Search results for: artificial intelligence in medicine
3004 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm
Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta
Abstract:
Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates
Procedia PDF Downloads 2353003 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 173002 Roughness Discrimination Using Bioinspired Tactile Sensors
Authors: Zhengkun Yi
Abstract:
Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination
Procedia PDF Downloads 3103001 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems
Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang
Abstract:
The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes
Procedia PDF Downloads 6093000 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 622999 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 4162998 Regime under Trade Related Intellectual Property Rights Agreement 1994 and Its Impacts on Health in Pakistan: A Case Study of Pharmaceutical Patents
Authors: Muhammad Danyal Khan
Abstract:
The standards of patentability are drawing a great impact upon medicine industry of Pakistan which is indirectly troubling the right to health of ordinary citizen. Globalization of intellectual property laws is directly impacting access to medicine for population in Pakistan. Pakistan has enacted Patent Ordinance 2000 to develop the standards of Patent laws in consonance with international commitments. Moreover, Pakistan is signatory to UN Millennium Development Goals (2000-2015), and three of them directly put stress upon the health standards. This article will provide a critical brief about implications of TRIPS Agreement on standards of health in Pakistan and will also propose a futuristic approach for the pharmaceutical industry. This paper will define the paradox of globalization and national preparedness on pharmaceutical patents utilizing industry statistics and case laws from Pakistan. Moreover, this work will contribute towards debate on access to medicine at legislative and interpretative levels that will further help development of equilibrium between pharmaceutical patents and right to health.Keywords: TRIPS (Trade Related Intellectual Property Rights), patents, compulsory licensing, patent, lifesaving drugs, WTO, infringement
Procedia PDF Downloads 2132997 Design, Optimize the Damping System for Optical Scanning Equipment
Authors: Duy Nhat Tran, Van Tien Pham, Quang Trung Trinh, Tien Hai Tran, Van Cong Bui
Abstract:
In recent years, artificial intelligence and the Internet of Things have experienced significant advancements. Collecting image data and real-time analysis and processing of tasks have become increasingly popular in various aspects of life. Optical scanning devices are widely used to observe and analyze different environments, whether fixed outdoors, mounted on mobile devices, or used in unmanned aerial vehicles. As a result, the interaction between the physical environment and these devices has become more critical in terms of safety. Two commonly used methods for addressing these challenges are active and passive approaches. Each method has its advantages and disadvantages, but combining both methods can lead to higher efficiency. One solution is to utilize direct-drive motors for position control and real-time feedback within the operational range to determine appropriate control parameters with high precision. If the maximum motor torque is smaller than the inertial torque and the rotor reaches the operational limit, the spring system absorbs the impact force. Numerous experiments have been conducted to demonstrate the effectiveness of device protection during operation.Keywords: optical device, collision safety, collision absorption, precise mechanics
Procedia PDF Downloads 612996 Mailchimp AI Application For Marketing Employees
Authors: Alia El Akhrass, Raheed Al Jifri, Sara Babalghoum, Jana Bushnag
Abstract:
This project delves into exploring the functionalities of Mailchimp, an artificial intelligence application. The objective is to comprehend its operations through the AI tools it offers. To achieve this, a survey was conducted among peers, seeking insights into Mailchimp's functionality, accessibility, efficiency, and overall benefits. The survey aimed to gather valuable feedback for analysis. Subsequently, a thorough analysis of the collected data was performed to identify trends, patterns, and areas of improvement. Visual representations were then crafted to effectively summarize the findings, aiding in conveying the research outcomes clearly. Founded in 2001, Mailchimp initially provided email marketing services but has since expanded into a comprehensive marketing platform. Its focus on simplicity and accessibility has contributed to its success among businesses of all sizes. Alternative platforms such as Constant Contact, AWeber, and GetResponse offer similar services with their own unique strengths. Mailchimp's journey exemplifies the importance of vision and adaptability in the ever-evolving digital marketing landscape. By prioritizing innovation, user-centricity, and customer service, Mailchimp has established itself as a trusted partner in the field of digital marketing, enabling businesses to effectively connect with their customers and achieve their marketing goals.Keywords: email marketing, ai tool, connect, communicate, generate
