Search results for: cost of energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13003

Search results for: cost of energy

2113 Molecular-Dynamics Study of H₂-C₃H₈-Hydrate Dissociation: Non-Equilibrium Analysis

Authors: Mohammad Reza Ghaani, Niall English

Abstract:

Hydrogen is looked upon as the next-generation clean-energy carrier; the search for an efficient material and method for storing hydrogen has been, and is, pursued relentlessly. Clathrate hydrates are inclusion compounds wherein guest gas molecules like hydrogen are trapped in a host water-lattice framework. These types of materials can be categorised as potentially attractive hosting environments for physical hydrogen storage (i.e., no chemical reaction upon storage). Non-equilibrium molecular dynamics (NEMD) simulations have been performed to investigate thermal-driven break-up of propane-hydrate interfaces with liquid water at 270-300 K, with the propane hydrate containing either one or no hydrogen molecule in each of its small cavities. In addition, two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water: a 001-direct surface cleavage and one with completed cages. The geometric hydrate-ice-liquid distinction criteria of Báez and Clancy were employed to distinguish between the hydrate, ice lattices, and liquid-phase. Consequently, the melting temperatures of interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. The different hydrate-edge terminations for the hydrate-water interface led to statistically-significant differences in the observed melting point and dissociation profile: it was found that the clathrate with the planar interface melts at around 280 K, whilst the melting temperature of the cage-completed interface was determined to be circa 270 K.

Keywords: hydrogen storage, clathrate hydrate, molecular dynamics, thermal dissociation

Procedia PDF Downloads 266
2112 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater

Authors: M. Abouleish, R. Umer, Z. Sara

Abstract:

Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.

Keywords: biosorption, nitrates, plant material, water, and wastewater treatment

Procedia PDF Downloads 145
2111 Placement of Inflow Control Valve for Horizontal Oil Well

Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj

Abstract:

Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.

Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation

Procedia PDF Downloads 409
2110 Interaction Evaluation of Silver Ion and Silver Nanoparticles with Dithizone Complexes Using DFT Calculations and NMR Analysis

Authors: W. Nootcharin, S. Sujittra, K. Mayuso, K. Kornphimol, M. Rawiwan

Abstract:

Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with a metal ion, leading to the change of signals for the naked-eyes which are very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of silver ion and silver nanoparticles (AgNPs) with dithizone using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver–dithizone complexes was supported by UV–Vis spectroscopy, FT-IR spectrum that was simulated by using B3LYP/6-31G(d,p) and 1H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom, with minimized binding energies of silver–dithizone interaction. However, the result of AgNPs in the form of complexes with dithizone. Moreover, the AgNPs-dithizone complexes were confirmed by using transmission electron microscope (TEM). Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.

Keywords: silver nanoparticles, dithizone, DFT, NMR

Procedia PDF Downloads 203
2109 Relationship between Conjugated Linoleic Acid Intake, Biochemical Parameters and Body Fat among Adults and Elderly

Authors: Marcela Menah de Sousa Lima, Victor Ushijima Leone, Natasha Aparecida Grande de Franca, Barbara Santarosa Emo Peters, Ligia Araujo Martini

Abstract:

Conjugated linoleic acid (CLA) intake has been constantly related to benefits to human health since having a positive effect on reducing body fat. The aim of the present study was to investigate the association between CLA intake and biochemical measurements and body composition of adults and the elderly. Subjects/Methods: 287 adults and elderly participants in an epidemiological study in Sao Paulo Brazil, were included in the present study. Participants had their dietary data obtained by two non-consecutive 24HR, a body composition assessed by dual-energy absorptiometry exam (DXA), and a blood collection. Mean differences and a correlation test was performed. For all statistical tests, a significance of 5% was considered. Results: CLA intake showed a positive correlation with HDL-c levels (r = 0.149; p = 0.011) and negative with VLDL-c levels (r = -0.134; p = 0.023), triglycerides (r = -0.135; p = 0.023) and glycemia (r = -0.171; p = 0.004), as well as negative correlation with visceral adipose tissue (VAT) (r = -0.124, p = 0.036). Evaluating individuals in two groups according to VAT values, a significant difference in CLA intake was observed (p = 0.041), being the group with the highest VAT values, the one with the lowest fatty acid intake. Conclusions: This study suggests that CLA intake is associated with a better lipid profile and lower visceral adipose tissue volume, which contributes to the investigation of the effects of CLA on obesity parameters. However, it is necessary to investigate the effects of CLA from milk and dairy products in the control adiposity.

