Search results for: generate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1934

Search results for: generate

1934 Heuristic to Generate Random X-Monotone Polygons

Authors: Kamaljit Pati, Manas Kumar Mohanty, Sanjib Sadhu

Abstract:

A heuristic has been designed to generate a random simple monotone polygon from a given set of ‘n’ points lying on a 2-Dimensional plane. Our heuristic generates a random monotone polygon in O(n) time after O(nℓogn) preprocessing time which is improved over the previous work where a random monotone polygon is produced in the same O(n) time but the preprocessing time is O(k) for n < k < n2. However, our heuristic does not generate all possible random polygons with uniform probability. The space complexity of our proposed heuristic is O(n).

Keywords: sorting, monotone polygon, visibility, chain

Procedia PDF Downloads 427
1933 A Simple Recursive Framework to Generate Gray Codes for Weak Orders in Constant Amortized Time

Authors: Marsden Jacques, Dennis Wong

Abstract:

A weak order is a way to rank n objects where ties are allowed. In this talk, we present a recursive framework to generate Gray codes for weak orders. We then describe a simple algorithm based on the framework that generates 2-Gray codes for weak orders in constant amortized time per string. This framework can easily be modified to generate other Gray codes for weak orders. We provide an example on using the framework to generate the first Shift Gray code for weak orders, also in constant amortized time, where consecutive strings differ by a shift or a symbol change.

Keywords: weak order, Cayley permutation, Gray code, shift Gray code

Procedia PDF Downloads 178
1932 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

Authors: Ali Nourollah, Mohsen Movahedinejad

Abstract:

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The merge algorithm has the time complexity of O ((r+s) *l) where r and s are the size of merging polygons and l shows the number of intersecting edges removed from the polygonal chain. It will be shown that 1 < l < r+s. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.

Procedia PDF Downloads 533
1931 Enumerative Search for Crane Schedule in Anodizing Operations

Authors: Kanate Pantusavase, Jaramporn Hassamontr

Abstract:

This research aims to develop an algorithm to generate a schedule of multiple cranes that will maximize load throughputs in anodizing operation. The algorithm proposed utilizes an enumerative strategy to search for constant time between successive loads and crane covering range over baths. The computer program developed is able to generate a near-optimal crane schedule within reasonable times, i.e. within 10 minutes. Its results are compared with existing solutions from an aluminum extrusion industry. The program can be used to generate crane schedules for mixed products, thus allowing mixed-model line balancing to improve overall cycle times.

Keywords: crane scheduling, anodizing operations, cycle time minimization

Procedia PDF Downloads 464
1930 Lossless Secret Image Sharing Based on Integer Discrete Cosine Transform

Authors: Li Li, Ahmed A. Abd El-Latif, Aya El-Fatyany, Mohamed Amin

Abstract:

This paper proposes a new secret image sharing method based on integer discrete cosine transform (IntDCT). It first transforms the original image into the frequency domain (DCT coefficients) using IntDCT, which are operated on each block with size 8*8. Then, it generates shares among each DCT coefficients in the same place of each block, that is, all the DC components are used to generate DC shares, the ith AC component in each block are utilized to generate ith AC shares, and so on. The DC and AC shares components with the same number are combined together to generate DCT shadows. Experimental results and analyses show that the proposed method can recover the original image lossless than those methods based on traditional DCT and is more sensitive to tiny change in both the coefficients and the content of the image.

