Search results for: withdrawal resistance
2309 Liquidity Risk of Banks in Light of a Dominant Share of Foreign Capital in the Polish Banking Sector
Authors: Karolina Patora
Abstract:
This article investigates liquidity risk management by banks, which has gained significant importance since the global financial crisis of 2008. The issue is of particular interest for countries like Poland, in which foreign capital plays a dominant role. Such an ownership structure poses certain risks to the local banking sector, which faces an increased probability of the withdrawal of funding or assets’ transfers abroad in case of a crisis. Both these factors can have a detrimental influence on the liquidity position of foreign-owned banks and hence negatively affect the financial stability of the whole banking sector. The aim of this study is to evaluate the impact of a dominating share of foreign investors in the Polish banking sector on the liquidity position of commercial banks. The study hypothesizes that the ownership structure of the Polish banking sector, in which there are banks predominantly controlled by foreign investors, does not pose a threat to the liquidity position of Polish banks. A supplementary research hypothesis is that the liquidity risk profile of foreign-owned banks differs from that of domestic banks. The sample consists of 14 foreign-owned banks and 5 domestic banks owned by local investors, which together constitute approximately 87% of the banking sector’s assets. The data covers the period of 2004–2014. The results of the regression models show no evidence of significant differences in terms of the dynamics of changes of the liquidity buffers between the foreign-owned and domestic banks, although the signs of the coefficients might suggest that the foreign-owned banks were decreasing the holdings of liquid assets at a slower pace over the examined period, compared to the domestic banks. However, no proof of the statistical significance of these findings has been found. The supplementary research hypothesis that the liquidity risk profile of foreign-controlled banks differs from that of domestic banks was rejected.Keywords: foreign-owned banks, liquidity position, liquidity risk, financial stability
Procedia PDF Downloads 2962308 Screening and Isolation of Lead Molecules from South Indian Plant Extracts against NDM-1 Producing Escherichia coli
Authors: B. Chandar, M. K. Ramasamy, P. Madasamy
Abstract:
The discovery and development of newer antibiotics are limited with the increase in resistance of such multi-drug resistant bacteria creating the need for alternative new therapeutic agents. The recently discovered New Delhi Metallo-betalactamase-1 (NDM-1), which confers antibiotic resistance to most of the currently available β-lactams, except colistin and tigecycline, is a global concern. Several antibacterial drugs approved are natural products or their semisynthetic derivatives, but plant extracts remain to be explored to find molecules that are effective against NDM-1 bacteria. Therefore, it is necessary to explore the possibility of finding new and effective antibacterial compounds against NDM-1 bacteria. In the present study, we have screened a diverse set South Indian plant species, and report most plant species as a potential source for antimicrobial compounds against NDM-1 bacteria. Ethanol extracts from the leaves of taxonomically diverse South Indian medicinal plants were screened for antibacterial activity against NDM-1 E. coli using streak plate method. Among the plant screened against NDM-1 E. coli, the ethanol extracts from many plant extracts showed minimum bactericidal concentration between 5 and 15 mg /ml and MIC between 2.54 and 5.12 mg/ml. These extracts also showed a potent synergistic effect when combined with antibiotics colistin and tetracycline. Combretum albidum that was effective was taken for further analysis. At 5mg/L concentration, these extracts inhibited the NDM-1 enzyme in vitro, and residual activity for Combretum albidum was 33.09%. Treatment of NDM-1 E. coli with the extracts disrupted the cell wall integrity and caused 89.7% cell death. The plant extract of Combretum albidum that was effective was subjected to fractionation and the fraction was further subjected to HPLC, LC-MS for identification of antibacterial compound.Keywords: antibacterial activity, combretum albidum, Escherichia coli, NDM-1
Procedia PDF Downloads 4552307 Biosynthesis, Characterization and Interplay of Bacteriocin-nanoparticles to Combat Infectious Drug Resistant Pathogens
Authors: Asma Ansari, Afsheen Aman, Shah Ali Ul Qader
Abstract:
In the past few years, numerous concerns have been raised against increased bacterial resistance towards effective drugs and become a debated issue all over the world. With the emergence of drug resistant pathogens, the interaction of natural antimicrobial compounds and antibacterial nanoparticles has emerged as a potential candidate for combating infectious diseases. Microbial diversity in the biome provides an opportunity to screen new species which are capable of producing large number of antimicrobial compounds. Among these antimicrobial compounds, bacteriocins are highly specific and efficient antagonists. A combination of bacteriocin along with nanoparticles could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the current study, silver nanoparticles were synthesized through biological reduction using various isolated bacterial, fungal and yeast strains. Spectroscopy and scanning electron microscopy (SEM) was performed for the confirmation of nanoparticles. Bacteriocin was characterized and purified to homogeneity through gel permeation chromatography. The estimated molecular weight of bacteriocin was 10 kDa. Amino acid analysis and N-terminal sequencing revealed the novelty of the protein. Then antibacterial potential of silver nanoparticles and broad inhibitory spectrum bacteriocin was determined through agar well diffusion assay. These synthesized bacteriocin-Nanoparticles exhibit a good potential for clinical applications as compared to bacteriocin alone. This combination of bacteriocin with nanoparticles will be used as a new sort of biocide in the field of nano-proteomics. The advancement of nanoparticles-mediated drug delivery system will open a new age for rapid eradication of pathogens from biological systems.Keywords: BAC-IB17, multidrug resistance, purification, silver nanoparticles
Procedia PDF Downloads 4942306 Mycorrhizal Autochthonous Consortium Induced Defense-Related Mechanisms of Olive Trees against Verticillium dahliae
