Search results for: LIPS spectroscopy
909 Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique
Authors: J. Suwanprateeb, F. Thammarakcharoen
Abstract:
Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content.Keywords: biomimetic, Calcium Phosphate Coating, protein, titanium
Procedia PDF Downloads 385908 Effect of Particle Size on Sintering Characteristics of Injection Molded 316L Powder
Authors: H. Özkan Gülsoy, Antonyraj Arockiasamy
Abstract:
The application of powder injection molding technology for the fabrication of metallic and non-metallic components is of growing interest as the process considerably saves time and cost. Utilizing this fabrication method, full dense components are being prepared in various sizes. In this work, our effort is focused to study the densification behavior of the parts made using different size 316L stainless steel powders. The metal powders were admixed with an adequate amount of polymeric compounds and molded as standard tensile bars. Solvent and thermal debinding was carried out followed by sintering in ultra pure hydrogen atmosphere based on the differential scanning calorimetry (DSC) cycle. Mechanical property evaluation and microstructural characterization of the sintered specimens was performed using universal Instron tensile testing machine, Vicker’s microhardness tester, optical (OM) and scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction were used. The results are compared and analyzed to predict the strength and weakness of the test conditions.Keywords: powder injection molding, sintering, particle size, stainless steels
Procedia PDF Downloads 365907 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path
Authors: Farzaneh Ziaee, Mohammad Ziaee
Abstract:
N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization
Procedia PDF Downloads 191906 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam
Authors: Pajaree Donkhampa, Fuangfa Unob
Abstract:
Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye
Procedia PDF Downloads 169905 Sensitive Determination of Copper(II) by Square Wave Anodic Stripping Voltammetry with Tetracarbonylmolybdenum(0) Multiwalled Carbon Nanotube Paste Electrode
Authors: Illyas Md Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim
Abstract:
A highly selective and sensitive carbon paste electrode modified with multiwall carbon nanotubes and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) complex was used for determination of trace amounts of Cu(II) using square wave anodic stripping voltammetry (SWASV). The influences of experimental variables on the proposed electrode such as pH, supporting electrolyte, preconcentration potential and time, and square wave parameters were investigated. Under optimal conditions, the proposed electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu(II) with a limit of detection 8.0 × 10–11 M. The relative standard deviation (n = 5) for a solution containing 1.0 × 10– 6 M of Cu(II) was 0.036. The presence of various cations (in 10 and 100-folds concentration) did not interfere. Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favourable. The proposed electrode was applied for the determination of Cu(II) in several water samples. Results agreed very well with those obtained by inductively coupled plasma-optical emission spectrometry. The modified electrode was then proposed as an alternative for determination of Cu(II).Keywords: chemically modified electrode, Cu(II), square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)
Procedia PDF Downloads 270904 Aqueous Extract of Argemone Mexicana Roots for Effective Corrosion Inhibition of Mild Steel in HCl Environment
Authors: Gopal Ji, Priyanka Dwivedi, Shanthi Sundaram, Rajiv Prakash
Abstract:
Inhibition effect of aqueous Argemone Mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94% is acknowledged at the extract concentration of 400 mg L-1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at metal-acid interface. It is also confirmed by SEM micro graphs and FTIR studies. Furthermore, the effects of acid concentration (1-5 M), immersion time (120 hours) and temperature (30-60˚C) on inhibition potential of AMRE have been investigated by weight loss method and electrochemical techniques. Adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with Langmuir isotherm.Keywords: mild steel, polarization, SEM, acid corrosion, EIS, green inhibition