Keywords: adiposity, dairy products, diet, fatty acids

Procedia PDF Downloads 134
2108 Eco-Hammam Initiative: Replicating the FSAC Model for Sustainable Wastewater Treatment and Resource Reuse in Dar Bouazza, Morocco

Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Halima Jounaid, Fouad Amraoui

Abstract:

In the context of the increasing water resource scarcity in Morocco in recent years, the use of unconventional resources has become imperative. Although efforts have been made in the field of sanitation in urban areas, rural areas, due to their specificities, such as scattered dwellings and limited accessibility, suffer from a lack of basic infrastructure. This work focuses on replicating the Faculty of Sciences Ain Chock (FSAC) model for the treatment and reuse of wastewater from a peri-urban traditional hammam in Casablanca, specifically in the municipality of Dar Bouazza. This initiative is part of the Eco-Hammam project, which aims to minimize the negative impacts of traditional hammams in terms of irrational and uncontrolled consumption of water and wood energy resources. To achieve this, a comprehensive environmental diagnosis of all hammams in the municipality of Dar Bouazza, our study site, has been undertaken. Then, a feasibility study is also conducted to assess the possibility of replicating the FSAC mini-station to treat the wastewater of the selected pilot hammam, namely, My Yacoub II.

Keywords: water resource scarcity, unconventional resources, sanitation, per-urban areas, rural areas, basic infrastructure, replication, reuse of wastewater, traditional hammam, Casablanca, Municipality of Dar Bouazza, negative impacts, environmental diagnosis, feasibility study, pilot hammam, My Yacoub II

Procedia PDF Downloads 57
2107 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite

Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh

Abstract:

An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.

Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode

Procedia PDF Downloads 363
2106 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis

Authors: Asowata Osamede

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.

Keywords: power-conversion, meteonorm, PV panels, DC-DC converters

Procedia PDF Downloads 143
2105 Surface Display of Lipase on Yarrowia lipolytica Cells

Authors: Evgeniya Y. Yuzbasheva, Tigran V. Yuzbashev, Natalia I. Perkovskaya, Elizaveta B. Mostova

Abstract:

Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively.

Keywords: biodiesel, cell-surface display, lipase, whole-cell biocatalyst

Procedia PDF Downloads 481
2104 Health Seeking Manners of Road Traffic Accident Victims: A Qualitative Study

Authors: Mohammad Mahbub Alam Talukder, Shahnewaz, Hasanat-E-Rabbi, Mohammed Nazrul Islam

Abstract:

Road traffic accident is a global problem which is severe in the developing countries like Bangladesh. In consequence, in developing countries road trauma has now been recognized as an increasing public health hazards and economic burning issue. And after road traffic accidents the lack of management and economic costs related with health seeking behavior have a disproportionate impact on lower income groups, thus contributing to the persistence of poverty in conjunction with disability. This cross sectional study, carried out during July 2012 to June 2013, aimed to explore health seeking decision and culture of handling the road traffic accident related victims, as taken from experiences of the poor disabled people of slum dwellers of Dhaka city. The present study has been designed based on qualitative techniques such as in-depth interview and case studies. Additionally, a survey questionnaire was used to collect the demographic characteristics of the study population (n=150) and to select participants purposely for in-depth interview (n=50) and case study (n=30). Content analysis of qualitative data was done through theme coding and matrix analysis of case study was done to use relevant verbatim. Most of the time the health seeking decision totally depended on the surrounded people of the accidental place, their knowledge, awareness and remaining facility and capacity regarding proper management of the victims. However, most of the cases the victims did not get any early treatment and it took 2-12 hours to get even the first aid because of distance, shortage of money, lack of availability of getting the aid, lack of mass awareness etc. Under the reality of discriminated and unaffordable health service provision better treatment could not turn out due to economic inability of the poor victims. To avoid the severe trauma, treatment delay must be reduced by providing first aid within very short time and to do so, mass awareness campaign is necessary for handing the victims. Moreover, necessary measures should be taken to ensure cost free health service provision to treat the chronic disabled condition of the road traffic accident related poor victims.