Authors: Hanane Boutaj, Abdelilah Meddich, Said Wahbi, Zainab El Alaoui-Talibi, Allal Douira, Abdelkarim Filali-Maltouf, Cherkaoui El Modafar
Abstract:
The present work aims to investigate the effect of arbuscular mycorrhizal fungi (AMF) in improving the olive tree resistance to Verticillium wilt caused by Verticillium dahliae. Inoculated plants with a mycorrhizal autochthonous consortium 'Rhizolive consortium' and pure strain 'Glomus irregulare' were infected after three months with V. dahliae. The improving of olive tree resistance was determined through disease severity, incidence, and defoliation. On the other hand, the defense mechanisms of olive plants were evaluated through lignin content, phenylalanine ammonia lyase (PAL) activity, and polyphenol content. The results revealed that both AMF significantly (p < 0.05) reduced disease development and the rate of defoliation in infected olive plants. Moreover, the contents of lignin were boosted after mycorrhizal inoculation in both the roots and the stems of olive plants, which remained significantly (p < 0.001) higher after the 90th days of V. dahliae inoculation. PAL activity was increased after V. dahliae inoculation in the stems of 'Rhizolive consortium' treatment that were 17 times higher than those in the roots of olive plants. The polyphenol content in the stems was about twice higher than those in the roots. The reduction of disease severity was accompanied by increased levels of lignin content, PAL activity, and polyphenol content, particularly in the stems of olive plants, indicating the strengthening of the olive plant immune system against V. dahliae.Keywords: olive tree, Mycorrhizal autochthonous consortium, Glomus irregulare, Verticillium dahliae, defense mechanisms
Procedia PDF Downloads 1172305 Sensitivity of Acanthamoeba castellanii-Grown Francisella to Three Different Disinfectants
Authors: M. Knezevic, V. Marecic, M. Ozanic, I. Kelava, M. Mihelcic, M. Santic
Abstract:
Francisella tularensis is a highly infectious, gram-negative intracellular bacterium and the causative agent of tularemia. The bacterium has been isolated from more than 250 wild species, including protozoa cells. Since Francisella is very virulent and persists in the environment for years, the aim of this study was to investigate whether Acanthamoeba castellanii-grown F. novicida exhibits an alteration in the resistance to disinfectants. It has been shown by other intracellular pathogens, including Legionella pneumophila that bacteria grown in amoeba exhibit more resistance to disinfectants. However, there is no data showing Francisella viability behaviour after intracellular life cycle in A. castellani. In this study, the bacterial suspensions of A. castellanii-grown or in vitro-grown Francisella were treated with three different disinfectants, and the bacterial viability after disinfection treatment was determined by a colony-forming unit (CFU) counting method, transmission electron microscopy (TEM), fluorescence microscopy as well as the leakage of intracellular fluid. Our results have shown that didecyldimethylammonium chloride (DDAC) combined with isopropyl alcohol was the most effective in bacterial killing; all in vitro-grown and A. castellanii-grown F. novicida were killed after only 10s. Surprisingly, in comparison to in vitro-grown bacteria, A. castellanii-grown F. novicida was more sensitive to decontamination by the benzalkonium chloride combined with DDAC and formic acid and the polyhexamethylene biguanide (PHMB). We can conclude that the tested disinfectants exhibit antimicrobial activity by causing a loss of structural organization and integrity of the Francisella cell wall and membrane and the subsequent leakage of the intracellular contents. Finally, the results of this study clearly demonstrate that Francisella grown in A. castellanii had become more susceptible to many disinfectants.Keywords: Acanthamoeba, disinfectant, Francisella, sensitivity
Procedia PDF Downloads 1002304 A Call for Justice and a New Economic Paradigm: Analyzing Counterhegemonic Discourses for Indigenous Peoples' Rights and Environmental Protection in Philippine Alternative Media
Authors: B. F. Espiritu
Abstract:
This paper examines the resistance of the Lumad people, the indigenous peoples in Mindanao, Southern Philippines, and of environmental and human rights activists to the Philippine government's neoliberal policies and their call for justice and a new economic paradigm that will uphold peoples' rights and environmental protection in two alternative media online sites. The study contributes to the body of knowledge on indigenous resistance to neoliberal globalization and the quest for a new economic paradigm that upholds social justice for the marginalized in society, empathy and compassion for those who depend on the land for their survival, and environmental sustainability. The study analyzes the discourses in selected news articles from Davao Today and Kalikasan (translated to English as 'Nature') People's Network for the Environment’s statements and advocacy articles for the Lumad and the environment from 2018 to February 2020. The study reveals that the alternative media news articles and the advocacy articles contain statements that expose the oppression and violation of human rights of the Lumad people, farmers, government environmental workers, and environmental activists as shown in their killings, illegal arrest and detention, displacement of the indigenous peoples, destruction of their schools by the military and paramilitary groups, and environmental plunder and destruction with the government's permit for the entry and operation of extractive and agribusiness industries in the Lumad ancestral lands. Anchored on Christian Fuch's theory of alternative media as critical media and Bert Cammaerts' theorization of alternative media as counterhegemonic media that are part of civil society and form a third voice between state media and commercial media, the study reveals the counterhegemonic discourses of the news and advocacy articles that oppose the dominant economic system of neoliberalism which oppresses the people who depend on the land for their survival. Furthermore, the news and advocacy articles seek to advance social struggles that transform society towards the realization of cooperative potentials or a new economic paradigm that upholds economic democracy, where the local people, including the indigenous people, are economically empowered their environment and protected towards the realization of self-sustaining communities. The study highlights the call for justice, empathy, and compassion for both the people and the environment and the need for a new economic paradigm wherein indigenous peoples and local communities are empowered towards becoming self-sustaining communities in a sustainable environment.Keywords: alternative media, environmental sustainability, human rights, indigenous resistance