Keywords: secret image sharing, integer DCT, lossless recovery, sensitivity

Procedia PDF Downloads 398
1929 Wearable Music: Generation of Costumes from Music and Generative Art and Wearing Them by 3-Way Projectors

Authors: Noriki Amano

Abstract:

The final goal of this study is to create another way in which people enjoy music through the performance of 'Wearable Music'. Concretely speaking, we generate colorful costumes in real- time from music and to realize their dressing by projecting them to a person. For this purpose, we propose three methods in this study. First, a method of giving color to music in a three-dimensionally way. Second, a method of generating images of costumes from music. Third, a method of wearing the images of music. In particular, this study stands out from other related work in that we generate images of unique costumes from music and realize to wear them. In this study, we use the technique of generative arts to generate images of unique costumes and project the images to the fog generated around a person from 3-way using projectors. From this study, we can get how to enjoy music as 'wearable'. Furthermore, we are also able to have the prospect of unconventional entertainment based on the fusion between music and costumes.

Keywords: entertainment computing, costumes, music, generative programming

Procedia PDF Downloads 173
1928 Generating Music with More Refined Emotions

Authors: Shao-Di Feng, Von-Wun Soo

Abstract:

To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.

Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning

Procedia PDF Downloads 89
1927 Generating Arabic Fonts Using Rational Cubic Ball Functions

Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli

Abstract:

In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.

Keywords: data interpolation, rational ball curve, hermite condition, continuity

Procedia PDF Downloads 429
1926 Ground Effect on Marine Midge Water Surface Locomotion

Authors: Chih-Hua Wu, Bang-Fuh Chen, Keryea Soong

Abstract:

Midges can move on the surface of the water at speeds of approximately 340 body-lengths/s and can move continuously for >90 min. Their wings periodically scull the sea surface to push water backward and thus generate thrust; their other body parts, including their three pairs of legs, touch the water only occasionally. The aim of this study was to investigate the locomotion mechanism of marine midges with a size of 2 mm and living in shallow reefs in Wanliton, southern Taiwan. We assumed that midges generate lift through two mechanisms: by sculling the surface of seawater to leverage the generated tension for thrust and by retracting their wings to generate aerodynamic lift at a suitable angle of attack. We performed computational fluid dynamic simulations to determine the mechanism of midge locomotion above the surface of the water. The simulations indicated that ground effects are essential and that both the midge trunk and wing tips must be very close to the water surface to produce sufficient lift to keep the midge airborne. Furthermore, a high wing-beat frequency is crucial for the midge to produce sufficient lift during wing retraction. Accordingly, ground effects, forward speed, and high wing-beat frequency are major factors influencing the ability of midges to generate sufficient lift and remain airborne above the water surface.

Keywords: ground effect, water locomotion, CFD, aerodynamic lift

Procedia PDF Downloads 81
1925 Realization Mode and Theory for Extensible Music Cognition Education: Taking Children's Music Education as an Example

Authors: Yumeng He

Abstract:

The purpose of this paper is to establish the “extenics” of children music education, the “extenics” thought and methods are introduced into the children music education field. Discussions are made from the perspective of children music education on how to generate new music cognitive from music cognitive, how to generate new music education from music education and how to generate music learning from music learning. The research methods including the extensibility of music art, extensibility of music education, extensibility of music capability and extensibility of music learning. Results of this study indicate that the thought and research methods of children’s extended music education not only have developed the “extenics” concept and ideological methods, meanwhile, the brand-new thought and innovative research perspective have been employed in discussing the children music education. As indicated in research, the children’s extended music education has extended the horizon of children music education, and has endowed the children music education field with a new thought and research method.

Keywords: comprehensive evaluations, extension thought, extension cognition music education, extensibility

Procedia PDF Downloads 225
1924 Integrating a Six Thinking Hats Approach Into the Prewriting Stage of Argumentative Writing In English as a Foreign Language: A Chinese Case Study of Generating Ideas in Action

Authors: Mei Lin, Chang Liu

Abstract:

Argumentative writing is the most prevalent genre in diverse writing tests. How to construct academic arguments is often regarded as a difficult task by most English as a foreign language (EFL) learners. A failure to generate enough ideas and organise them coherently and logically as well as a lack of competence in supporting their arguments with relevant evidence are frequent problems faced by EFL learners when approaching an English argumentative writing task. Overall, these problems are closely related to planning, and planning an argumentative writing at pre-writing stage plays a vital role in a good academic essay. However, how teachers can effectively guide students to generate ideas is rarely discussed in planning English argumentative writing, apart from brainstorming. Brainstorming has been a common practice used by teachers to help students generate ideas. However, some limitations of brainstorming suggest that it can help students generate many ideas, but ideas might not necessarily be coherent and logic, and could sometimes impede production. It calls for a need to explore effective instructional strategies at pre-writing stage of English argumentative writing. This paper will first examine how a Six Thinking Hats approach can be used to provide a dialogic space for EFL learners to experience and collaboratively generate ideas from multiple perspectives at pre-writing stage. Part of the findings of the impact of a twelve-week intervention (from March to July 2021) on students learning to generate ideas through engaging in group discussions of using Six Thinking Hats will then be reported. The research design is based on the sociocultural theory. The findings present evidence from a mixed-methods approach and fifty-nine participants from two first-year undergraduate natural classes in a Chinese university. Analysis of pre- and post- questionnaires suggests that participants had a positive attitude toward the Six Thinking Hats approach. It fosters their understanding of prewriting and argumentative writing, helps them to generate more ideas not only from multiple perspectives but also in a systematic way. A comparison of participants writing plans confirms an improvement in generating counterarguments and rebuttals to support their arguments. Above all, visual and transcripts data of group discussion collected from different weeks throughout the intervention enable teachers and researchers to ‘see’ the hidden process of learning to generate ideas in action.

Keywords: argumentative writing, innovative pedagogy, six thinking hats, dialogic space, prewriting, higher education

Procedia PDF Downloads 87
1923 Block Implicit Adams Type Algorithms for Solution of First Order Differential Equation

Authors: Asabe Ahmad Tijani, Y. A. Yahaya

Abstract:

The paper considers the derivation of implicit Adams-Moulton type method, with k=4 and 5. We adopted the method of interpolation and collocation of power series approximation to generate the continuous formula which was evaluated at off-grid and some grid points within the step length to generate the proposed block schemes, the schemes were investigated and found to be consistent and zero stable. Finally, the methods were tested with numerical experiments to ascertain their level of accuracy.

Keywords: Adam-Moulton Type (AMT), off-grid, block method, consistent and zero stable

Procedia PDF Downloads 482
1922 Using Focused Free-Writing to Help English to Speakers of Other Languages Students Generate Ideas for Critical, Academic Writing

Authors: Ratnawati Mohd Asraf, Sabreena Ahmed

Abstract:

This paper describes how the method of focused freewriting can be used to help teachers to foster critical thinking through writing. In this study, we used focused freewriting during the pre-writing stage of our writing course to help our English to Speakers of Other Languages (ESOL) students to generate ideas and to think critically about the issues they were to write on. In each of the four classes where we applied this technique, we used pictures or videos to stimulate their thinking during the prewriting stage of writing and then asked them to write non-stop for ten minutes about whatever that came to their minds as a result of being presented with these prompts. We then asked them to focus on the themes that emerged from their brief writing. Using observations, in-depth interviews, and an analysis of their brief essays, our study found that focused freewriting helped our students to generate ideas and think critically about the issues they were writing on. We postulate that by using focused freewriting and discussions during the prewriting stage of writing, instructors can help their students to think critically about various issues and facilitate their efforts at organising their arguments for critical, academic essays.

Keywords: academic writing, critical writing, critical thinking, focused free-writing, pre-writing

Procedia PDF Downloads 164
1921 Motion Planning of SCARA Robots for Trajectory Tracking

Authors: Giovanni Incerti

Abstract:

The paper presents a method for a simple and immediate motion planning of a SCARA robot, whose end-effector has to move along a given trajectory; the calculation procedure requires the user to define in analytical form or by points the trajectory to be followed and to assign the curvilinear abscissa as function of the time. On the basis of the geometrical characteristics of the robot, a specifically developed program determines the motion laws of the actuators that enable the robot to generate the required movement; this software can be used in all industrial applications for which a SCARA robot has to be frequently reprogrammed, in order to generate various types of trajectories with different motion times.

