of the geosynthetics are also discussed in order to give civil engineers, together with the clogging reduction factors, a better long-time design of geotextiles used in their SUDS and roads.Keywords: geotextiles, drainage, clogging, reduction factor
Procedia PDF Downloads 751851 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light
Authors: W. Y. Zhu, X. L. Yan, Y. Zhou
Abstract:
Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide
Procedia PDF Downloads 3601850 Assessing Adaptive Capacity to Climate Change and Agricultural Productivity of Farming Households of Makueni County in Kenya
Authors: Lilian Mbinya Muasa
Abstract:
Climate change is inevitable and a global challenge with long term implications to the sustainable development of many countries today. The negative impacts of climate change are creating far reaching social, economic and environmental problems threatening lives and livelihoods of millions of people in the world. Developing countries especially sub-Saharan countries are more vulnerable to climate change due to their weak ecosystem, low adaptive capacity and high dependency on rain fed agriculture. Countries in Sub-Saharan Africa are more vulnerable to climate change impacts due to their weak adaptive capacity and over-reliance on rain fed agriculture. In Kenya, 78% of the rural communities are poor farmers who heavily rely on rain fed agriculture thus are directly affected by climate change impacts.Currently, many parts of Kenya are experiencing successive droughts which are contributing to persistently unstable and declining agricultural productivity especially in semi arid eastern Kenya. As a result, thousands of rural communities repeatedly experience food insecurity which plunge them to an ever over-reliance on relief food from the government and Non-Governmental Organization In addition, they have adopted poverty coping strategies to diversify their income, for instance, deforestation to burn charcoal, sand harvesting and overgrazing which instead contribute to environmental degradation.This research was conducted in Makueni County which is classified as one of the most food insecure counties in Kenya and experiencing acute environmental degradation. The study aimed at analyzing the adaptive capacity to climate change across farming households of Makueni County in Kenya by, 1) analyzing adaptive capacity to climate change and agricultural productivity across farming households, 2) identifying factors that contribute to differences in adaptive capacity across farming households, and 3) understanding the relationship between climate change, agricultural productivity and adaptive capacity. Analytical Hierarchy Process (AHP) was applied to determine adaptive capacity and Total Factor Productivity (TFP) to determine Agricultural productivity per household. Increase in frequency of prolonged droughts and scanty rainfall. Preliminary findings indicate a magnanimous decline in agricultural production in the last 10 years in Makueni County. In addition, there is an over reliance of households on indigenous knowledge which is no longer reliable because of the unpredictability nature of climate change impacts. These findings on adaptive capacity across farming households provide the first step of developing and implementing action-oriented climate change policies in Makueni County and Kenya.Keywords: adaptive capacity, agricultural productivity, climate change, vulnerability
Procedia PDF Downloads 3261849 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film
Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa
Abstract:
This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.Keywords: polyethylene, films, unformulated, FTIR, ageing
Procedia PDF Downloads 3681848 Thermal Technologies Applications for Soil Remediation
Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri
Abstract:
This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.Keywords: desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements
Procedia PDF Downloads 2951847 Bioincision of Gmelina Arborea Roxb. Heartwood with Inonotus Dryophilus (Berk.) Murr. for Improved Chemical Uptake and Penetration
Authors: A. O. Adenaiya, S. F. Curling, O. Y. Ogunsanwo, G . A. Ormondroyd
Abstract:
Treatment of wood with chemicals in order to prolong its service life may prove difficult in some refractory wood species. This impermeability in wood is usually due to biochemical changes which occur during heartwood formation. Bioincision, which is a short-term, controlled microbial decomposition of wood, is one of the promising approaches capable of improving the amenability of refractory wood to chemical treatments. Gmelina Arborea, a mainstay timber species in Nigeria, has impermeable heartwood due to the excessive tyloses which occlude its vessels. Therefore, the chemical uptake and penetration in Gmelina arborea heartwood bioincised with Inonotus dryophilus fungus was investigated. Five mature Gmelina Arborea trees were harvested at the Departmental plantation in Ajibode, Ibadan, Nigeria and a bolt of 300 cm was obtained from the basal portion of each tree. The heartwood portion of the bolts was extracted and converted into dimensions 20 mm x 20 mm x 60 mm and subsequently conditioned (200C at 65% Relative Humidity). Twenty wood samples each were bioincised with the white-rot fungus Inonotus dryophilus (ID, 999) for 3, 5, 7 and 9 weeks using standard procedure, while a set of sterile control samples were prepared. Ten of each bioincised and control sample were pressure-treated with 5% tanalith preservative, while the other ten of each bioincised and control samples were pressure-treated with a liquid dye for easy traceability of the chemical in the wood, both using a full cell treatment process. The bioincised and control samples were evaluated for their Weight Loss before chemical treatment (WL, %), Preservative Absorption (PA, Kg/m3), Preservative Retention (PR, Kg/m3), Axial Absorption (AA, Kg/m3), Lateral Absorption (LA, Kg/m3), Axial Penetration Depth (APD, mm), Radial Penetration Depth (RPD, mm), and Tangential Penetration Depth (TPD, mm). The data obtained were analyzed using ANOVA at α0.05. Results show that the weight loss was least in the samples bioincised for three weeks (0.09%) and highest after 7 weeks of bioincision (0.48%). The samples bioincised for 3 weeks had the least PA (106.72 Kg/m3) and PR (5.87 Kg/m3), while the highest PA (134.9 Kg/m3) and PR were observed after 7 weeks of bioincision (7.42 Kg/m3). The AA ranged from 27.28 Kg/m3 (3 weeks) to 67.05 Kg/m3 (5 weeks), while the LA was least after 5 weeks of incubation (28.1 Kg/m3) and highest after 9 weeks (71.74 Kg/m3). Significantly lower APD was observed in control samples (6.97 mm) than in the samples bioincised after 9weeks (19.22 mm). The RPD increased from 0.08 mm (control samples) to 3.48 mm (5 weeks), while TPD ranged from 0.38 mm (control samples) to 0.63 mm (9 weeks), implying that liquid flow in the wood was predominantly through the axial pathway. Bioincising G. arborea heartwood with I. dryophilus fungus for 9 weeks is capable of enhancing chemical uptake and deeper penetration of chemicals in the wood through the degradation of the occluding vessel tyloses, which is accompanied by a minimal degradation of the polymeric wood constituents.Keywords: Bioincision, chemical uptake, penetration depth, refractory wood, tyloses
Procedia PDF Downloads 1061846 Assessment of Air Pollution Impacts On Population Health in Béjaia City
Authors: Benaissa Fatima, Alkama Rezak, Annesi-Maesano Isabella
Abstract:
To assess the health impact of the air pollution on the population of Béjaia, we carried out a descriptive epidemiologic inquiry near the medical establishments of three areas. From the registers of hospital admissions, we collected data on the hospital mortality and admissions relating to the various cardiorespiratory pathologies generated by this type of pollution. In parallel, data on the automobile fleet of Bejaia and other measurements were exploited to show that the concentrations of the pollutants are strongly correlated with the concentration the urban traffic. This study revealed that the whole of the population is touched, but the sensitivity to pollution can show variations according to the age, the sex and the place of residence. So the under population of the town of Bejaia marked the most raised death and morbidity rates, followed that of Kherrata. Weak rates are recorded for under rural population of Feraoun. This approach enables us to conclude that the population of Béjaia could not escape the urban pollution generated by her old automobile fleet. To install a monitoring and measuring site of the air pollution in this city could provide a beneficial tool to protect its inhabitants by them informing on quality from the air that they breathe and measurements to follow to minimize the impacts on their health and by alerting the authorities during the critical situations.Keywords: air, urban pollution, health, impacts
Procedia PDF Downloads 3601845 Assessing Nutrient Concentration and Trophic Status of Brahma Sarover at Kurukshetra, India