Procedia PDF Downloads 1432303 Assessing the Seed Yield of Some Varieties of Sesame (Sesami indicum) Under Disease Condition (Cercospora Leaf Spot) Caused by (Cercospora sesami, Zimm) and Identifying Disease Resistant Varieties
Authors: P. S. Akami, H. Nahunnaro, A. Zubainatu
Abstract:
Cercospora leaf spot (Cercospora sesami. Zimm) has been identified as one of the most prevalent diseases, posing serious constraints to sesame production in producing areas. Two sets of experiments were carried out. The first and second experiments were conducted in the Modibbo Adama University of Technology Yola at the Crop Production and Horticulture and Plant Science Departments, respectively. The field experiment was carried out using a Randomized Complete Block Design and was replicated three times on a plot size of 4m x 5m with four sesame varieties and three Mancob-M fungicide levels (0g, 2g and 4g) to give a total of Twelve treatments. The laboratory experiment involved the isolation of the pathogens from diseased leaves with symptoms of Cercospora leaf spot, which was identified as Cercospora sesami. Data collected were subjected to analysis of variance for a randomized complete block design using SAS (1999) statistical package. The treatment means that are significantly different were separated using the Least Significant Difference at P=0.05. The result revealed that 4g Mancob M recorded the lowest mean value for disease incidence and severity at 8WAS, which was 90.30% and 35.60%, respectively, while the control (0g) recorded the highest mean value for disease incidence and severity at 90.30% and 59.80% respectively. Ex-Sudan recorded the lowest value of 720 kg/ha, while NCRIBEN 03 recorded the highest yield of 834 kg/ha-¹. For the concentrations, 2g recorded a higher yield of 843 kg/ha-¹ followed by 0g, which recorded 765 kg/ha-¹. Conclusively, Cercospora leaf spot of sesame was found to be prevalent. E8 has a higher resistance to the disease, while NCRIBEN 03 tends to be more susceptible. It is therefore recommended that further trials should be carried out using different varieties in different locations.Keywords: disease, evaluation, prevalence, treatment, resistance
Procedia PDF Downloads 932302 Water Scarcity in the Gomti Nagar Area under the Impact of Climate Changes and Assessment for Groundwater Management
Authors: Rajkumar Ghosh
Abstract:
Climate change has led to decreased water availability in the Gomti Nagar area of Uttar Pradesh, India. Climate change has reduced the amount of precipitation and increased the rate of evaporation. The region is heavily reliant on surface water sources (Gomti river, Sharda Canal) and groundwater. Efficient management of groundwater resources is crucial for addressing water shortages. These may include: Exploring alternative water sources, such as wastewater recycling and desalination, can help augment water supply and reduce dependency on rainfall-dependent sources. Promoting the use of water-efficient technologies in industries, agriculture, and water-efficient infrastructure in urban areas can contribute to reducing water demand and optimizing water use. Incorporating climate change considerations into urban planning and infrastructure development can help ensure water security in the face of future climate uncertainties. Addressing water scarcity in the Gomti Nagar area requires a multi-pronged approach that combines sustainable groundwater management practices, climate change adaptation strategies, and integrated water resource management. By implementing these measures, the region can work towards ensuring a more sustainable and reliable water supply in the context of climate change. Water is the most important natural resource for the existence of living beings in the Earth's ecosystem. On Earth, 1.2 percent of the water is drinkable, but only 0.3 percent is usable by people. Water scarcity is a growing concern in India due to the impact of climate change and over-exploitation of water resources. Excess groundwater withdrawal causes regular declines in groundwater level. Due to city boundary expansion and growing urbanization, the recharge point for groundwater tables is decreasing. Rainwater infiltration into the subsoil is also reduced by unplanned, uneven settlements in urban change.Keywords: climate change, water scarcity, groundwater, rainfall, water supply
Procedia PDF Downloads 832301 Manual Wheelchair Propulsion Efficiency on Different Slopes
Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse
Abstract:
In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion
Procedia PDF Downloads 2902300 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials
Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia
Abstract:
Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.Keywords: mining waste, geopolymer, construction material, alkaline activation
Procedia PDF Downloads 942299 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst
Authors: Kamran Dastafkan, Chuan Zhao
Abstract:
Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction
Procedia PDF Downloads 1292298 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing
Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev
Abstract:
The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect
Procedia PDF Downloads 1322297 Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture
Authors: Kai-Wei Huang, Yi-Feng Lin
Abstract:
The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory.Keywords: carbon dioxide capture, membrane contactor, ceramic membrane, ceramic hollow fiber membrane
Procedia PDF Downloads 3502296 Transgenerational Impact of Intrauterine Hyperglycaemia to F2 Offspring without Pre-Diabetic Exposure on F1 Male Offspring
Authors: Jun Ren, Zhen-Hua Ming, He-Feng Huang, Jian-Zhong Sheng
Abstract:
Adverse intrauterine stimulus during critical or sensitive periods in early life, may lead to health risk not only in later life span, but also further generations. Intrauterine hyperglycaemia, as a major feature of gestational diabetes mellitus (GDM), is a typical adverse environment for both F1 fetus and F1 gamete cells development. However, there is scare information of phenotypic difference of metabolic memory between somatic cells and germ cells exposed by intrauterine hyperglycaemia. The direct transmission effect of intrauterine hyperglycaemia per se has not been assessed either. In this study, we built a GDM mice model and selected male GDM offspring without pre-diabetic phenotype as our founders, to exclude postnatal diabetic influence on gametes, thereby investigate the direct transmission effect of intrauterine hyperglycaemia exposure on F2 offspring, and we further compared the metabolic difference of affected F1-GDM male offspring and F2 offspring. A GDM mouse model of intrauterine hyperglycemia was established by intraperitoneal injection of streptozotocin after pregnancy. Pups of GDM mother were fostered by normal control mothers. All the mice were fed with standard food. Male GDM offspring without metabolic dysfunction phenotype were crossed with normal female mice to obtain F2 offspring. Body weight, glucose tolerance test, insulin tolerance test and homeostasis model of insulin resistance (HOMA-IR) index were measured in both generations at 8 week of age. Some of F1-GDM male mice showed impaired glucose tolerance (p < 0.001), none of F1-GDM male mice showed impaired insulin sensitivity. Body weight of F1-GDM mice showed no significance with control mice. Some of F2-GDM offspring exhibited impaired glucose tolerance (p < 0.001), all the F2-GDM offspring exhibited higher HOMA-IR index (p < 0.01 of normal glucose tolerance individuals vs. control, p < 0.05 of glucose intolerance individuals vs. control). All the F2-GDM offspring exhibited higher ITT curve than control (p < 0.001 of normal glucose tolerance individuals, p < 0.05 of glucose intolerance individuals, vs. control). F2-GDM offspring had higher body weight than control mice (p < 0.001 of normal glucose tolerance individuals, p < 0.001 of glucose intolerance individuals, vs. control). While glucose intolerance is the only phenotype that F1-GDM male mice may exhibit, F2 male generation of healthy F1-GDM father showed insulin resistance, increased body weight and/or impaired glucose tolerance. These findings imply that intrauterine hyperglycaemia exposure affects germ cells and somatic cells differently, thus F1 and F2 offspring demonstrated distinct metabolic dysfunction phenotypes. And intrauterine hyperglycaemia exposure per se has a strong influence on F2 generation, independent of postnatal metabolic dysfunction exposure.Keywords: inheritance, insulin resistance, intrauterine hyperglycaemia, offspring
Procedia PDF Downloads 2382295 Unraveling the Evolution of Mycoplasma Hominis Through Its Genome Sequence
Authors: Boutheina Ben Abdelmoumen Mardassi, Salim Chibani, Safa Boujemaa, Amaury Vaysse, Julien Guglielmini, Elhem Yacoub
Abstract:
Background and aim: Mycoplasma hominis (MH) is a pathogenic bacterium belonging to the Mollicutes class. It causes a wide range of gynecological infections and infertility among adults. Recently, we have explored for the first time the phylodistribution of Tunisian M. hominis clinical strains using an expanded MLST. We have demonstrated their distinction into two pure lineages, which each corresponding to a specific pathotype: genital infections and infertility. The aim of this project is to gain further insight into the evolutionary dynamics and the specific genetic factors that distinguish MH pathotypes Methods: Whole genome sequencing of Mycoplasma hominis clinical strains was performed using illumina Miseq. Denovo assembly was performed using a publicly available in-house pipeline. We used prokka to annotate the genomes, panaroo to generate the gene presence matrix and Jolytree to establish the phylogenetic tree. We used treeWAS to identify genetic loci associated with the pathothype of interest from the presence matrix and phylogenetic tree. Results: Our results revealed a clear categorization of the 62 MH clinical strains into two distinct genetic lineages, with each corresponding to a specific pathotype.; gynecological infections and infertility[AV1] . Genome annotation showed that GC content is ranging between 26 and 27%, which is a known characteristic of Mycoplasma genome. Housekeeping genes belonging to the core genome are highly conserved among our strains. TreeWas identified 4 virulence genes associated with the pathotype gynecological infection. encoding for asparagine--tRNA ligase, restriction endonuclease subunit S, Eco47II restriction endonuclease, and transcription regulator XRE (involved in tolerance to oxidative stress). Five genes have been identified that have a statistical association with infertility, tow lipoprotein, one hypothetical protein, a glycosyl transferase involved in capsule synthesis, and pyruvate kinase involved in biofilm formation. All strains harbored an efflux pomp that belongs to the family of multidrug resistance ABC transporter, which confers resistance to a wide range of antibiotics. Indeed many adhesion factors and lipoproteins (p120, p120', p60, p80, Vaa) have been checked and confirmed in our strains with a relatively 99 % to 96 % conserved domain and hypervariable domain that represent 1 to 4 % of the reference sequence extracted from gene bank. Conclusion: In summary, this study led to the identification of specific genetic loci associated with distinct pathotypes in M hominis.Keywords: mycoplasma hominis, infertility, gynecological infections, virulence genes, antibiotic resistance
Procedia PDF Downloads 972294 Advances in Genome Editing and Future Prospects for Sorghum Improvement: A Review
Authors: Micheale Yifter Weldemichael, Hailay Mehari Gebremedhn, Teklehaimanot Hailesslasie Teklu
Abstract:
Recent developments in targeted genome editing accelerated genetic research and opened new potentials to improve crops for better yields and quality. Given the significance of cereal crops as a primary source of food for the global population, the utilization of contemporary genome editing techniques like CRISPR/Cas9 is timely and crucial. CRISPR/Cas technology has enabled targeted genomic modifications, revolutionizing genetic research and exploration. Application of gene editing through CRISPR/Cas9 in enhancing sorghum is particularly vital given the current ecological, environmental, and agricultural challenges exacerbated by climate change. As sorghum is one of the main staple foods of our region and is known to be a resilient crop with a high potential to overcome the above challenges, the application of genome editing technology will enhance the investigation of gene functionality. CRISPR/Cas9 enables the improvement of desirable sorghum traits, including nutritional