Keywords: accident, injury, disabled, qualitative, slum

Procedia PDF Downloads 353
2103 Quantification of Biomethane Potential from Anaerobic Digestion of Food Waste at Vaal University of Technology

Authors: Kgomotso Matobole, Pascal Mwenge, Tumisang Seodigeng

Abstract:

The global urbanisation and worldwide economic growth have caused a high rate of food waste generation, resulting in environmental pollution. Food waste disposed on landfills decomposes to produce methane (CH4), a greenhouse gas. Inadequate waste management practices contribute to food waste polluting the environment. Thus effective organic fraction of municipal solid waste (OFMSW) management and treatment are attracting widespread attention in many countries. This problem can be minimised by the employment of anaerobic digestion process, since food waste is rich in organic matter and highly biodegradable, resulting in energy generation and waste volume reduction. The current study investigated the Biomethane Potential (BMP) of the Vaal University of Technology canteen food waste using anaerobic digestion. Tests were performed on canteen food waste, as a substrate, with total solids (TS) of 22%, volatile solids (VS) of 21% and moisture content of 78%. The tests were performed in batch reactors, at a mesophilic temperature of 37 °C, with two different types of inoculum, primary and digested sludge. The resulting CH4 yields for both food waste with digested sludge and primary sludge were equal, being 357 Nml/g VS. This indicated that food waste form this canteen is rich in organic and highly biodegradable. Hence it can be used as a substrate for the anaerobic digestion process. The food waste with digested sludge and primary sludge both fitted the first order kinetic model with k for primary sludge inoculated food waste being 0.278 day-1 with R2 of 0.98, whereas k for digested sludge inoculated food waste being 0.034 day-1, with R2 of 0.847.

Keywords: anaerobic digestion, biogas, bio-methane potential, food waste

Procedia PDF Downloads 227
2102 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce

Authors: Heiko Diefenbach, Christoph H. Glock

Abstract:

Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.

Keywords: an aging workforce, error prevention, order picking, storage assignment

Procedia PDF Downloads 200
2101 Management in Health Education Process among Spa Resorts in Poland

Authors: J. Wozniak-Holecka, T. Holecki, P. Romaniuk

Abstract:

Spa facilities are being perceived as the ways of healing treatment in Poland and are guaranteed within the public financing. The universal health insurance (National Health Fund, NFZ), and the disability prevention programme held by Social Insurance Institution (ZUS) are the main sources of financing spa facilities. The dominant public payer of spa services is the NFZ. The Social Insurance Institution covers the cost of health treatment realized in spa facilities as medical rehabilitation, in the field of disability prevention. Health services delivered in the spa resorts are characterized by complexity, and the combination of various methods, typical for health prevention, education, balneotherapy, and physiotherapy. Healing with natural methods, believed to enhance the therapeutic effect, is also involved in health spa treatment. Regardless of the type of facility, each form of spa treatment includes health promotion, health education, prevention at all levels, including rehabilitation. The aim of the study was to determine the optimal organization of health education process. Its efficiency strongly depends on the type of service provider and the funding institution (NFZ vs ZUS). It results from the use of different measures of the effectiveness, the quality and the evaluation of the process being assessed by funding institutions. The methods of the study include a comparative and descriptive quantitative and qualitative analysis. In the empirical part, a questionnaire had been developed. It was then distributed among spa personnel, responsible directly for the health promotion, and among patients who are beneficiaries of health services in spa centers. The quantitative part of the study was based on interviews carried with the use of the online survey (CAWI: Computer-Assisted Web Interview), telephone survey (CATI: Computer-Assisted Telephone Interview) and a conventional questionnaire (PAPI: Paper over Pencil Interview). As a result of the conducted research, it was found that the effectiveness of health education activities in spa resort facilities in Poland is higher when the services are organized using structured tools for managerial control. This applies to formalized procedures implemented by one of the dominant payers covering costs of services (ZUS) and involves the application of health education as one of the mandatory elements of treatment, subjected to the process of control during the course of spa therapy and evaluation after it is completed.