Authors: Shailendra Kumar Patidar
Abstract:
Eutrophication of surface water is one of the most widespread environmental problems at present. Large number of pilgrims and tourists visit sacred artificial tank known as “Brahma Sarover” located at Kurukshetra, India to take holy dip and perform religious ceremonies. The sources of pollutants include impurities in feed water, mass bathing, religious offerings and windblown particulate matter. Studies so far have focused mainly on assessing water quality for bathing purpose by using physico-chemical and bacteriological parameters. No effort has been made to assess nutrient concentration and trophic status of the tank to take more appropriate measures for improving water quality on long term basis. In the present study, total nitrogen, total phosphorous and chlorophyll a measurements have been done to assess the nutrient level and trophic status of the tank. The results show presence of high concentration of nutrients and Chlorophyll a indicating mesotrophic and eutrophic state of the tank. Phosphorous has been observed as limiting nutrient in the tank water.Keywords: Brahma Sarover, eutrophication, nutrients, trophic status
Procedia PDF Downloads 3721844 Phthalate Exposure among Roma Population in Slovakia
Authors: Miroslava Šidlovská, Ida Petrovičová, Tomáš Pilka, Branislav Kolena
Abstract:
Phthalates are ubiquitous environmental pollutants well-known because of their endocrine disrupting activity in human organism. The aim of our study was, by biological monitoring, investigate exposure to phthalates of Roma ethnicity group i.e. children and adults from 5 families (n=29, average age 11.8 ± 7.6 years) living in western Slovakia. Additionally, we analysed some associations between anthropometric measures, questionnaire data i.e. socio-economic status, eating and drinking habits, practise of personal care products and household conditions in comparison with concentrations of phthalate metabolites. We used for analysis of urine samples high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) to determine concentrations of phthalate metabolites monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP) and mono(2-etylhexyl) phthalate (MEHP). Our results indicate that ethnicity, lower socioeconomic status and different housing conditions in Roma population can affect urinary concentration of phthalate metabolites.Keywords: biomonitoring, ethnicity, human exposure, phthalate metabolites
Procedia PDF Downloads 3031843 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology
Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache
Abstract:
The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation
Procedia PDF Downloads 581842 Functional Nanomaterials for Environmental Applications
Authors: S. A. M. Sabrina, Gouget Lammel, Anne Chantal, Chazalviel, Jean Noël, Ozanam François, Etcheberry Arnaud, Tighlit Fatma Zohra, B. Samia, Gabouze Noureddine
Abstract:
The elaboration and characterization of hybrid nano materials give rise to considerable interest due to the new properties that arising. They are considered as an important category of new materials having innovative characteristics by combining the specific intrinsic properties of inorganic compounds (semiconductors) with the grafted organic species. This open the way to improved properties and spectacular applications in various and important fields, especially in the environment. In this work, nano materials based-semiconductors were elaborated by chemical route. The obtained surfaces were grafted with organic functional groups. The functionalization process was optimized in order to confer to the hybrid nano material a good stability as well as the right properties required for the subsequent applications. Different characterization techniques were used to investigate the resulting nano structures, such as SEM, UV-Visible, FTIR, Contact angle and electro chemical measurements. Finally, applications were envisaged in environmental area. The elaborated nano structures were tested for the detection and the elimination of pollutants.Keywords: hybrid materials, porous silicon, peptide, metal detection
Procedia PDF Downloads 4991841 Stress Corrosion Cracking, Parameters Affecting It, Problems Caused by It and Suggested Methods for Treatment: State of the Art
Authors: Adnan Zaid
Abstract:
Stress corrosion cracking (SCC) may be defined as a degradation of the mechanical properties of a material under the combined action of a tensile stress and corrosive environment of the susceptible material. It is a harmful phenomenon which might cause catastrophic fracture without a sign of prior warning. In this paper, the stress corrosion cracking, SCC, process, the parameters affecting it, and the different damages caused by it are given and discussed. Utilization of shot peening as a mean of enhancing the resistance of materials to SCC is given and discussed. Finally, a method for improving materials resistance to SCC by grain refining its structure by some refining elements prior to usage is suggested.Keywords: stress corrosion cracking, parameters, damages, treatment methods
Procedia PDF Downloads 3301840 Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction
Authors: M. N. Azian, A. N. Ilia Anisa, Y. Iwai
Abstract:
The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol.Keywords: mechanism, ginger bioactive compounds, soxhlet extraction, accelerated water extraction
Procedia PDF Downloads 4341839 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification
Authors: Rebecca Angeles
Abstract:
This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.Keywords: Internet of Things (IOT), radio frequency identification (RFID), structurational model of technology (Orlikowski), supply chain management
Procedia PDF Downloads 2321838 Assessment of Environmental and Socio-Economic Impact of Quarring in Ebonyi State South East Nigeria: A Case Study of Umuoghara Quarry Community
Authors: G. Aloh Obianuju, C. Chukwu Kelvin, Henry Aloh
Abstract:
The study was undertaken to assess the environmental and socio-economic impact of quarrying in Umuoghara quarrying community of Ebonyi State, South East Nigeria. Questionnaires were distributed targeting quarry workers and people living within the community; personal interviews with other key informants were also conducted. All these were used as data gathering instruments. The study reveals that there were actually some benefits as well as marked environmental impacts in the community as a result of quarrying activities. Recommendations that can assist in mitigating these adverse impacts were suggested.Keywords: environment, quarrying, environmental degradation, mitigation
Procedia PDF Downloads 3081837 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography
Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song
Abstract:
Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.Keywords: photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound
Procedia PDF Downloads 4571836 On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit
Authors: Ararat Khachatryan, Davit Mirzoyan
Abstract:
In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.Keywords: aging effect, HCI, NBTI, nanoscale
Procedia PDF Downloads 3591835 A Study on Method for Identifying Capacity Factor Declination of Wind Turbines
Authors: Dongheon Shin, Kyungnam Ko, Jongchul Huh
Abstract:
The investigation on wind turbine degradation was carried out using the nacelle wind data. The three Vestas V80-2MW wind turbines of Sungsan wind farm in Jeju Island, South Korea were selected for this work. The SCADA data of the wind farm for five years were analyzed to draw power curve of the turbines. It is assumed that the wind distribution is the Rayleigh distribution to calculate the normalized capacity factor based on the drawn power curve of the three wind turbines for each year. The result showed that the reduction of power output from the three wind turbines occurred every year and the normalized capacity factor decreased to 0.12%/year on average.Keywords: wind energy, power curve, capacity factor, annual energy production
Procedia PDF Downloads 4331834 The Effect of Chloride Dioxide and High Concentration of CO2 Gas Injection on the Quality and Shelf-Life for Exporting Strawberry 'Maehyang' in Modified Atmosphere Condition
Authors: Hyuk Sung Yoon, In-Lee Choi, Mohammad Zahirul Islam, Jun Pill Baek, Ho-Min Kang
Abstract:
The strawberry ‘Maehyang’ cultivated in South Korea has been increased to export to Southeast Asia. The degradation of quality often occurs in strawberries during short export period. Botrytis cinerea has been known to cause major damage to the export strawberries and the disease was caused during shipping and distribution. This study was conducted to find out the sterilized effect of chlorine dioxide(ClO2) gas and high concentration of CO2 gas injection for ‘Maehyang’ strawberry and it was packaged with oxygen transmission rate (OTR) films. The strawberry was harvested at 80% color changed stage and packaged with OTR film and perforated film (control). The treatments were a MAP used by with 20,000 cc·m-2·day·atm OTR film and gas injection in packages. The gas type of ClO2 and CO2 were injected into OTR film packages, and treatments were 6 mg/L ClO2, 15% CO2, and they were combined. The treated strawberries were stored at 3℃ for 30 days. Fresh weight loss rate was less than 1% in all OTR film packages but it was more than 15% in a perforated film treatment that showed severe deterioration of visual quality during storage. Carbon dioxide concentration within a package showed approximately 15% of the maximum CO2 concentration in all treatments except control until the 21st day, it was the tolerated range of maximum CO2 concentration of strawberry in recommended CA or MA conditions. But, it increased to almost 50% on the 30th day. Oxygen concentration showed a decrease down to approximately 0% in all treatments except control for 25 days. Ethylene concentration was shown to be steady until the 17th day, but it quickly increased on the 17th day and dropped down on the final storage day (30th day). All treatments did not show any significant differences in gas treatments. Firmness increased in CO2 (15%) and ClO2 (6mg/L) + CO2 (15%) treatments during storage. It might be the effect of high concentration CO2 known by reducing decay and cell wall degradation. The soluble solid decreased in all treatments during storage. These results were caused to use up the sugar by the increase of respiration during storage. The titratable acidity showed a similarity in all treatments. Incidence of fungi was 0% in CO2 (15%) and ClO2 (6mg/L)+ CO2 (15%), but was more than 20% in a perforated film treatment. Consequently, The result indicates that Chloride Dioxide(ClO2) and high concentration of CO2 inhibited fungi growth. Due to the fact that fresh weight loss rate and incidence of fungi were lower, the ClO2(6mg/L)+ CO2(15%) prove to be most efficient in sterilization. These results suggest that Chloride Dioxide (ClO2) and high concentration of CO2 gas injection treatments were an effective decontamination technique for improving the safety of strawberries.Keywords: chloride dioxide, high concentration of CO2, modified atmosphere condition, oxygen transmission rate films
Procedia PDF Downloads 3391833 The IVAIRE Study: Relative Performance of Energy and Heat Recovery Ventilators in Cold Climates
Authors: D. Aubin, D. Won, H. Schleibinger, P. Lajoie, D. Gauvin, J.-M. Leclerc
Abstract:
This paper describes the results obtained in a two-year randomized intervention field study investigating the impact of ventilation rates on indoor air quality (IAQ) and the respiratory health of asthmatic children in Québec City, Canada. The focus of this article is on the comparative effectiveness of heat recovery ventilators (HRVs) and energy recovery ventilators (ERVs) at increasing ventilation rates, improving IAQ, and maintaining an acceptable indoor relative humidity (RH). In 14% of the homes, the RH was found to be too low in winter. Providing more cold and dry outside air to under-ventilated homes in winter further reduces indoor RH. Thus, low-RH homes in the intervention group were chosen to receive ERVs (instead of HRVs) to increase the ventilation rate. The installation of HRVs or ERVs led to a near doubling of the ventilation rates in the intervention group homes which led to a significant reduction in the concentration of several key of pollutants. The ERVs were also effective in maintaining an acceptable indoor RH since they avoided excessive dehumidification of the home by recovering moisture from the exhaust airstream through the enthalpy core, otherwise associated with increased cold supply air rates.Keywords: asthma, field study, indoor air quality, ventilation
Procedia PDF Downloads 2741832 A Universal Hybrid Adsorbent Based on Chitosan for Water Treatment
Authors: Sandrine Delpeux-Ouldriane, Min Cai, Laurent Duclaux, Laurence Reinert, Fabrice Muller
Abstract:
A novel hybrid adsorbent, based on chitosan biopolymer, clays and activated carbon was prepared. Hybrid chitosan beads containing dispersed clays and activated carbons were prepared by precipitation in basic medium. Such a composite material is still very porous and presents a wide adsorption spectrum. The obtained composite adsorbent is able to handle all the pollution types including heavy metals, polar and hydrophobic organic molecules and nitrates. It could find a place of choice in tertiary water treatment processes or for an ‘at source’ treatment concerning chemical or pharmaceutical industries.Keywords: adsorption, chitosan, clay mineral, activated carbon