value, yield, resistance to pests and diseases, and tolerance to various abiotic stresses. Furthermore, CRISPR/Cas9 has the potential to perform intricate editing and reshape the existing elite sorghum varieties, and introduce new genetic variations. However, current research primarily focuses on improving the efficacy of the CRISPR/Cas9 system in successfully editing endogenous sorghum genes, making it a feasible and successful undertaking in sorghum improvement. Recent advancements and developments in CRISPR/Cas9 techniques have further empowered researchers to modify additional genes in sorghum with greater efficiency. Successful application and advancement of CRISPR techniques in sorghum will aid not only in gene discovery and the creation of novel traits that regulate gene expression and functional genomics but also in facilitating site-specific integration events. The purpose of this review is, therefore, to elucidate the current advances in sorghum genome editing and highlight its potential in addressing food security issues. It also assesses the efficiency of CRISPR-mediated improvement and its long-term effects on crop improvement and host resistance against parasites, including tissue-specific activity and the ability to induce resistance. This review ends by emphasizing the challenges and opportunities of CRISPR technology in combating parasitic plants and proposing directions for future research to safeguard global agricultural productivity.Keywords: CRISPR/Cas9, genome editing, quality, sorghum, stress, yield
Procedia PDF Downloads 382293 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane
Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato
Abstract:
Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell
Procedia PDF Downloads 1542292 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth
Authors: T. Qasim, B. El Masoud, D. Ailabouni
Abstract:
This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.Keywords: all ceramic, cyclic loading, chewing simulator, dental crowns, relative wear, thermally ageing
Procedia PDF Downloads 1422291 Monitoring Prolong Use of Intravenous Antibiotics: Antimicrobial Stewardship
Authors: Komal Fizza
Abstract:
Irrational and non-judicious use of antibiotics pave the way for an upsurge in antibiotic resistance, diminished effectiveness of different therapeutic regimens and as well as impounding effect on disease management leading to further morbidities. In the backdrop of this the current research is aimed to assess whether antimicrobial prescribing is in accordance with the Infectious Disease Society of America Guidelines in hospitalized patients at Shifa International Hospital, Islamabad, Pakistan. Shifa International Hospital, Islamabad is a 500 bed hospital. With the help of MIS team a form wad developed that gave the information about medical records number, name of the patient, day of start of antibiotic, the day antibiotic is supposed to be stopped and as well as the diagnosis of the patient. A ward pharmacist was employed to generate this report on a daily basis. The therapeutic regiment was reviewed by the pharmacist by monitoring the clinical progress, laboratory report and diagnosis. On the basis of this information, pharmacist made suggestions and forwarded to the hospital doctors responsible for prescribing antibiotics. If desired, changes were made regularly. In the current research our main focus was to implement this action and therefore, started monitoring patients who were on antibiotic regimens for more than 10-15 days. We took this initiative since November, 2013. At the start of the program a maximum 19 patients/day were reported to be on antibiotic regimen for more than 10-15 days. After the implementation of the initiative, the number of patients was decreased to fifteen patients per day in December, further decreased to 7 in the month of January and 9 and 6 in February and March respectively. The average patient census was 350. The current pilot study highlighted the role of pharmacist in initiating antibiotic stewardship programs in hospital settings.Keywords: stewardship, antibiotics, resistance, clinical process
Procedia PDF Downloads 3532290 Electrochemical Corrosion and Mechanical Properties of Structural Materials for Oil and Gas Applications in Simulated Deep-Sea Well Environments
Authors: Turin Datta, Kisor K. Sahu
Abstract:
Structural materials used in today’s oil and gas exploration and drilling of both onshore and offshore oil and gas wells must possess superior tensile properties, excellent resistance to corrosive degradation that includes general, localized (pitting and crevice) and environment assisted cracking such as stress corrosion cracking and hydrogen embrittlement. The High Pressure and High Temperature (HPHT) wells are typically operated at temperature and pressure that can exceed 300-3500F and 10,000psi (69MPa) respectively which necessitates the use of exotic materials in these exotic sources of natural resources. This research investigation is focussed on the evaluation of tensile properties and corrosion behavior of AISI 4140 High-Strength Low Alloy Steel (HSLA) possessing tempered martensitic microstructure and Duplex 2205 Stainless Steel (DSS) having austenitic and ferritic phase. The selection of this two alloys are primarily based on economic considerations as 4140 HSLA is cheaper when compared to DSS 2205. Due to the harsh aggressive chemical species encountered in deep oil and gas wells like chloride ions (Cl-), carbon dioxide (CO2), hydrogen sulphide (H2S) along with other mineral organic acids, DSS 2205, having a dual-phase microstructure can mitigate the degradation resulting from the presence of both chloride ions (Cl-) and hydrogen simultaneously. Tensile properties evaluation indicates a ductile failure of DSS 2205 whereas 4140 HSLA exhibit quasi-cleavage fracture due to the phenomenon of ‘tempered martensitic embrittlement’. From the potentiodynamic polarization testing, it is observed that DSS 2205 has higher corrosion resistance than 4140 HSLA; the former exhibits passivity signifying resistance to localized corrosion while the latter exhibits active dissolution in all the environmental parameters space that was tested. From the Scanning Electron Microscopy (SEM) evaluation, it is understood that stable pits appear in DSS 2205 only when the temperature exceeds the critical pitting temperature (CPT). SEM observation of the corroded 4140 HSLA specimen tested in aqueous 3.5 wt.% NaCl solution reveals intergranular cracking which appears due to the adsorption and diffusion of hydrogen during polarization, thus, causing hydrogen-induced cracking/hydrogen embrittlement. General corrosion testing of DSS 2205 in acidic brine (pH~3.0) solution at ambient temperature using coupons indicate no weight loss even after three months whereas the corrosion rate of AISI 4140 HSLA is significantly higher after one month of testing.Keywords: DSS 2205, polarization, pitting, SEM