Procedia PDF Downloads 392995 Socio-Demographic and Clinical Characteristics and Use of Herbal Medicine among Patients Seeking Consultation for Knee Osteoarthritis at Secondary Healthcare Facilities in Oman
Authors: Thuraya Ahmed Al Shidhani, Yahya Al Farsi, Alya Al Husni, Samir Al Adawi
Abstract:
Background: Knee osteoarthritis (knee OA) represents a major public health burden worldwide, particularly among older adults. However, little has been documented from Arabian Gulf countries, which have left an information gap. Objective: This study describes the socio-demographic, clinical risk factors, and use of herbal medicine among men and women seeking consultation for knee OA at two secondary healthcare facilities in Muscat, Oman. Methods: A cross-sectional study was conducted among 213 Omani adults with knee OA attending a referral polyclinic in Muscat, Oman, over 12 months from January to December. Socio-demographic data were collected from the participants who are seeking consultation for knee OA. Results: Among the 213 study participants, 171 were females and 42 males. The females were comparatively older than the males, had lower education and lower-income, and more overweight. The majority of the participants were normal weight or underweight. About one-third of participants reported OA in other joints as well. Most participants recalled that they had knee OA for less than a year. About 12% reported a history of trauma. The majority (63%) concurrently had other chronic illnesses, and 33% reported having at least one complication. About 22% were using herbal medicines. About 77% are using herbal local applications in form of powder and creams. Conclusion: This study, to our knowledge, is the first to explore socio-demographic characteristics, clinical risk factors and use of herbal medicine among sufferers of knee OA in Oman. Knee OA tended to occur among our participants at younger ages than reported elsewhere, while obesity appeared orthogonal to the severity of knee OA. Women were more affected than men. About one quarter of Omani patients are using herbal medicine. More studies are needed to understand the causal factors and development of knee OA in Oman. Targeted health education and rehabilitation programs are needed, particularly among Omani women, to improve their physical quality of life.Keywords: knee joint, osteoarthritis, herbal medicine, Oman
Procedia PDF Downloads 1212994 AI as a Tool Hindering Digital Education
Authors: Justyna Żywiołek, Marek Matulewski
Abstract:
The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.Keywords: AI, digital education, education tools, motivation and engagement
Procedia PDF Downloads 262993 Bhumastra “Unmanned Ground Vehicle”
Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J
Abstract:
Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI
Procedia PDF Downloads 1212992 Spirituality in Education (Enhance the Human Mind Competencies)
Authors: Kshama Sharma
Abstract:
Education is one of the most powerful tools to transform the world into a just, sustainable, and more peaceful place for existing lives across the globe. However, its recent objective approach focused on materialistic, factual, and existing knowledge, has a constraint of human experiences that is limited to certain dimensions only. And leads to a materialistic world which is deprived of spiritual approaches and makes it less compassionate, and more grades oriented. To make it more comprehensive, education should explore the subjective approaches towards spiritualism to connect lives with the greater self and consciousness of cosmic intelligence. This approach will bring a major shift in the orientation of pedagogical processes, assessment strategies, and administrative management of the present education system. Spirituality often related to the religious aspect of human civilization and development, however, when universal consciousness /cosmic intelligence (which is often claimed as dark energy) and the human mind competencies works in coherence and coordination then the efficiency of human mind reaches to a different dimension and achieve extraordinary level of human understanding. Quantitative analysis of the existing secondary data from the different agencies working in the field of meditation had been analyzed to conclude its implications on human mind and further how it can effectively use in education to bring the desired and expected results. Any kind of meditation practice affects the cognitive, mental, physical, emotional, and conscious state of mind. If aligned with the teaching and learning methodology will lead to conscious learner and peaceful world.Keywords: spirituality, cosmic intelligence, consciousness, mind competencies
Procedia PDF Downloads 522991 Synthesizing an Artificial Loess for Geotechnical Investigations of Collapsible Soil Behavior
Authors: Hamed Sadeghi, Pouya A. Panahi, Hamed Nasiri, Mohammad Sadeghi
Abstract:
Collapsible soils like loess comprise an important category of problematic soils for construction purposes and sustainable development. As a result, research on both geological and geotechnical aspects of this type of soil have been in progress for decades. However, considerable natural variability in physical properties of in-situ loess strata even in a single block sample challenges the fundamental laboratory investigations. The reason behind this is that it is somehow impossible to remove the effect of a specific factor like void ratio from fair comparisons to come with a reliable conclusion. In order to cope with this limitation, two types of artificially made dispersive and calcareous loess are introduced which can be easily reproduced in any soil mechanics laboratory provided that all its compositions are known and controlled. The collapse potential is explored for a variety of soil water salinity and lime content and comparisons are made against the natural soil behavior. Trends are reported for the influence of pore water salinity on collapse potential under different osmotic flow conditions. The most important advantage of artificial loess is the ease of controlling cementing agent content like calcite or dispersive potential for studying their influence on mechanical soil behavior.Keywords: artificial loess, unsaturated soils, collapse potential, dispersive clays, laboratory tests
Procedia PDF Downloads 1942990 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks
Authors: Waleed Basuliman
Abstract:
Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.Keywords: artificial neural network, anthropometric measurements, back-propagation
Procedia PDF Downloads 4872989 Epigenetic Reprogramming of Aging: Reversing the Clock for Regenerative Medicine
Authors: Mohammad Ahmad Ahmad Odah
Abstract:
Aging is a complex biological process characterized by the progressive decline of physiological functions and increased vulnerability to age-related diseases. Epigenetic changes, particularly DNA methylation alterations, play a critical role in the aging process by influencing gene expression and genomic stability. This study explores the potential of epigenetic reprogramming as a strategy to reverse aging phenotypes in human fibroblasts. Using CRISPR-Cas9 gene editing and small molecule inhibitors targeting DNA methylation and histone acetylation, we successfully induced significant changes in DNA methylation and gene expression profiles. Our results demonstrate a global reduction in DNA methylation levels and the identification of differentially methylated regions (DMRs) associated with cellular senescence and DNA repair. Additionally, treated fibroblasts exhibited enhanced proliferative capacity, reduced cellular senescence, and improved differentiation potential. These findings suggest that epigenetic reprogramming could be a promising approach for regenerative medicine, offering potential therapeutic strategies to counteract age-related decline and extend healthy lifespan.Keywords: epigenetic reprogramming, aging, regenerative medicine, DNA methylation, cellular rejuvenation, CRISPR-Cas9, senescence
Procedia PDF Downloads 342988 Phytochemical Investigation of Berries of the Embelia schimperi Plant
Authors: Tariku Nefo Duke
Abstract:
Embelia is a genus of climbing shrubs in the family Myrsinaceae. Embelia schimperi is as important in traditional medicine as the other species in the genus. The plant has been much known as a local medicine for the treatment of tapeworms. In this project, extraction, phytochemical screening tests, isolation, and characterization of berries of the Embelia schimperi plant have been conducted. The chemical investigations of methanol and ethyl acetate (1:1) ratio extracts of the berries lead to the isolation of three new compounds. The compounds were identified to be alkaloids coded as AD, AN, and AG. Structural elucidations of the isolated compounds were accomplished using spectroscopic methods (IR, UV, ¹H NMR, ¹³C NMR, DEPT and 2D NMR, HPLC, and LC-MS). The alkaloid coded as (AN) has a wide MIC range of 6.31-25.46 mg/mL against all tested bacteria strains.Keywords: Embelia schimper, HPLC, alkaloids, 2D NMR, MIC
Procedia PDF Downloads 972987 Experimental Assessment of Artificial Flavors Production
Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi
Abstract:
The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.Keywords: artificial flavors, esterification, chemical equilibria, isothermal
Procedia PDF Downloads 3302986 Perceptions of College Students on Whether an Intelligent Tutoring System Is a Tutor
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate the benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. Developments improving the ease of ITS creation have recently increased their proliferation, leading many K-12 schools and institutions of higher education in the United States to regularly use ITS within classrooms. We investigated how students perceive their experience using an ITS. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course and were subsequently asked for feedback on their experience. Results show that their perceptions were generally favorable of the ITS, and most would seek to use an ITS both for STEM and non-STEM courses in the future. Along with detailed transaction-level data, this feedback also provides insights on the design of user-friendly interfaces, guidance on accessibility for students with impairments, the sequencing of exercises, students’ expectation of achievement, and comparisons to other tutoring experiences. We discuss how these findings are important for the creation, implementation, and evaluation of ITS as a mode and method of teaching and learning.Keywords: college statistics course, intelligent tutoring systems, in vivo study, student perceptions of tutoring