Procedia PDF Downloads 4001831 Effect of Temperature and Relative Humidity on Aerosol Spread
Authors: Getu Hailu, Catelynn Hettick, Niklas Pieper, Paul Kim, Augustine Hamner
Abstract:
Airborne transmission is a problem that all viral respiratory diseases have in common. In late 2019, a disease outbreak, now known as SARS-CoV-2, suddenly expanded across China and the rest of the world in a matter of months. Research on the spread and transmission of SARS-CoV-2 airborne particles is ongoing, as well as the development of strategies for the prevention of the spread of these pathogens using indoor air quality (IAQ) methods. By evaluating the surface area of pollutants on the surface of a mannequin in a mock-based clinic room, this study aims to better understand how altering temperature and relative humidity affect aerosol spread and contamination. Four experiments were carried out at a constant temperature of 70 degrees Fahrenheit but with four different humidity levels of 0%, 30%, 45 percent, and 60%. The mannequin was placed in direct aerosol flow since it was discovered that this was the position with the largest exposed surface area. The findings demonstrate that as relative humidity increased while the temperature remained constant, the amount of surface area infected by virus particles decreased. These findings point to approaches to reduce the spread of viral particles, such as SARS-CoV-2 and emphasize the significance of IAQ controls in enclosed environments.Keywords: IAQ, ventilation, COVID-19, humidity, temperature
Procedia PDF Downloads 1551830 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles
Authors: Kirit Siddhapara, Dimple Shah
Abstract:
In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds
Procedia PDF Downloads 4321829 Advances in Membrane Technologies for Wastewater Treatment
Authors: Deniz Sahin
Abstract:
This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.Keywords: industrial pollution, membrane technologies, metal ions, wastewater
Procedia PDF Downloads 1971828 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution
Abstract:
Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.Keywords: air pollution, commercial microwave links, rainfall, washout
Procedia PDF Downloads 1111827 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack
Authors: Vincent Andrew Cappellano
Abstract:
In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.Keywords: architecture, resiliency, availability, cyber-attack
Procedia PDF Downloads 1091826 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)
Authors: N. Massoum, B. Bouazza
Abstract:
In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software
Procedia PDF Downloads 5131825 Biodiesel Is an Alternative Fuel for CI Engines
Authors: Sanat Kumar, Rahul Kumar Tiwari
Abstract:
At this time when society is becoming increasingly aware of the declining reserves of fossil, it has become apparent that biodiesel is destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. In this regard, the significance of biodiesel is technically and commercially viable alternative to fossil-diesel. There are different potential feed stocks for biodiesel production. This paper analyses the performance, combustion and emission characteristics of biodiesel from different feed stocks. Biodiesel fuel is considered as offering many benefits like reduction of greenhouse gas emissions and many harmful pollutants (PM, HC, CO etc.). This paper critically reviews the effect of injection timing on combustion and emission characteristics. An attempt has been carried out to discuss the effect of biodiesel in terms of combustion, emission and performance based up on composition and properties. The results of the study show that different chemical composition leads to variation in its combustion, performance and emission characteristics. Biodiesel produced from different aspired feed stocks reduces the pollutant emission and resistive to oxidation but exhibit poor atomization. As a conclusion many research needs to be carried out to understand the relationship between the types of biodiesel feed stock, performance conclusion and emission.Keywords: atomization, biodiesel, greenhouse gas, oxidation
Procedia PDF Downloads 5671824 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics
Authors: Fares Alsewailem
Abstract:
Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.Keywords: Recycling, PET, PS, HDPE, mechanical
Procedia PDF Downloads 284