Keywords: effectiveness, health education, public health system, spa treatment

Procedia PDF Downloads 140
2100 Design of New Sustainable Pavement Concrete: An Experimental Road

Authors: Manuel Rosales, Francisco Agrela, Julia Rosales

Abstract:

The development of concrete pavements that include recycled waste with active and predictive safety features is a possible approach to mitigate the harmful impacts of the construction industry, such as CO2 emissions and the consumption of energy and natural resources during the construction and maintenance of road infrastructure. This study establishes the basis for formulating new smart materials for concrete pavements and carrying out the in-situ implementation of an experimental road section. To this end, a comprehensive recycled pavement solution is developed that combines eco-hybrid cement made with 25% mixed recycled aggregate powder (pMRA) and biomass bottom ash powder (pBBA) and a 30% substitution of natural aggregate by MRA and BBA. This work is grouped in three lines. 1) construction materials with high rates of use of recycled material, 2) production processes with efficient consumption of natural resources and use of cleaner energies, and 3) implementation and monitoring of road section with sustainable concrete made from waste. The objective of this study is to ensure satisfactory rheology, mechanical strength, durability, and CO2 capture of pavement concrete manufactured from waste and its subsequent application in real road section as well as its monitoring to establish the optimal range of recycled material. The concrete developed during this study are aimed at the reuse of waste, promoting the circular economy. For this purpose, and after having carried out different tests in the laboratory, three mixtures were established to be applied on the experimental road.

Keywords: biomass bottom ash, construction and demolition waste, recycled concrete pavements, full-scale experimental road, monitoring

Procedia PDF Downloads 65
2099 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach

Authors: Massimo Zucchetti

Abstract:

In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.

Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety

Procedia PDF Downloads 79
2098 The Influence of Different Green Roof Vegetation on Indoor Temperature in Semi-Arid Climate Cyprus

Authors: Sinem Yıldırım, Çimen Özburak, Özge Özden

Abstract:

Cities are facing a growing environmental issue as a result of the combined effect of urbanization and climate change. Climate change is the most conspicuousimpact on environmental issues. Nowadays, energy conservation is a very important subject for planners. It is known that green roofs can provide environmental benefits, which include building insulation and mitigating urban heat island effect within the cities. Some of the studies shown that green roofs regulate roof temperature and they have an effect on indoor temperatures of buildings. This research looks at the experimental investigation of different type green roof vegetation with control of no vegetation and their effect on indoor temperatures. The research has been carried out at Near East University Campus with the duration of four months in Nicosia, Cyprus. The experiment was consisting of four green roof types; three of them covered with vegetation, and one of them was not vegetated for control of the experiment. Each hut had 2.7 m2 roof areas, and the soil depth was 8 cm. Mediterranean climate drought resistant ground covers and shrubs were planted on the roof of the three huts. Three different vegetation type was used: 1-Low growing ground cover succulents 2-Mixture of low growing succulents and low shrubs 3-Mixture of low growing succulents, low shrubs, and high growing foliage plantsElitech RC-5 temperature data loggers were used in order to measure indoor temperatures of the huts. Research results were shown that the hut with a highly vegetated roof had the lowest temperatures during hot summer period in Cyprus.

Keywords: green roofs, indoor temperature, vegetation, mediterranean, cyprus

Procedia PDF Downloads 199
2097 Strengthening Reinforced Concrete Beams Using Carbon Fibre Reinforced Polymer Strips

Authors: Mina Iskander, Mina Melad, Mourad Yasser, Waleed Abdel Rahim, Amr Mosa, Mohamed El Lahamy, Ezzeldin Sayed-Ahmed, Mohamed Abou-Zeid

Abstract:

Strengthening of reinforced concrete beams in flexure using externally bonded composite laminate of high tensile strength is easy and of the minimum cost compared to traditional methods such as increasing the concrete section depth or reinforcement that requires formwork and curing which affect the structure usability. One of the main limitations of this technique is debonding of the externally bonded laminate, either by end delamination or by mid-span flexural crack-induced debonding. ACI 440.2-08 suggests that using side-bonded FRP laminate in the flexural strengthening of RC beams may serve to limit the extent and width of flexural cracks. Consequently, this technique may decrease the effect of flexural cracks on initiating the mid-span debonding; i.e. delays the flexural crack-induced debonding. Furthermore, bonding the FRP strips to the side of the beam may offer an attractive, practical solution when the soffit of this beam is not accessible. This paper presents an experimental programme designed to investigate the effect of using externally bonded CFRP laminate on the sides of reinforced concrete beams and compares the results to those of bonding the CFRP laminate to the soffit of the beams. In addition, the paper discusses the effect of using end anchorage by U-wrapping the CFRP strips at their end zones with CFRP sheets for beams strengthened with soffit-bonded and side-bonded CFRP strips. Thus, ten rectangular reinforced concrete beams were tested to failure in order to study the effect of changing the location of the externally bonded laminate on the flexural capacity and ductility of the strengthened beams. Pultruded CFRP strips were bonded to the soffit of the beams or their sides to check the possibility of limiting the flexural cracking in mid-span region, which is the main reason for mid-span debonding. Pre-peg CFRP sheets were used near the support as U-wrap for the beam to act as an end-anchorage for the externally bonded strips in order to delay/prevent the end delamination. Strength gains of 38% and 43% were recorded for the soffit-bonded and the side-bonded composite strips with end U-wrapped sheets, respectively. Furthermore, beams with end sheets applied as an end anchorage showed higher ductility than those without these sheets.

Keywords: flexural strengthening, externally bonded CFRP, side-bonded CFRP, CFRP laminates

Procedia PDF Downloads 349
2096 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties

Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy

Abstract:

Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.

Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids

Procedia PDF Downloads 70
2095 Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control

Authors: Montree Bunruangses, Sonath Bhattacharyya, Somchat Sonasang, Preecha Yupapin

Abstract:

A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use.

Keywords: quantum engine, relativistic motor, 3-phase torque, atomic engine

Procedia PDF Downloads 53
2094 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 108
2093 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support

Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha

Abstract:

Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.

Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron

Procedia PDF Downloads 174
2092 Performance Evaluation of On-Site Sewage Treatment System (Johkasou)

Authors: Aashutosh Garg, Ankur Rajpal, A. A. Kazmi

Abstract:

The efficiency of an on-site wastewater treatment system named Johkasou was evaluated based on its pollutant removal efficiency over 10 months. This system was installed at IIT Roorkee and had a capacity of treating 7 m3/d of sewage water, sufficient for a group of 30-50 people. This system was fed with actual wastewater through an equalization tank to eliminate the fluctuations throughout the day. Methanol and ammonium chloride was added into this equalization tank to increase the Chemical Oxygen Demand (COD) and ammonia content of the influent. The outlet from Johkasou is sent to a tertiary unit consisting of a Pressure Sand Filter and an Activated Carbon Filter for further treatment. Samples were collected on alternate days from Monday to Friday and the following parameters were evaluated: Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN). The Average removal efficiency for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), and Total Nitrogen (TN) was observed as 89.6, 97.7, 96, and 80% respectively. The cost of treating the wastewater comes out to be Rs 23/m3 which includes electricity, cleaning and maintenance, chemical, and desludging costs. Tests for the coliforms were also performed and it was observed that the removal efficiency for total and fecal coliforms was 100%. The sludge generation rate is approximately 20% of the BOD removal and it needed to be removed twice a year. It also showed a very good response against the hydraulic shock load. We performed vacation stress analysis on the system to evaluate the performance of the system when there is no influent for 8 consecutive days. From the result of stress analysis, we concluded that system needs a recovery time of about 48 hours to stabilize. After about 2 days, the system returns again to original conditions and all the parameters in the effluent become within the limits of National Green Tribunal (NGT) standards. We also performed another stress analysis to save the electricity in which we turned the main aeration blower off for 2 to 12 hrs a day and the results showed that we can turn the blower off for about 4-6 hrs a day and this will help in reducing the electricity costs by about 25%. It was concluded that the Johkasou system can remove a sufficient amount of all the physiochemical parameters tested to satisfy the prescribed limit set as per Indian Standard.