Procedia PDF Downloads 1002985 A Study on the Annual Doses Received by the Workers of Some Medical Practices
Authors: Eltayeb Hamad Elneel Yousif
Abstract:
This paper describes occupational radiation doses of workers in non-destructive testing (NDT) and some medical practices during the year 2007. The annual doses received by the workers of a public hospital are presented in this report. The Department is facilitated with HARSHAW Reader model 6600 and assigned the rule of personal monitoring to contribute in controlling and reducing the doses received by radiation workers. TLD cards with two TLD chips type LiF: Mg, Ti (TLD-100) were calibrated to measure the personal dose equivalent Hp(10). Around 150 medical radiation workers were monitored throughout the year. Each worker received a single TLD card worn on the chest above lead apron and returned for laboratory reading every two months. The average annual doses received by the workers of radiotherapy, nuclear medicine and diagnostic radiology were evaluated. The annual doses for individual radiation workers ranged between 0.55-4.42 mSv, 0.48-1.86 mSv, and 0.48-0.91 mSv for the workers of radiotherapy, nuclear medicine and diagnostic radiology, respectively. The mean dose per worker was 1.29±1, 1.03±0.4, and 0.69±0.2 mSv, respectively. The results showed compliance with international dose limits. Our results reconfirm the importance of personal dosimetry service in assuring the radiation protection of medical staff in developing countries.Keywords: radiation medicine, non-destructive testing, TLD, public hospital
Procedia PDF Downloads 3782984 Communication Barriers and Challenges for Accessing Autism Care: Conventional Versus Alternative Medicine
Authors: M. D. Antoine
Abstract:
Despite the widespread use of complementary and alternative medicine (CAM) for autistic children, little is known about the communication flow between the different parties involved in autism care (e.g., parents/caregivers, conventional providers, alternative practitioners). This study aimed to describe how communication occurs through the first year following an autism spectrum disorder (ASD) diagnosis to identify challenges and potential barriers to communication within the healthcare system in Ottawa, Canada. From an ecological perspective, we collected qualitative data through 12 semi-structured interviews with six parents/caregivers, three conventional providers (e.g., family doctor, neurodevelopmental pediatrician, psychologist), and three alternative practitioners (e.g., naturopath, occupational therapist, speech and language pathologist) operating in Ottawa. We interpreted the data using thematic analysis. Findings revealed communication challenges between the parents/caregivers and conventional providers while they experience better communication flow with fewer challenges in alternative care settings. However, parents/caregivers are the only links between the health professionals of both streams. From the five contexts examined: organizational, interpersonal, media, cultural, and political-legal, we found four themes (provider knowledge, care integration, flexible care, and time constraints) underlining specific barriers to communication flow between the parties involved in the care of autistic children. The increasing interest in alternative medicine is forcing changes in the healthcare system. Communications occur outside the norms making openings for better communication and information-sharing increasingly essential. Within the identified themes in the current study, the necessity for better communication between all parties involved in the care of autistic children is evident. More ASD and CAM-related training for providers would support effective parent/caregiver-provider communication. The findings of the current study contribute to a better understanding of the role of communication in the care management of autism, which has implications for effective autism care.Keywords: alternative medicine, autism care management, autism spectrum disorder, conventional medicine, parent-provider communication
Procedia PDF Downloads 1752983 Soul-Body Relationship in Medieval Islamic Thought – Analysis of Avicenna’s Psychology and Medicine with Implication to Mental Health
Authors: Yula Milshteyn
Abstract:
The present study focuses on the science of the “Soul” in Islamic Medieval Psychology.The main objective of the current essay is to analyze the concept of the “soul” in relation to “mental” disorders, in the philosophical psychology and medicinal treatise of Ibn Sina, a Muslim Persian physician-philosopher (known as Avicenna in the Western world) (981-1037 CE). The examination will concentrate on the nature of the soul, and the relationship of the soul to the body, as well as the manifestation of health and sickness in soul and body, The analysis draws on Avicenna’s Psychology (Kitab al-Najat or The Book of Salvation), Remarks and Admonitions (Al-isharat wa al-tanbihat), and the medical treatise – The Canon of Medicine (al-Qānūn fī al-Ṭibb). Avicenna’s psychology of the soul is primarily based on Aristotelian and Neo-platonic paradigms. For Avicenna, soul is a metaphysical, independent substance, which in modern terms implies independence of human consciousness from the material body. The soul however, is linked to the body and controls all its’ faculties or functions. It is suggested that in the specific case study of schizophrenia, it is a disorder pertained to both, soul and body and can be characterized as a multi-faceted neurobiological, physiological, psychological and metaphysical spiritual phenomenon.Keywords: Avicenna, canon of the medicine, mental disorders, psychology, schizophrenia, soul-body