Procedia PDF Downloads 491903 Hafnium and Samarium Hydroxyapatite Composites and Their Characterization
Authors: Meltem Nur Erdöl, Feyzanur Bayrak, Elif Emanetçi, Faik Nüzhet Oktar, Cevriye Kalkandelen, Oğuzhan Gündüz
Abstract:
Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites.Keywords: biocomposite, hafnium oxide, hydroxyapatite, nanotechnology, samarium oxide
Procedia PDF Downloads 174902 Active Bio-Packaging Fabricated from Coated Bagasse Papers with Polystyrene Nanocomposites
Authors: Hesham Moustafa, Ahmed M. Youssef
Abstract:
The demand for green packagingin the food field has been gained increasing attention in recent decades because of its degradability and safely. Thus, this study revealed that the by-product bagasse papers (BPs) derived from sugarcane waste can be decorated with a thin layer of polystyrene (PS) nanocomposites using the spreading approach.Three variable concentrations of TiO2 nanoparticles (i.e. 0.5, 1.0, 1.5 wt.%) were used to fabricate PS nanocomposites. The morphology of coated BP-PS biofilms was examined by X-ray diffraction, Fourier transferred Infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Moreover, other measurements such as mechanical, thermal stability, flammability, wettability by the contact angle, water vapor, and gas barrier properties were carried out on the fabricated BP-PS biofilms. Most outcomes showed that the major properties were enhanced when the PS nanocomposites were implemented. The use of 1.5 wt.% TiO2 in PS nanocomposite for coated BP-PS biofilm increased the tensile stress by ~ 217 % compared to uncoated BP film. Furthermore, the rate of burning for BP-PS-1.5% film was reduced to ~ 33 mm/min because of the crystallinity of PS and the barrier effect provided by TiO₂ NPs. These coated sheets provide a promising candidate for use in advanced packaging applications.Keywords: bagasse paper, polystyrene nanocomposites, TiO2 nanoparticles, active packaging, mechanical properties, flammability
Procedia PDF Downloads 85901 Synthesis of a Serie of Metallic Complexes Derived from bis(4-Amino-5-Mercapto-1,2,4-Triazol-3-yl)butane with First Raw Transition Metals
Authors: I. Belbachir, T. Benabdallah, N. Belhadj
Abstract:
The present research work describes the synthesis, through a multi-step strategy, as well as the structural characterization of a polydentate organic ligand, namely the bis(4-amino-5-mercapto-1,2,4-triazole-3-yl)butane (BAMT). The bis-triazolic ligand was characterized by different spectroscopic studies, in order to enlighten its coordination mode, in the neutral and deprotonated forms, towards cobalt(II), nickel(II) and copper(II) sulfates, in both solution and solid state. The stoichiometry of the complexes [neutral BAMT-metal] and [deprotonated BAMT-metal] was first established in a solution of DMF with each of the three metallic cations and their complexation constants calculated, allowing us to compare the stability of the various prepared complexes. The various complexes were finally isolated in the solid state and the coordination mode of neutral and deprotonated BAMT explored towards each of the three metallic sulfates. The establishment of some ligand field parameters (Dq, B, β…) by electronic spectroscopy finally allowed to compare the coordination modes of BAMT towards each of the three metals and to highlight the influence of the deprotonation on the complexing properties of the bis-triazolic ligand.Keywords: 1, 2, 4-triazol, bis-1, 2, 4-triazol, metallic complexes, coordination in solution and solid state
Procedia PDF Downloads 180900 Self-Assembled Nano Aggregates Based On Polyaspartamide Graft Copolymers for pH-Controlled Release of Doxorubicin
Authors: Van Tran Thi Thuy, Cheol Won Lim, Dukjoon Kim
Abstract:
A series of biodegradable copolymers based on polyaspartamide (PASPAM) were synthesized by grafting hydrophilic O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) (MPEG), hydrophobic cholic acid (CA), and pH-sensitive hydrazine (Hyd) segments on a PASPAM backbone. The hydrazine group was effectively cleaved to release doxorubicin (DOX) conjugated on PASPAM in an acidic environment. The chemical structure of the polymer and the degree of substitution of each graft segment were analyzed using FT-IR and 1H-NMR spectroscopy. The size of the MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates was examined by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the