Procedia PDF Downloads 2642289 Enhancing Performance of Semi-Flexible Pavements through Self-Compacting Cement Mortar as Cementitious Grout
Authors: Mohamed Islam Dahmani
Abstract:
This research investigates the performance enhancement of semi-flexible pavements by incorporating self-compacting cement mortar as a cementitious grout. The study is divided into three phases for comprehensive evaluation. In the initial phase, a porous asphalt mixture is formulated with a target voids content of 25-30%. The goal is to achieve optimal interconnected voids that facilitate effective penetration of self-compacting cement mortar. The mixture's compliance with porous asphalt performance standards is ensured through tests such as marshal stability, indirect tensile strength, contabro test, and draindown test. The second phase focuses on creating a self-compacting cement mortar with high workability and superior penetration capabilities. This mortar is designed to fill the interconnected voids within the porous asphalt mixture. The formulated mortar's characteristics are assessed through tests like mini V funnel flow time, slump flow mini cone, as well as mechanical properties such as compressive strength, bending strength, and shrinkage strength. In the final phase, the performance of the semi-flexible pavement is thoroughly studied. Various tests, including marshal stability, indirect tensile strength, high-temperature bending, low-temperature bending, resistance to rutting, and fatigue life, are conducted to assess the effectiveness of the self-compacting cement mortar-enhanced pavement.Keywords: semi-flexible pavements, cementitious grout, self-compacting cement mortar, porous asphalt mixture, interconnected voids, rutting resistance
Procedia PDF Downloads 912288 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.Keywords: automobiles, welding, corrosion, lap joints, Micro XRD
Procedia PDF Downloads 1232287 Dissection of Genomic Loci for Yellow Vein Mosaic Virus Resistance in Okra (Abelmoschus esculentas)
Authors: Rakesh Kumar Meena, Tanushree Chatterjee
Abstract:
Okra (Abelmoschus esculentas L. Moench) or lady’s finger is an important vegetable crop belonging to the Malvaceae family. Unfortunately, production and productivity of Okra are majorly affected by Yellow Vein mosaic virus (YVMV). The AO: 189 (resistant parent) X AO: 191(susceptible parent) used for the development of mapping population. The mapping population has 143 individuals (F₂:F₃). Population was characterized by physiological and pathological observations. Screening of 360 DNA markers was performed to survey for parental polymorphism between the contrasting parents’, i.e., AO: 189 and AO: 191. Out of 360; 84 polymorphic markers were used for genotyping of the mapping population. Total markers were distributed into four linkage groups (LG1, LG2, LG3, and LG4). LG3 covered the longest span (106.8cM) with maximum number of markers (27) while LG1 represented the smallest linkage group in terms of length (71.2cM). QTL identification using the composite interval mapping approach detected two prominent QTLs, QTL1 and QTL2 for resistance against YVMV disease. These QTLs were placed between the marker intervals of NBS-LRR72-Path02 and NBS-LRR06- NBS-LRR65 on linkage group 02 and linkage group 04 respectively. The LOD values of QTL1 and QTL2 were 5.7 and 6.8 which accounted for 19% and 27% of the total phenotypic variation, respectively. The findings of this study provide two linked markers which can be used as efficient diagnostic tools to distinguish between YVMV resistant and susceptible Okra cultivars/genotypes. Lines identified as highly resistant against YVMV infection can be used as donor lines for this trait. This will be instrumental in accelerating the trait improvement program in Okra and will substantially reduce the yield losses due to this viral disease.Keywords: Okra, yellow vein mosaic virus, resistant, linkage map, QTLs
Procedia PDF Downloads 2152286 Studies On Triazole Resistant Candida Albicans Expressing ERG11 Gene Among Adult Females In Abakaliki; Nigeria
Authors: Agumah N. B. Orji, M. U., Oru C. M., Ugbo, E. N., Onwuliri E. A Nwakaeze, E. A.,
Abstract:
ERG11 gene has been reported to be one of the genes whose expression is responsible for resistance of Candida to various triazole drugs, which are first line treatment for candidiasis. This study was carried out to determine the prevalence of Triazole (Fluconazole and voriconazole) resistant Candida albicans expressing ERG11 gene from adult females in Abakaliki. Urine and vaginal swab samples were randomly collected from volunteers after obtaining their consent to participate in the study. A total of 565 adult females participated in the study. A total of 340 urine specimens and 288 vaginal swab specimens were collected. Direct wet mount technique, as well as culture in Trichomonas broth, were used to examine the urine and vaginal swab specimens for the presence of motile Trichomonads. The Trichomonas broth used was selective for both T. vaginalis and C. albicans. Broths that yielded budding yeast cells after microscopy were subcultured on to Sabouraud dextrose agar, after which Germ tube test was carried out to confirm the presence of C. albicans. Biochemical tests, including carbohydrate fermentation and urease utilization, were also performed. Antibiogram of C. albicans isolates obtained from this study was carried out using commercially available azole drugs. Fluconazole and voriconazole were selected as Triazole drugs used for this study. Nystatin was used as a tangential control. An MIC test was carried out with E-strips on some of the resistant C. albicans isolates A total of 6 isolates that resisted all the azole drugs were selected and screened for the presence of ERG11 gene using Reverse transcriptase polymerase chain reaction technique. The total prevalence recorded for C. albicans was 13.0%. Frequency was statistically higher in Pregnant (7.96%) than non pregnant (5.09%) volunteers (X2=0.94 at P=0.05). With respect to clinical samples, frequency was higher in vaginal swabs samples (7.96%) than Urine samples (5.09%) (X2=9.05 at P=0.05). Volunteers within the age group 26-30 years recorded the highest prevalence (4.46%), while those within the age group 36-40 years recorded the lowest at 1.27%(X2=4.34 at P=0.05). In pregnant female participants, the highest frequency was recorded with those in their 3rd trimester (4.14%), while lowest incidence was recorded for those in their first trimester (0.80%). Antibiogram results from this study showed that C. albicans isolates obtained from this study resisted Fluconazole (72%) more than Voriconazole (57%). Only one out of the six selected isolates yielded resistance in the MIC test. Results obtained from the RT-PCR showed that there was no expression of ERG11 gene among the fluconazole resistant isolates of C. albicans. Observed resistance may be due to other factors other than expression of ERG11 gene.Keywords: candida, ERG11, triazole, nigeria