Keywords: on-site treatment, domestic wastewater, Johkasou, nutrient removal, pathogens removal

Procedia PDF Downloads 107
2091 Electrochemical Synthesis of ZnTe and Cu-ZnTe Thin Films for Low Resistive Ohmic Back Contact for CdS/CdTe Solar Cells

Authors: Shivaji M. Sonawane, N. B. Chaure

Abstract:

ZnTe is direct band gap, the P-type semiconductor with the high absorption coefficient of the order of 104cm-1 is suitable for solar cell development. It can be used as a low resistive ohmic contact to CdS/CdTe or tandem solar cell application. ZnTe and Cu-ZnTe thin film have been electrochemically synthesized on to fluorine-doped tin oxide coated glass substrates using three electrode systems containing Ag/AgCl, graphite and FTO as reference, counter and working electrode respectively were used to deposit the thin films. The aqueous electrolytic solution consist of 0.5M TeO2, 0.2M ZnSO4, and 0.1M Na3C6H5O7:2H2O, 0.1MC6H8O7:H2O and 0.1mMCuSO4 with PH 2.5 at room temperature was used. The reaction mechanism is studied in the cyclic voltammetry to identify the deposition potentials of ZnTe and Cu-ZnTe.The potential was optimized in the range -0,9 to -1,1 V. Vs Ag/AgCl reference electrode. The effect of deposition potential on the structural properties was studied by using X-ray diffraction. The X-ray diffraction result reveled cubic crystal structure of ZnTe with preferential (111) orientation with cubic structure. The surface morphology and film composition were analyzed by means of Scanning electron microscopy (SEM) and Energy Dispersive Analysis of X- Rays (EDAX). The optical absorption measurement has been analyzed for the band gap determination of deposited layers about 2.26 eV by UV-Visible spectroscopy. The drastic change in resistivity has been observed due to incorporation of copper probably due to the diffusion of Cu into grain boundaries.

Keywords: ohmic back contact, zinc telluride, electrodeposition, photovoltaic devices

Procedia PDF Downloads 219
2090 Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya

Authors: Emir Borovac, Sedat İnan

Abstract:

The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration.

Keywords: tanezzuft formation, ghadames basin, silurian hot shale, unconventional hydrocarbon

Procedia PDF Downloads 15
2089 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit

Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana

Abstract:

Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.

Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification

Procedia PDF Downloads 149
2088 Phytoremediation Aeration System by Using Water Lettuce (Pistia Stratiotes I) Based on Zero Waste to Reduce the Impact of Industrial Liquid Waste in Jember, Indonesia

Authors: Wahyu Eko Diyanto, Amalia Dyah Arumsari, Ulfatu Layinatinnahdiyah Arrosyadi

Abstract:

Tofu industry is one of the local food industry which is can being competitive industry in the ASEAN Economic Community (AEC). However, a lot of tofu entrepreneurs just thinking how to produce good quality product without considering the impact of environmental conditions from the production process. Production of tofu per day requires a number of 15 kg with liquid waste generated is 652.5 liters. That liquid waste is discharged directly into waterways, whereas tofu liquid waste contains organic compounds that quickly unraveled, so it can pollute waterways. In addition, tofu liquid waste is high in Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), nitrogen and phosphorus. This research is aim to create a method of handling liquid waste effectively and efficiently by using water lettuce. The method is done by observation and experiment by using phytoremediation method in the tofu liquid waste using water lettuce and adding aeration to reduce the concentration of contaminants. The results of the research analyzed the waste quality standard parameters based on SNI (National Standardization Agency of Indonesia). The efficiency concentration and parameters average of tofu liquid waste are obtained pH 3,42% (from 4,0 to be 3,3), COD 76,13% (from 3579 ppm to be 854 ppm), BOD 55 % (from 11600 ppm to be 5242 ppm), TSS 93,6% (from 3174 ppm to be 203 ppm), turbidity is 64,8% (from 977 NTU to be 1013 NTU), and temperature 36oC (from 45oC to be 40oC). The efficiency of these parameters indicates a safe value for the effluent to be channeled in waterways. Water lettuce and tofu liquid waste phytoremediation result will be used as biogas as renewable energy.