self - aggregates increased from 125 to 200 nm at pH 7.4, as the degree of substitution of CA increased from 10 to 20 %. The release kinetics of DOX was strongly affected by the pH of the releasing medium. While less than 30% of the DOX-loaded was released in about 30 h at pH 7.4, more than 60% was released at pH 5.0 within the same time. The viability tests of human breast cancer cells (MCF-7) and human embryonic kidney cells (293T) show the potential application of MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates in the controlled intracellular delivery for cancer treatments.Keywords: pH-sensitive, drug delivery, polyaspartamide, self-assembly, nano-aggregates
Procedia PDF Downloads 358899 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)
Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman
Abstract:
The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst
Procedia PDF Downloads 368898 The Potential Use of Flavin Mononucleotide for Photoluminescent and Bioluminescent Textile
Authors: Sweta Iyer, Nemeshwaree Behary, Jinping Guan, Guoqiang Chen, Vincent Nierstrasz
Abstract:
Flavin mononucleotide widely known as 'FMN' is a biobased resource derived from riboflavin. The isoalloxazine ring present in the FMN molecule attributes the photoluminescence phenomenon, whereas FMN molecule in the presence of bacterial luciferase enzyme and co-factors such as NADH, long chain aldehyde leads to bioluminescence reaction. In this study, the FMN molecule was treated on cellulosic textile using chromojet technique and the photoluminescence property was characterized using spectroscopy technique. Further, the FMN was used as a substrate along with enzymes and co-factors to treat the non-woven textile, and the bioluminescence property was explored using luminometer equipment. The investigation revealed photoluminescence property on cellulosic textile, and the emission peak was observed at a wavelength around 530 nm with an average corrected spectral intensity of 10×106 CPS/Microamps. In addition, the measurement of nonwoven textile using bioluminescence reaction system exhibited light intensity measured in the form of relative light units (RLU). The study enabled to explore the use of FMN as both photoluminescent and bioluminescent textile. Further investigation would require for stability study of the same to provide an eco-efficient approach to obtain luminescent textile.Keywords: flavin mononucleotide, photoluminescence, bioluminescence, luminescent textile
Procedia PDF Downloads 291897 Growth of SWNTs from Alloy Catalyst Nanoparticles
Authors: S. Forel, F. Bouanis, L. Catala, I. Florea, V. Huc, F. Fossard, A. Loiseau, C. Cojocaru
Abstract:
Single wall carbon nanotubes are seen as excellent candidate for application on nanoelectronic devices because of their remarkable electronic and mechanical properties. These unique properties are highly dependent on their chiral structures and the diameter. Therefore, structure controlled growth of SWNTs, especially directly on final device’s substrate surface, are highly desired for the fabrication of SWNT-based electronics. In this work, we present a new approach to control the diameter of SWNTs and eventually their chirality. Because of their potential to control the SWNT’s chirality, bi-metalics nanoparticles are used to prepare alloy nanoclusters with specific structure. The catalyst nanoparticles are pre-formed following a previously described process. Briefly, the oxide surface is first covered with a SAM (self-assembled monolayer) of a pyridine-functionalized silane. Then, bi-metallic (Fe-Ru, Co-Ru and Ni-Ru) complexes are assembled by coordination bonds on the pre-formed organic SAM. The resultant alloy nanoclusters were then used to catalyze SWNTs growth on SiO2/Si substrates via CH4/H2 double hot-filament chemical vapor deposition (d-HFCVD). The microscopy and spectroscopy analysis demonstrate the high quality of SWNTs that were furthermore integrated into high-quality SWNT-FET.Keywords: nanotube, CVD, device, transistor
Procedia PDF Downloads 317896 Beijerinckia indica Extracellular Extract Mediated Green Synthesis of Silver Nanoparticles with Antioxidant and Antibacterial Activities against Clinical Pathogens
Authors: Gopalu Karunakaran, Matheswaran Jagathambal, Nguyen Van Minh, Evgeny Kolesnikov, Denis Kuznetsov
Abstract:
This work investigated the use of Beijerinckia indica extracellular extract for the synthesis of silver nanoparticles using AgNO3. The formation of nanoparticles was confirmed by different methods, such as UV-Vis absorption spectroscopy, XRD, FTIR, EDX, and TEM analysis. The formation of silver nanoparticles (AgNPs) was confirmed by the change in color from light yellow to dark brown. The absorbance peak obtained at 430 nm confirmed the presence of silver nanoparticles. The XRD analysis showed the cubic crystalline phase of the synthesized nanoparticles. FTIR revealed the presence of groups that acts as stabilizing and reducing agents for silver nanoparticles formation. The synthesized silver nanoparticles were generally found to be spherical in shape with size ranging from 5 to 20 nm, as evident by TEM analysis. These nanoparticles were found to inhibit pathogenic bacterial strains. This work proved that the bacterial extract is a potential eco-friendly candidate for the synthesis of silver nanoparticles with promising antibacterial and antioxidant properties.Keywords: antioxidant activity, antimicrobial activity, Beijerinckia indica, characterisation, extracellular extracts, silver nanoparticles
Procedia PDF Downloads 340895 Kinetic and Thermodynamic Modified Pectin with Chitosan by Forming Polyelectrolyte Complex Adsorbent to Remediate of Pb(II)
Authors: Budi Hastuti, Mudasir, Dwi Siswanta, Triyono
Abstract:
Biosorbent, such as pectin and chitosan, are usually produced with low physical stability, thus the materials need to be modified. In this research, the physical characteristic of adsorbent was increased by grafting chitosan using acetate carboxymetyl chitosan (CC). Further, CC and Pectin (Pec) were crosslinked using cross-linking agent BADGE (bis phenol A diglycidyl ether) to get CC-Pec-BADGE (CPB) adsorbent. The cross-linking processes aim to form stable structure and resistance on acidic media. Furthermore, in order to increase the adsorption capacity in removing Pb(II), the adsorbent was added with NaCl to form macroporous adsorbent named CCPec-BADGE-Na (CPB-Na). The physical and chemical characteristics of the porogenic adsorbent structure were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The adsorption parameter of CPB-Na to adsorb Pb(II) ion was determined. The kinetics and thermodynamics of the bath sorption of Pb(II) on CPB-Na adsorbent and using chitosan and pectin as a comparison were also studied. The results showed that the CPB-Na biosorbent was stable on acidic media. It had a rough and porous surface area, increased and gave higher sorption capacity for removal of Pb(II) ion. The CPB-Na 1/1 and 1/3 adsorbent adsorbed Pb(II) with adsorption capacity of 45.48 mg/g and 45.97 mg/g respectively, whereas pectin and chitosan were of 39.20 mg /g and 24.67 mg /g respectively.Keywords: porogen, Pectin, Carboxymethyl Chitosan (CC), CC- Pec-BADGE-Na
Procedia PDF Downloads 158894 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures
Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa
Abstract:
The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.Keywords: Carrier-charge-separation, nickel, photoluminescence, sulphur, zinc oxide
Procedia PDF Downloads 308893 Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate
Authors: Renu Kumari, Jyotsna Dutta Majumdar
Abstract:
In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate.Keywords: titanium, plasma spraying, microstructure, bio-activity, TiO2, hydroxyapatite
Procedia PDF Downloads 322892 Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses
Authors: Azuraida Amat, Halimah Mohamed Kamari, Che Azurahanim Che Abdullah, Ishak Mansor
Abstract:
The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different compositions [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes a profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defects in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give the smallest Eg and show less changes in FTIR spectra after gamma irradiation, which indicate that this glass is more resistant to gamma radiation compared to other glasses.Keywords: boro-tellurite, bismuth, gamma radiation, optical properties
Procedia PDF Downloads 427891 Determination of Sintering Parameters of TiB₂ – Ti₃SiC₂ Composites
Authors: Bilge Yaman Islak, Erhan Ayas
Abstract:
The densification behavior of TiB₂ – Ti₃SiC₂ composites is investigated for temperatures in the range of 1200°C to 1400°C, for the pressure of 40 and 50MPa, and for holding time between 15-30 min by spark plasma sintering (SPS) technique. Ti, Si, TiC and 5 wt.% TiB₂ were used to synthesize TiB₂ – Ti₃SiC₂ composites and the effect of different sintering parameters on the densification and phase evolution of these composites were investigated. The bulk densities were determined by using the Archimedes method. The polished and fractured surfaces of the samples were examined using a scanning electron microscope equipped with an energy dispersive spectroscopy (EDS). The phase analyses were accomplished by using the X-Ray diffractometer. Sintering temperature and holding time are found to play a dominant role in the phase development of composites. TiₓCᵧ and TiSi₂ secondary phases were found in 5 wt.%TiB₂ – Ti₃SiC₂ composites densified at 1200°C and 1400°C under the pressure of 40 MPa, due to decomposition of Ti₃SiC₂. The results indicated that 5 wt.%TiB₂ – Ti₃SiC₂ composites were densified into the dense parts with a relative density of 98.77% by sintering at 1300 °C, for 15 min, under a pressure of 50 MPa via SPS without the formation of any other ancillary phase. This work was funded and supported by Scientific Research Projects Commission of Eskisehir Osmangazi University with the Project Number 201915C103 (2019-2517).Keywords: densification, phase evolution, sintering, TiB₂ – Ti₃SiC₂ composites
Procedia PDF Downloads 141890 Anthraquinone Labelled DNA for Direct Detection and Discrimination of Closely Related DNA Targets
Authors: Sarah A. Goodchild, Rachel Gao, Philip N. Bartlett
Abstract:
A novel detection approach using immobilized DNA probes labeled with Anthraquinone (AQ) as an electrochemically active reporter moiety has been successfully developed as a new, simple, reliable method for the detection of DNA. This method represents a step forward in DNA detection as it can discriminate between multiple nucleotide polymorphisms within target DNA strands without the need for any additional reagents, reporters or processes such as melting of DNA strands. The detection approach utilizes single-stranded DNA probes immobilized on gold surfaces labeled at the distal terminus with AQ. The effective immobilization has been monitored using techniques such as AC impedance and Raman spectroscopy. Simple voltammetry techniques (Differential Pulse Voltammetry, Cyclic Voltammetry) are then used to monitor the reduction potential of the AQ before and after the addition of complementary strand of target DNA. A reliable relationship between the shift in reduction potential and the number of base pair mismatch has been established and can be used to discriminate between DNA from highly related pathogenic organisms of clinical importance. This indicates that this approach may have great potential to be exploited within biosensor kits for detection and diagnosis of pathogenic organisms in Point of Care devices.Keywords: Anthraquinone, discrimination, DNA detection, electrochemical biosensor
Procedia PDF Downloads 393889 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review
Authors: Meghana Shankara, Priyadarshini Natarajan
Abstract:
Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracyKeywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes
Procedia PDF Downloads 271888 Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants
Authors: A. Asselah, A. Khalfi, M. A.Toumi, A.Tazerouti
Abstract:
The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant.Keywords: carbon steel, oilfield, corrosion, anionic surfactants
Procedia PDF Downloads 94887 Iron Oxide Nanoparticles: Synthesis, Properties, and Environmental Application
Authors: Shalini Rajput, Dinesh Mohan
Abstract:
Water is the most important and essential resources for existing of life on the earth. Water quality is gradually decreasing due to increasing urbanization and industrialization and various other developmental activities. It can pose a threat to the environment and public health therefore it is necessary to remove hazardous contaminants from wastewater prior to its discharge to the environment. Recently, magnetic iron oxide nanoparticles have been arise as significant materials due to its distinct properties. This article focuses on the synthesis method with a possible mechanism, structure and application of magnetic iron oxide nanoparticles. The various characterization techniques including X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray, Fourier transform infrared spectroscopy and vibrating sample magnetometer are useful to describe the physico-chemical properties of nanoparticles. Nanosized iron oxide particles utilized for remediation of contaminants from aqueous medium through adsorption process. Due to magnetic properties, nanoparticles can be easily separate from aqueous media. Considering the importance and emerging trend of nanotechnology, iron oxide nanoparticles as nano-adsorbent can be of great importance in the field of wastewater treatment.Keywords: nanoparticles, adsorption, iron oxide, nanotechnology