Procedia PDF Downloads 1492285 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging
Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs
Abstract:
Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.Keywords: biocomposites, nanocellulose, starch, wheat
Procedia PDF Downloads 2122284 Cedrela Toona Roxb.: An Exploratory Study Describing Its Antidiabetic Property
Authors: Kinjal H. Shah, Piyush M. Patel
Abstract:
Diabetes mellitus is considered to be a serious endocrine syndrome. Synthetic hypoglycemic agents can produce serious side effects including hematological effects, coma, and disturbances of the liver and kidney. In addition, they are not suitable for use during pregnancy. In recent years, there have been relatively few reports of short-term side effects or toxicity due to sulphonylureas. Published figures and frequency of side effects in large series of patient range from about 1 to 5%, with symptoms severe enough to lead to the withdrawal of the drug in less than 1 to 2%. Adverse effects, in general, have been of the following type: allergic skin reactions, gastrointestinal disturbances, blood dyscrasias, hepatic dysfunction, and hypoglycemia. The associated disadvantages with insulin and oral hypoglycemic agents have led to stimulation in the research for locating natural resources showing antidiabetic activity and to explore the possibilities of using traditional medicines with proper chemical and pharmacological profiles. Literature survey reveals that the inhabitants of Abbottabad district of Pakistan use the dried leaf powder along with table salt and water orally for treating diabetes, skin allergy, wounds and as a blood purifier, where they pronounced the plant locally as ‘Nem.' The detailed phytochemical investigation of the Cedrela toona Roxb. leaves for antidiabetic activity has not been documented. Hence, there is a need for phytochemical investigation of the leaves for antidiabetic activity. The collection of fresh leaves and authentification followed by successive extraction, phytochemical screening, and testing of antidiabetic activity. The blood glucose level was reduced maximum in ethanol extract at 5th and 7th h after treatment. Blood glucose was depressed by 8.2% and 10.06% in alloxan – induced diabetic rats after treatment which was comparable to the standard drug, Glibenclamide. This may be due to the activation of the existing pancreatic cells in diabetic rats by the ethanolic extract.Keywords: antidiabetic, Cedrela toona Roxb., phytochemical screening, blood glucose
Procedia PDF Downloads 2602283 Overexpression of CAS8 Enhances Necroptosis and Metastasis in Iranian Sporadic Colorectal Cancer
Authors: Sayed Ali Garossi, Azar Heidarizadi, Shahla Mohammad Ganji
Abstract:
Context: Colorectal cancer is the second type of cancer-related mortality globally. Expression of cas8 (caspase 8) is closely connected to growth and metastasis of colorectal cancer.Cas8/Rip1 plays a vital role in the apoptosis pathway and resistance to chemotherapy. The aim of the present study is to investigate the pattern of gene expression in colorectal cancer and compare the differences using Real-Time PCR to find a potential biomarker candidate for colorectal cancer. Methodology: This study conducted real-time PCR to evaluate gene expression of Cas8 in colorectal cancer patients. The gene-specific primer sequences exon–exon junction was designed by OLIGO7 software for the expression of the gene under investigation. Forty-six patient samples without any chemotherapy were selected, including tumoral tissue and adjacent normal tissue samples. The age of the patients was 50 and the size of the tumors was 5.5 cm. The categories were before and after age 50. Findings: Here, we found that Caspase 8 was overexpressed in CRC tissues compared to corresponding adjacent colon tissues (Cas8: 5.2 vs. 1 ratio); high expression of Cas8 was associated with poor overall survival and independent risk factors for the prognosis of CRC patients. Conclusion: In conclusion, our study pioneered the reporting of high Casp8 expression as a predictor of poor prognosis and chemical resistance in CRC patients.Cas8 overexpression suppressed Cas 8 / Rip1-dependent apoptosis and activated the proliferation of tumor cells by activating necroptosis. The necroptosis pathway has also emerged as a new approach to anti-tumor in cancer treatment.Keywords: Cas8, necroptosis, apoptosis, Real-Time PCR
Procedia PDF Downloads 552282 A Comparitive Study of the Effect of Stress on the Cognitive Parameters in Women with Increased Body Mass Index before and after Menopause
Authors: Ramesh Bhat, Ammu Somanath, A. K. Nayanatara
Abstract:
Background: The increasing prevalence of overweight and obesity is a critical public health problem for women. The negative effect of stress on memory and cognitive functions has been widely explored for decades in numerous research projects using a wide range of methodology. Deterioration of memory and other brain functions are hallmarks of Alzheimer’s disease. Estrogen fluctuations and withdrawal have myriad direct effects on the central nervous system that have the potential to influence cognitive functions. Aim: The present study aims to compare the effect of stress on the cognitive functions in overweight/obese women before and after menopause. Material and Methods: A total of 142 female subjects constituting women before menopause between the age group of 18–44 years and women after menopause between the age group of 45–60 years were included in the sample. Participants were categorized into overweight/obese groups based on the body mass index. The Perceived Stress Scale (PSS) the major tool was used for measuring the perception of stress. Based on the stress scale measurement each group was classified