Procedia PDF Downloads 592982 The Impact of Artificial Intelligence on Rural Life
Authors: Triza Edwar Fawzi Deif
Abstract:
In the process of urbanization in China, new rural construction is on the ascendant, which is becoming more and more popular. Under the driving effect of rural urbanization, the house pattern and tectonic methods of traditional vernacular houses have shown great differences from the family structure and values of contemporary peasant families. Therefore, it is particularly important to find a prototype, form and strategy to make a balance between the traditional memory and modern functional requirements. In order for research to combine the regional culture with modern life, under the situation of the current batch production of new rural residences, Badie village, in Zhejiang province, is taken as the case. This paper aims to put forward a prototype which can not only meet the demand of modern life but also ensure the continuation of traditional culture and historical context for the new rural dwellings design. This research not only helps to extend the local context in the construction of the new site but also contributes to the fusion of old and new rural dwellings in the old site construction. Through the study and research of this case, the research methodology and results can be drawn as reference for the new rural construction in other areas.Keywords: steel slag, co-product, primary coating, steel aggregate capital, rural areas, rural planning, rural governance village, design strategy, new rural dwellings, regional context, regional expression
Procedia PDF Downloads 512981 Predictive Factors of Prognosis in Acute Stroke Patients Receiving Traditional Chinese Medicine Therapy: A Retrospective Study
Authors: Shaoyi Lu
Abstract:
Background: Traditional Chinese medicine has been used to treat stroke, which is a major cause of morbidity and mortality. There is, however, no clear agreement about the optimal timing, population, efficacy, and predictive prognosis factors of traditional Chinese medicine supplemental therapy. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend. Key words: traditional Chinese medicine, acupuncture, Stroke, NIH stroke scale, Barthel index, predictive factor. Method: In this study, we used a retrospective analysis with data collection from stroke patients in Stroke Registry In Chang Gung Healthcare System (SRICHS). Stroke patients who received traditional Chinese medicine consultation in neurology ward of Keelung Chang Gung Memorial Hospital from Jan 2010 to Dec 2014 were enrolled. Clinical profiles including the neurologic deficit, activities of daily living and other basic characteristics were analyzed. Through propensity score matching, we compared the NIHSS and Barthel index before and after the hospitalization, and applied with subgroup analysis, and adjusted by multivariate regression method. Results: Totally 115 stroke patients were enrolled with experiment group in 23 and control group in 92. The most important factor for prognosis prediction were the scores of National Institutes of Health Stroke Scale and Barthel index right before the hospitalization. Traditional Chinese medicine intervention had no statistically significant influence on the neurological deficit of acute stroke patients, and mild negative influence on daily activity performance of acute hemorrhagic stroke patient. Conclusion: Efficacy of traditional Chinese medicine as a supplemental therapy for acute stroke patients was controversial. The reason for this phenomenon might be complex and require more research to comprehend.Keywords: traditional Chinese medicine, complementary and alternative medicine, stroke, acupuncture
Procedia PDF Downloads 3592980 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition
Procedia PDF Downloads 1562979 The Effect of Artificial Intelligence on International Law, Legal Security and Privacy Issues
Authors: Akram Waheb Nasef Alzordoky
Abstract:
The wars and armed conflicts have frequently ended in violations of global humanitarian law and regularly devote the maximum severe global crimes, which include war crimes, crimes towards humanity, aggression and genocide. But, simplest inside the XX century, the guideline changed into an articulated idea of establishing a frame of worldwide criminal justice so that you can prosecute those crimes and their perpetrators. The first steps on this subject were made with the aid of setting up the worldwide army tribunals for warfare crimes at Nuremberg and Tokyo, and the formation of ad hoc tribunals for the former Yugoslavia and Rwanda. Ultimately, the global criminal courtroom was established in Rome in 1998 with the aim of justice and that allows you to give satisfaction to the sufferers of crimes and their families. The aim of the paper was to provide an ancient and comparative analysis of the establishments of worldwide criminal justice primarily based on which those establishments de lege lata fulfilled the goals of individual criminal responsibility and justice. Moreover, the authors endorse de lege ferenda that the everlasting global crook Tribunal, in addition to the potential case, additionally takes over the current ICTY and ICTR cases.Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures
Procedia PDF Downloads 212978 Treatment of NMSC with Traditional Medicine Method
Authors: Aferdita Stroka Koka, Laver Stroka, Juna Musa, Samanda Celaj
Abstract:
Non-melanoma skin cancers (NMSCs) are the most common human malignancies. About 5.4 million basal and squamous cell skin cancers are diagnosed each year in the US and new cases continue to grow. About eight out of ten of these are basal cell cancers. Squamous cell cancers occur less often. NMSC usually are treatable, but treatment is expensive and can leave scars. In 2019, 167 patients of both sexes suffering from NMSC were treated by traditional medicine. Patients who have been diagnosed with Basal Cell Carcinoma were 122 cases, Squamous Cell Carcinoma 32 cases and both of them 13 cases. Of these,122 cases were ulcerated lesions and 45 unulcerated lesions. All patients were treated with the herbal solution called NILS, which contains extracts of some Albanian plants such as Allium sativum, Jugulans regia and Laurus nobilis. The treatment is done locally, on the surface of the tumor, applying the solution until the tumor mass is destroyed and, after that, giving the necessary time to the wound to make the regeneration that coincides with the complete healing of the wound. We have prepared a collection of photos for each case. Since the first sessions, a shrinkage and reduction of the tumor mass were evident, up to the total disappearance of the lesion at the end of treatment. The normal period of treatment lasted 1 to 2 weeks, depending on the size of the tumor, then take care of it until the closure of the wound, taking the whole process from 1 to 3 months. In 7 patients, the lesion failed to be dominated by treatment and they underwent standard treatment with radiotherapy or surgery, while in 10 patients, the lesion recurred and was treated again. The aim of this survey was to put in evidence the good results obtained by treatment of NMSC with Albanian traditional medicine methods.Keywords: local treatment, nils, NMSC, traditional medicine
Procedia PDF Downloads 2092977 Being Reticent for Healing – Singularity and Non-Verbalization in Indigenous Medical Practices in Sri Lanka
Authors: Ayami Umemura
Abstract:
The purpose of this paper is to examine the meaning of verbalization in clinical practice using the keywords silence and singularity. A patient's experience of illness and treatment is singular, irreplaceable, and irreproducible and ultimately cannot be compared with that of others. In his book Difference and Repetition, Gilles Deleuze positioned irreplaceable singularity as the opposite concept of particularity as a generalizable and substitutable property and matched the former with universality. He also said that singularity could not be represented because of its irreplaceable nature. Representation or verbalization is a procedure that converts an irreplaceable, idiosyncratic reality into something that can be substituted. Considering the act of verbalizing medical diagnosis based on this, it can be said that diagnosis is the practice of decontextualizing and generalizing the suffering embedded in the patient's irreplaceable life history as a disease. This paper examines the above with the key concept of the practice of "non-verbalization" in traditional medical practices in Sri Lanka. In the practice of Sri Lankan traditional medicine and the inheritance of medical knowledge and care techniques, there is a tendency to avoid verbalizing specific matters or stating them aloud. Specifically, the following should be avoided. The healer informs the patient of the name of the disease, mentions the name of the herb used in front of the patient, explains the patient's condition to the healer, and referring the names of poisonous animals, such as poisonous snakes that have been damaged. And so on. Furthermore, when passing on medical knowledge and skills, it is also possible to avoid verbalizing knowledge of medicinal herbs and medical treatment methods and explaining them verbally. In addition to the local belief that the soul of language in Sri Lanka is deeply involved in this background, Sri Lankan traditional medicine has a unique view of the human body and personality that is rooted in the singularity that appears in the relationship with the movement of celestial bodies and the supernatural realm. It can be pointed out that it is premised on the view. In other words, the “silence” in Sri Lankan indigenous medicine is the reason for emphasizing specificity. Furthermore, we can say that "non-verbalization" is a practice aimed at healing. Based on these discussions, this paper will focus on the unique relationships between practitioners and patients that become invisible due to verbalization, which is overlooked by clinical medicine, where informed consent, ensuring transparency, and audit culture is dominant. We will examine the experience of treatment and aim to relativize clinical medicine, which is based on audit cultures.Keywords: audit cultures, indigenous medicine, singularity, verbalization
Procedia PDF Downloads 862976 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 1102975 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 72