Keywords: motion planning, SCARA robot, trajectory tracking, analytical form

Procedia PDF Downloads 318
1920 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis

Authors: Sofia Barbosa, Mariana Pinto, José António Almeida, Edgar Carvalho, Catarina Diamantino

Abstract:

The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioural profiles and to generate synthetic evolutionary hydrochemical maps.

Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends

Procedia PDF Downloads 235
1919 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast

Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi

Abstract:

Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.

Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature

Procedia PDF Downloads 280
1918 Programming with Grammars

Authors: Peter M. Maurer Maurer

Abstract:

DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.

Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation

Procedia PDF Downloads 147
1917 Fuelwood Heating, Felling, Energy Renewing in Total Fueling of Fuelwood, Renewable Technologies

Authors: Adeiza Matthew, Oluwamishola Abubakar

Abstract:

In conclusion, Fuelwood is a traditional and renewable source of energy that can have both positive and negative impacts. Adopting sustainable practices for its collection, transportation, and use and investing in renewable technologies can help mitigate the negative effects and provide a clean and reliable source of energy, improve living standards and support economic development. For example, solar energy can be used to generate electricity, heat homes and water, and can even be used for cooking. Wind energy can be used to generate electricity, and geothermal energy can be used for heating and cooling. Biogas can be produced from waste products such as animal manure, sewage, and organic kitchen waste and can be used for cooking and lighting.

Keywords: calorific, BTU, wood moisture content, density of wood

Procedia PDF Downloads 107
1916 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach

Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato

Abstract:

In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.

Keywords: constraint programming, factors considered in scheduling, machine learning, scheduling system

Procedia PDF Downloads 324
1915 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems

Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang

Abstract:

The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.

Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes

Procedia PDF Downloads 611
1914 Continuous Processing Approaches for Tunable Asymmetric Photochemical Synthesis

Authors: Amanda C. Evans

Abstract:

Enabling technologies such as continuous processing (CP) approaches can provide the tools needed to control and manipulate reactivities and transform chemical reactions into micro-controlled in-flow processes. Traditional synthetic approaches can be radically transformed by the application of CP, facilitating the pairing of chemical methodologies with technologies from other disciplines. CP supports sustainable processes that controllably generate reaction specificity utilizing supramolecular interactions. Continuous photochemical processing is an emerging field of investigation. The use of light to drive chemical reactivity is not novel, but the controlled use of specific and tunable wavelengths of light to selectively generate molecular structure under continuous processing conditions is an innovative approach towards chemical synthesis. This investigation focuses on the use of circularly polarized (cp) light as a sustainable catalyst for the CP generation of asymmetric molecules. Chiral photolysis has already been achieved under batch, solid-phase conditions: using synchrotron-sourced cp light, asymmetric photolytic selectivities of up to 4.2% enantiomeric excess (e.e.) have been reported. In order to determine the optimal wavelengths to use for irradiation with cp light for any given molecular building block, CD and anisotropy spectra for each building block of interest have been generated in two different solvents (water, hexafluoroisopropanol) across a range of wavelengths (130-400 nm). These spectra are being used to support a series of CP experiments using cp light to generate enantioselectivity.

Keywords: anisotropy, asymmetry, flow chemistry, active pharmaceutical ingredients

Procedia PDF Downloads 157
1913 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study

Authors: Ghaleb Y. Abbasi, Israa Abu Rumman

Abstract:

This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.