into with stress and without stress. Addenbrooke’s cognitive Examination-III was used for measuring the cognitive functions. Results: Premenopausal women with stress showed a significant (P<0.05) decrease in the cognitive parameters such as attention and orientation Fluency, language and visuospatial ability. Memory did not show any significant change in this group. Whereas, in the postmenopausal stressed women all the cognitive functions except fluency showed a significant (P<0.05) decrease after menopause stressed group. Conclusion: Stress is a significant factor on the cognitive functions of obese and overweight women before and after menopause. Practice of Yoga, Encouragement in activities like gardening, embroidery, games and relaxation techniques should be recommended to prevent stress. Insights into the neurobiology before and after menopause can be gained from future studies examining the effect on the HPA axis in relation to cognition and stress.Keywords: cognition, stress, premenopausal, body mass index
Procedia PDF Downloads 3052281 Durability of Cement Bonded Particleboards Produced from Terminalia superba and Gmelina arborea against Subterranean Termite Attack
Authors: Amos Olajide Oluyege, Emmanuel Uchechukwu Opara, Sunday Adeniyi Adedutan, Joseph Adeola Fuwape
Abstract:
This study was conducted to determine the durability of wood-cement particleboards when exposed to attack by subterranean termites, Macrotermes subhylinus. The boards were made from Terminalia superba and Gmelina arborea wood sawdust at nominal board densities (BD) of 1000, 900, and 800 kg/m³ using wood-cement mixing ratios (MR) of 3:1, 2.5:1, 2:1, and 1:1. Above ground durability tests against termite attack were carried out according to ASTM D 2017 for 14 weeks. Results of visual assessment of the wood cement particleboards show that all the board samples had a visual rating that was not less than 7 (i.e., moderate attack) for both species irrespective of the MR and BD. T. superba boards were found to have higher resistance to termite attack compared to their G. arborea counterparts. The mean values for weight loss following exposure ranged from 1.93 to 6.13% and 3.24 to 12.44%. Analysis of variance (ANOVA) results of the weight loss assessment revealed a significant (p < 0.05) effect of species and mixing ratio on the weight loss of the boards due to termite attack with F(₁,₇₂) = 92.890 and P = 0.000 and F(₃,₇₂) = 8.318 and p = 0.000, while board density did not have any significant effect (p > 0.05) with F (₂,₇₂) = 1.307 and p = 0.277. Thus, boards made from a higher mixing ratio had better resistance against termite attacks. Thus, it can be concluded that the durability of cement-bonded particleboards when exposed to subterranean termite attack is not only dependent on the quality of the wood raw material (species) but also on the enhanced protection imparted by the cement matrix; the protection increased with increase in cement/wood mixing ratio.Keywords: cement-bonded particleboard, mixing ratio, board density, Gmelina arborea, Terminalia superba
Procedia PDF Downloads 2142280 The Potential Involvement of Platelet Indices in Insulin Resistance in Morbid Obese Children
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Association between insulin resistance (IR) and hematological parameters has long been a matter of interest. Within this context, body mass index (BMI), red blood cells, white blood cells and platelets were involved in this discussion. Parameters related to platelets associated with IR may be useful indicators for the identification of IR. Platelet indices such as mean platelet volume (MPV), platelet distribution width (PDW) and plateletcrit (PCT) are being questioned for their possible association with IR. The aim of this study was to investigate the association between platelet (PLT) count as well as PLT indices and the surrogate indices used to determine IR in morbid obese (MO) children. A total of 167 children participated in the study. Three groups were constituted. The number of cases was 34, 97 and 36 children in the normal BMI, MO and metabolic syndrome (MetS) groups, respectively. Sex- and age-dependent BMI-based percentile tables prepared by World Health Organization were used for the definition of morbid obesity. MetS criteria were determined. BMI values, homeostatic model assessment for IR (HOMA-IR), alanine transaminase-to-aspartate transaminase ratio (ALT/AST) and diagnostic obesity notation model assessment laboratory (DONMA-lab) index values were computed. PLT count and indices were analyzed using automated hematology analyzer. Data were collected for statistical analysis using SPSS for Windows. Arithmetic mean and standard deviation were calculated. Mean values of PLT-related parameters in both control and study groups were compared by one-way ANOVA followed by Tukey post hoc tests to determine whether a significant difference exists among the groups. The correlation analyses between PLT as well as IR indices were performed. Statistically significant difference was accepted as p-value < 0.05. Increased values were detected for PLT (p < 0.01) and PCT (p > 0.05) in MO group compared to those observed in children with N-BMI. Significant increases for PLT (p < 0.01) and PCT (p < 0.05) were observed in MetS group in comparison with the values obtained in children with N-BMI (p < 0.01). Significantly lower MPV and PDW values were obtained in MO group compared to the control group (p < 0.01). HOMA-IR (p < 0.05), DONMA-lab index (p < 0.001) and ALT/AST (p < 0.001) values in MO and MetS groups were significantly increased compared to the N-BMI group. On the other hand, DONMA-lab index values also differed between MO and MetS groups (p < 0.001). In the MO group, PLT was negatively correlated with MPV and PDW values. These correlations were not observed in the N-BMI group. None of the IR indices exhibited a correlation with PLT and PLT indices in the N-BMI group. HOMA-IR showed significant correlations both with PLT and PCT in the MO group. All of the three IR indices were well-correlated with each other in all groups. These findings point out the missing link between IR and PLT activation. In conclusion, PLT and PCT may be related to IR in addition to their identities as hemostasis markers during morbid obesity. Our findings have suggested that DONMA-lab index appears as the best surrogate marker for IR due to its discriminative feature between morbid obesity and MetS.Keywords: children, insulin resistance, metabolic syndrome, plateletcrit, platelet indices
Procedia PDF Downloads 106