Procedia PDF Downloads 557886 Synthesis, Molecular-Docking, and Biological Evaluation of Thiazolopyrimidine Carboxylates as Potential Antidiabetic and Antibacterial Agents
Authors: Iram Batool, Aamer Saeed, Irfan Zia Qureshi, Ayesha Razzaq, Saima Kalsoom
Abstract:
Heterocyclic compounds analogues and their derivatives have attracted strong interest in medicinal chemistry due to their biological and pharmacological properties. A series of new thiazolopyrimidine carboxylates were conveniently synthesized by one-pot three-component reaction of ethyl acetoacetate, 2-aminothiazole and benzaldehyde substituted with electron-donating and electron-withdrawing groups in order to find some more potent antidiabetic and antibacterial drugs. The structures of synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. An in vitro antidiabetic effect was evaluated in adult male BALB/c mice and antibacterial activities were tested against Micrococcus luteus, Salmonella typhimurium, Bacillus subtilis, Bordetella bronchiseptica and Escherichia coli. Some of the tested compounds proved to possess good to excellent activities more than the reference drugs. An in silico molecular docking was also performed on synthesized compounds. The current study is expected to provide useful insights into the design of antidiabetic and antibacterial drugs and understanding the mechanism by which such drugs interact with RNA and diabetes target and exert their biochemical action.Keywords: antidiabetic, antibacterial, MOE docking, thiazolopyrimidine
Procedia PDF Downloads 457885 Ge₁₋ₓSnₓ Alloys with Tuneable Energy Band Gap on GaAs (100) Substrate Manufactured by a Modified Magnetron Co-Sputtering
Authors: Li Qian, Jinchao Tong, Daohua Zhang, Weijun Fan, Fei Suo
Abstract:
Photonic applications based on group IV semiconductors have always been an interest but also a challenge for the research community. We report manufacturing group IV Ge₁₋ₓSnₓ alloys with tuneable energy band gap on (100) GaAs substrate by a modified radio frequency magnetron co-sputtering. Images were taken by atomic force microscope, and scanning electron microscope clearly demonstrates a smooth surface profile, and Ge₁₋ₓSnₓ nano clusters are with the size of several tens of nanometers. Transmittance spectra were measured by Fourier Transform Infrared Spectroscopy that showed changing energy gaps with the variation in elementary composition. Calculation results by 8-band k.p method are consistent with measured gaps. Our deposition system realized direct growth of Ge₁₋ₓSnₓ thin film on GaAs (100) substrate by sputtering. This simple deposition method was modified to be able to grow high-quality photonic materials with tuneable energy gaps. This work provides an alternative and successful method for fabricating Group IV photonic semiconductor materials.Keywords: GeSn, crystal growth, sputtering, photonic
Procedia PDF Downloads 144884 Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis
Authors: Satya Eswari Jujjavarapu, Swasti Dhagat, Lata Upadhyay, Reecha Sahu
Abstract:
Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles.Keywords: biosurfactant, Bacillus subtilis, silver nano particle, lipopeptide
Procedia PDF Downloads 239883 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films
Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost
Abstract:
In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate
Procedia PDF Downloads 120882 Application of XRF and Other Principal Component Analysis for Counterfeited Gold Coin Characterization in Forensic Science
Authors: Somayeh Khanjani, Hamideh Abolghasemi, Hadi Shirzad, Samaneh Nabavi
Abstract:
At world market can be currently encountered a wide range of gemological objects that are incorrectly declared, treated, or it concerns completely different materials that try to copy precious objects more or less successfully. Counterfeiting of precious commodities is a problem faced by governments in most countries. Police have seized many counterfeit coins that looked like the real coins and because the feeling to the touch and the weight were very similar to those of real coins. Most people were fooled and believed that the counterfeit coins were real ones. These counterfeit coins may have been made by big criminal organizations. To elucidate the manufacturing process, not only the quantitative analysis of the coins but also the comparison of their morphological characteristics was necessary. Several modern techniques have been applied to prevent counterfeiting of coins. The objective of this study was to demonstrate the potential of X-ray Fluorescence (XRF) technique and the other analytical techniques for example SEM/EDX/WDX, FT-IR/ATR and Raman Spectroscopy. Using four elements (Cu, Ag, Au and Zn) and obtaining XRF for several samples, they could be discriminated. XRF technique and SEM/EDX/WDX are used for study of chemical composition. XRF analyzers provide a fast, accurate, nondestructive method to test the purity and chemistry of all precious metals. XRF is a very promising technique for rapid and non destructive counterfeit coins identification in forensic science.Keywords: counterfeit coins, X-ray fluorescence, forensic, FT-IR
Procedia PDF Downloads 494881 An Experimental Study of the Influence of Flow Rate on Formation Damage at Different pH
Authors: Khabat M. Ahmad
Abstract:
This experiment focuses on the reduction of permeability (formation damage) as a result of fines migration by changing pH and flow rate on core plugs selected from sandstone reservoir of Pannonian basin (Upper Miocene, East Hungary). The main objective of coreflooding experiments was to investigate the influence of both high and low pH fluids and the flow rate on stability of clay minerals. The selected core samples were examined by X-ray powder diffraction (XRD) for bulk mineralogical and clay mineral composition. The shape, position, distribution and type of clay minerals within the core samples were diagnosed by scanning electron microscopy and energy dispersive spectroscopy (SEM- EDS). The basic petrophysical properties such as porosity and initial permeability were determined prior to experiments. The special core analysis (influence of pH and flow rate) on permeability reduction was examined through a series of laboratory coreflooding experiments, testing for acidic (3) and alkaline (11) solutions at different flow rates (50, 100 and 200 ml/h). Permeability in continuously reduced for pH 11 to more than 50 % of initial permeability. However, at pH 3 after a slow decrease, a significant increase is observed, to more than 40 % of initial permeability. The variation is also influenced by flow rate.Keywords: flow rate, pH, permeability, fine migration, formation damage, XRD, SEM- EDS
Procedia PDF Downloads 60880 Investigate and Control Thermal Spectra in Nanostructures and 2D Van der Waals Materials
Authors: Joon Sang Kang, Ming Ke, Yongjie Hu
Abstract:
Controlling heat transfer and thermal properties of materials is important to many fields such as energy efficiency and thermal management of integrated circuits. Significant progress over the past decade has been made to improve material performance through structuring at the nanoscale, however a clear relationship between structure dimensions, interfaces, and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral contribution from different phonons. Here, we describe our current progress on quantifying and controlling thermal spectra based on our recently developed technical approach using ultrafast optical spectroscopy. Our work brings further the promise of rational material design to achieve high performance through a synergistic experimental-modeling approach. This approach can be broadly applicable to a wide range of materials and energy systems. In particular, we demonstrate in-situ characterization and tunable thermal properties of 2D van der waals materials through ionic intercalations. The significant impacts of this research in improving the efficiency of thermal energy conversion and management will also be illustrated.Keywords: energy, mean free path, nanoscale heat transfer, nanostructure, phonons, TDTR, thermoelectrics, 2D materials
Procedia PDF Downloads 288