Keywords: ARIMA models, sales demand forecasting, time series, R code

Procedia PDF Downloads 385
1912 Generating Innovations in Established Banks through Digital Transformation

Authors: Wisu Suntoyo, Dedy Sushandoyo

Abstract:

Innovation and digital transformation are essential for firms’ competitiveness in the digital age. The competition in Indonesia’s banking industry provides an intriguing case study for understanding how digital transformation can generate innovation in established companies. The empirical evidence of this study is mainly based on interviews and annual reports examining four established banks in their various states of digital transformation. The findings of this study reveal that banks’ digital transformations that lead to innovations differ in terms of the activities undertaken and the outcomes achieved depending on the state of advancement in which they are. Digital transformation is a complex and challenging process, and this study finds that with this strategy, established banks have shown capable of generating innovation. Banks can choose types of transformation activities that generate radical, architectural, modular, or even incremental innovations.

Keywords: digital transformation, innovations, banking industry, established banks

Procedia PDF Downloads 98
1911 Artificial Intelligence for Generative Modelling

Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta

Abstract:

As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.

Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques

Procedia PDF Downloads 149
1910 Practical Methods for Automatic MC/DC Test Cases Generation of Boolean Expressions

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that aims to prove that all conditions involved in a Boolean expression can influence the result of that expression. In the context of automotive, MC/DC is highly recommended and even required for most security and safety applications testing. However, due to complex Boolean expressions that often embedded in those applications, generating a set of MC/DC compliant test cases for any of these expressions is a nontrivial task and can be time consuming for testers. In this paper we present an approach to automatically generate MC/DC test cases for any Boolean expression. We introduce novel techniques, essentially based on binary trees to quickly and optimally generate MC/DC test cases for the expressions. Thus, the approach can be used to reduce the manual testing effort of testers.

Keywords: binary trees, MC/DC, test case generation, nontrivial task

Procedia PDF Downloads 447
1909 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect

Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi

Abstract:

High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.

Keywords: integration, electrokinetic, on-chip, fluid pumping, microfluidic

Procedia PDF Downloads 294
1908 Automated Test Data Generation For some types of Algorithm

Authors: Hitesh Tahbildar

Abstract:

The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.

Keywords: ongest path, saturation point, lmax, kL, kS

Procedia PDF Downloads 405
1907 A Voice Signal Encryption Scheme Based on Chaotic Theory

Authors: Hailang Yang

Abstract:

To ensure the confidentiality and integrity of speech signals in communication transmission, this paper proposes a voice signal encryption scheme based on chaotic theory. Firstly, the scheme utilizes chaotic mapping to generate a key stream and then employs the key stream to perform bitwise exclusive OR (XOR) operations for encrypting the speech signal. Additionally, the scheme utilizes a chaotic hash function to generate a Message Authentication Code (MAC), which is appended to the encrypted data to verify the integrity of the data. Subsequently, we analyze the security performance and encryption efficiency of the scheme, comparing and optimizing it against existing solutions. Finally, experimental results demonstrate that the proposed scheme can resist common attacks, achieving high-quality encryption and speed.

Keywords: chaotic theory, XOR encryption, chaotic hash function, Message Authentication Code (MAC)

Procedia PDF Downloads 51
1906 Scheduling Tasks in Embedded Systems Based on NoC Architecture

Authors: D. Dorota

Abstract:

This paper presents a method to generate and schedule task in the architecture of embedded systems based on the simulated annealing. This method takes into account the attribute of divisibility of tasks. A proposal represents the process in the form of trees. Despite the fact that the architecture of Network-on-Chip (NoC) is an interesting alternative to a bus architecture based on multi-processors systems, it requires a lot of work that ensures the optimization of communication. This paper proposes an effective approach to generate dedicated NoC topology solving communication problems. Network NoC is generated taking into account the energy consumption and resource issues. Ultimately generated is minimal, dedicated NoC topology. The proposed solution is assumed to be a simple router design and the minimum number of lines.

Keywords: Network-on-Chip, NoC-based embedded systems, scheduling task in embedded systems, simulated annealing

Procedia PDF Downloads 377
1905 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 68