Keywords: aeration, phytoremediation, water letuce, tofu liquid waste

Procedia PDF Downloads 377
2087 Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates

Authors: Jefri Draup, Antoine Ambard, Chi-Toan Nguyen

Abstract:

Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent.

Keywords: accident, fuel, modelling, zirconium

Procedia PDF Downloads 136
2086 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry

Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya

Abstract:

This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.

Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry

Procedia PDF Downloads 81
2085 Misconception of the Idea ‘Oshinowoism’ and the Later Development in the ‘Yaba Painting School'

Authors: Irokanulo I. Emmanuel

Abstract:

The idea of ‘Oshinowoism’ is a representational school, which is a concept based on pure and rustic energy in painting. It is described as any painting that depicts the actions of significant through simple illusions. The idea is never to replicate a photographic resemblance with paint but to create an affinity between what one sees and what one artistically intends to create as a representation of that which one beholds in society as an illusion of reality, not as a reality in itself, but as subjective analysis of reality. The disciples of ‘Oshinowoism’ pursue their art from a representational point of view, creating material realities within feels of colours, forms and space, not trying to confuse the art as a substitute for reality nor reality as a substitute for art, but giving each its space and materialism to exist. The depictions of Oshinowo are the constant reminders or perhaps interpretations of those developments that emerged in contemporary African societies because of neocolonialism. This essay has three objectives. First, it examines the misconception around the development of this thought. Secondly, it contextualizes the later contemporary development of painting as art and craft in present-day Lagos, and third, it constructs the misconception and misconstruction of the concept of ‘Oshinowoism’ and offers a correct ideology of this thought with the body of Oshinowo’s work to give the existence to this philosophy. This study looks at the students of Kolade Oshinowo, especially those students who share similar elements and an affinity with the master painting skills, as a way of reconstructing and addressing the misconception in his style. The early works of Olaku, Edosa, and Lara Ige Jacks are plausible evidence of the existential essence of Oshinowo’s artistic philosophy. To this end, therefore, this study would explore the quality of their pictorial techniques and skills in painting as a way of preserving their master’s philosophy.

Keywords: Oshinowoism, colour scheme, drawing, philosophy, representations

Procedia PDF Downloads 32
2084 Effect of Many Levels of Undegradable Protein on Performance, Blood Parameters, Colostrum Composition and Lamb Birth Weight in Pregnant Ewes

Authors: Maria Magdy Danial Riad

Abstract:

The objective of this study was to investigate the effect of different protein sources with different degradability ratios during late gestation of ewes on colostrum composition and its IgG concentration, body weight change of dams, and birth weight of their lambs. Objectives: 35 multiparous native crossbred ewes (BW= 59±2.5kg) were randomly allocated to five dietary treatments (7 ewes / treatment) for 2 months prior to lambing. Methods: Experimental diets were isonitrogenous (12.27% CP) and isocaloric (2.22 Mcal ME/kg DM). In diet I (the control), solvent extract soybeans (SESM 33% RUP of CP), II feed grade urea (FGU 31% RUP), III slow release urea (SRU 31% RUP). As sources of undegradable protein, extruded expeller SBM-EESM 40 (37% RUP) and extruded expeller SBM-EESM 60 (41% RUP) were used in groups IV and V, respectively. Results showed no significant effect on feed intake, crude protein (CP), metabolizable energy (ME), and body condition score (BCS). Ewes fed the 37% RUP diet gained more (p<0.05) weight compared with ewes fed the 31% RUP diet (5.62 vs. 2.5kg). Ewes in EESM 60 had the highest levels of fat, protein, total solid, solid not fat, and immunoglobulin and the lowest in urea N content (P< 0.05) in colostrum during the first 24hrs after lambing. Conclusions: Protein source and RUP levels in ewes’ diets had no significant effect (P< 0.05) on lambs’ birth weight and ewes' blood biochemical parameters. Increasing the RUP content of diet during late gestation resulted in an increase in colostrum constituents and its IgG level but had no effect on ewes’ performance and their lambs’ outcome.

Keywords: colostrum, ewes, lambs output, pregnancy, undegradable protein

Procedia PDF Downloads 43