Search results for: prognosis prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2511

Search results for: prognosis prediction

1461 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan

Abstract:

This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability

Procedia PDF Downloads 376
1460 Different Types of Amyloidosis Revealed with Positive Cardiac Scintigraphy with Tc-99M DPD-SPECT

Authors: Ioannis Panagiotopoulos, Efstathios Kastritis, Anastasia Katinioti, Georgios Efthymiadis, Argyrios Doumas, Maria Koutelou

Abstract:

Introduction: Transthyretin amyloidosis (ATTR) is a rare but serious infiltrative disease. Myocardial scintigraphy with DPD has emerged as the most effective, non-invasive, highly sensitive, and highly specific diagnostic method for cardiac ATTR amyloidosis. However, there are cases in which additional laboratory investigations reveal AL amyloidosis or other diseases despite a positive DPD scintigraphy. We describe the experience from the Onassis Cardiac Surgery Center and the monitoring center for infiltrative myocardial diseases of the cardiology clinic at AHEPA. Materials and Methods: All patients with clinical suspicion of cardiac or extracardiac amyloidosis undergo a myocardial scintigraphy scan with Tc-99m DPD. In this way, over 500 patients have been examined. Further diagnostic approach based on clinical and imaging findings includes laboratory investigation and invasive techniques (e.g., biopsy). Results: Out of 76 patients in total with positive myocardial scintigraphy Grade 2 or 3 according to the Perugini scale, 8 were proven to suffer from AL Amyloidosis during the investigation of paraproteinemia. Among these patients, 3 showed Grade 3 uptake, while the rest were graded as Grade 2, or 2 to 3. Additionally, one patient presented diffuse and unusual radiopharmaceutical uptake in soft tissues throughout the body without cardiac involvement. These findings raised suspicions, leading to the analysis of κ and λ light chains in the serum, as well as immunostaining of proteins in the serum and urine of these specific patients. The final diagnosis was AL amyloidosis. Conclusion: The value of DPD scintigraphy in the diagnosis of cardiac amyloidosis from transthyretin is undisputed. However, positive myocardial scintigraphy with DPD should not automatically lead to the diagnosis of ATTR amyloidosis. Laboratory differentiation between ATTR and AL amyloidosis is crucial, as both prognosis and therapeutic strategy are dramatically altered. Laboratory exclusion of paraproteinemia is a necessary and essential step in the diagnostic algorithm of ATTR amyloidosis for all positive myocardial scintigraphy with diphosphonate tracers since >20% of patients with Grade 3 and 2 uptake may conceal AL amyloidosis.

Keywords: AL amyloidosis, amyloidosis, ATTR, myocardial scintigraphy, Tc-99m DPD

Procedia PDF Downloads 81
1459 Prediction of the Heat Transfer Characteristics of Tunnel Concrete

Authors: Seung Cho Yang, Jae Sung Lee, Se Hee Park

Abstract:

This study suggests the analysis method to predict the damages of tunnel concrete caused by fires. The result obtained from the analyses of concrete temperatures at a fire in a tunnel using ABAQUS was compared with the test result. After the reliability of the analysis method was verified, the temperatures of a tunnel at a real fire and those of concrete during the fire were estimated to predict fire damages. The temperatures inside the tunnel were estimated by FDS, a CFD model. It was deduced that the fire performance of tunnel lining and the fire damages of the structure at an actual fire could be estimated by the analysis method.

Keywords: fire resistance, heat transfer, numerical analysis, tunnel fire

Procedia PDF Downloads 437
1458 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.

Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models

Procedia PDF Downloads 450
1457 Starlink Satellite Collision Probability Simulation Based on Simplified Geometry Model

Authors: Toby Li, Julian Zhu

Abstract:

In this paper, a model based on a simplified geometry is introduced to give a very conservative collision probability prediction for the Starlink satellite in its most densely clustered region. Under the model in this paper, the probability of collision for Starlink satellite where it clustered most densely is found to be 8.484 ∗ 10^−4. It is found that the predicted collision probability increased nonlinearly with the increased safety distance set. This simple model provides evidence that the continuous development of maneuver avoidance systems is necessary for the future of the orbital safety of satellites under the harsher Lower Earth Orbit environment.

Keywords: Starlink, collision probability, debris, geometry model

Procedia PDF Downloads 83
1456 Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear

Authors: F. Sabri, J. Jamali

Abstract:

In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling.

Keywords: composite, FEM, membrane, wrinkling

Procedia PDF Downloads 275
1455 Time to Pancreatic Surgery after Preoperative Biliary Drainage in Periampullary Cancers: A Systematic Review and Meta‑Analysis

Authors: Maatouk Mohamed, Nouira Mariem, Hamdi Kbir Gh, Mahjoubi M. F., Ben Moussa M.

Abstract:

Background and aim: Preoperative biliary drainage (PBD) has been introduced to lower bilirubin levels and to control the negative effects of obstructive jaundice in patients with malignant obstructive jaundice undergoing pancreaticoduodenectomy (PD). The optimal time interval between PBD and PD is still not clear. Delaying surgery by 4 to 6 weeks is the commonly accepted practice. However, delayed PD has been shown to decrease the rate of resection and adversely affect the tumor grading and prognosis. Thus, the purpose of our systematic review and meta-analysis was to evaluate the optimal period for PBD prior to PD: short or prolonged in terms of postoperative morbidity and survival outcomes. Methods: Trials were searched in PubMed, Science Direct, Google Scholar, and Cochrane Library until November 2022. Studies using PBD in patients with malignant obstructive jaundice that compared short duration group (SDG) (surgery performed within 3-4 weeks) with prolonged duration group (PDG) (at least 3-4 weeks after PBD) were included in this study. The risk of bias was assessed using the Rob v2 and Robins-I tools. The priori protocol was published in PROSPERO (ID: CRD42022381405). Results: Seven studies comprising 1625 patients (SDG 870, PDG 882) were included. All studies were non-randomized, and only one was prospective. No significant differences were observed between the SDG and PDG in mortality (OR= 0.59; 95% CI [0.30, 1.17], p=0.13), major morbidity (Chi² = 30.28, p <0.00001; I² = 87%), pancreatic fistula (Chi² = 6.61, p = 0.25); I² = 24%), post pancreatectomy haemorrhage (OR= 1.16; 95% CI [0.67, 2.01], p=0.59), positive drainage culture (OR= 0.36; 95% CI [0.10, 1.32], p=0.12), septic complications (OR= 0.78; 95% CI [0.23, 2.72], p=0.70), wound infection (OR= 0.08, p=0.07), operative time (MD= 0.21; p=0.21). Conclusion: Early surgery within 3 or 4 weeks after biliary drainage is both safe and effective. Thus, it is reasonable to suggest early surgery following PBD for patients having resectable periampullary cancers.

Keywords: preoperative biliary drainage, pancreatic cancer, pancreatic surgery, complication

Procedia PDF Downloads 67
1454 Eosinophilic Granulomatosis with Polyangiitis in Pediatrics Patient: A Case Report

Authors: Saboor Saeed, Chunming Jiang

Abstract:

Eosinophilic Granulomatosis with polyangiitis (EGPA), formerly known as Churg-Strauss syndrome, is a rare systemic vasculitis of small and medium-sized vessels that primarily develops in middle-aged individuals. It is characterized by asthma, blood eosinophilia, and extra pulmonary manifestations. In childhood, EGPA is extremely rare. Pulmonary and cardiac involvement is predominant in pediatric EGPA, and mortality is substantial. Generally, EGPA will develop in three stages: a) The allergic phase is commonly associated with asthma, allergic rhinitis, and sinusitis, b) the eosinophilic phase, in which the main pathology is related to the infiltration of eosinophilic organs, i.e., lung, heart, and gastrointestinal system, c) vasculitis phase involved purpura, peripheral neuropathy, and some constitutional symptoms. The key to the treatment of EGPA lies in the early diagnosis of the disease. Early application of glucocorticoids and immunosuppressants can improve symptoms and the overall prognosis of EGPA. Case Description: We presented a case of an 8-year-old boy with a history of short asthma, marked eosinophilia, and multi-organ involvement. The extremely high eosinophil level in the blood (72.50%) prompted the examination of eosinophilic leukemia before EGPA diagnosis was made. Subsequently, this disease was successfully treated. This case report shows a typical case of CSS in childhood because of the extreme eosinophilia. It emphasizes the importance of EGPA is a life-threatening cause of children's eosinophilia. Conclusion: EGPA in children has unique clinical, imaging, and histological characteristics different from those of adults. In pediatric patients, the development and diagnosis of systemic symptoms are often delayed, mainly occurring in the eosinophilic phase, which will lead to specific manifestations. At the same time, we cannot detect a genetic relationship related to EGPA.

Keywords: Churg Strauss syndrome, asthma, vasculitis, hypereosinophilia, eosinophilic granulomatosis polyangiitis

Procedia PDF Downloads 200
1453 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 160
1452 Multi-Disciplinary Rehabilitation in Osmotic Demyelination Syndrome: A Case Report

Authors: Wei Qu, Cassandra Agius, Nikki Varvazovsky, Angela Meade

Abstract:

The goals of the case study are to address the importance of early diagnosis of osmotic demyelination syndrome (ODS) and to analyse the types, duration, and intensities of the rehabilitation program to promote neurological and functional recovery. It can be associated with biphasic course of disease and severe neurological and neuropsychiatric symptoms. Although a few treatment modalities, such as plasmapheresis, immunoglobulin therapy, steroid, and thyrotrophin-releasing hormone, have been suggested, there is no effective treatment for ODS. The overall prognosis of established ODS is generally poor. A high proportion of patients have a severe permanent disability, which has led to social, economic, and emotional burdens to carers and societies. In this case, a 69-year-old retired pensioner with chronic alcoholism was admitted to the hospital with a reduced level of consciousness and tonic-clonic seizure. He had severe hyponatraemia (serum sodium 118 mmol/L) and hypokalemia (serum potassium 2.8 mmol/L). He was treated with anticonvulsants, 150ml 3% hypertonic saline over one hour, and 40 mmol potassium chloride over one hour, and his sodium was increased by 11 mmol/L in the first 24 hours. However, he had worsened neurological symptoms with quadriplegia, dysphagia, anarthria, and confusion, and the radiological features suggested the diagnosis of ODS. He had minimal neurological recovery during the first four weeks of hospital admission. He was treated with seven weeks of a multi-disciplinary intensive rehabilitation program. On discharge, he had made a significant cognitive and functional recovery and could mobilize independently without a walking aid. In conclusion, ODS can still occur despite correcting sodium following the current clinical guidelines. Patients with severe neurological deficits in the context of osmotic demyelination syndrome would benefit from intensive rehabilitation to facilitate their functional improvement and to promote their quality of life.

Keywords: osmotic demyelination syndrome, hyponatremia, central pontine and extrapontine myelinolysis, rehabilitation

Procedia PDF Downloads 108
1451 Application of Machine Learning Techniques in Forest Cover-Type Prediction

Authors: Saba Ebrahimi, Hedieh Ashrafi

Abstract:

Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.

Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset

Procedia PDF Downloads 217
1450 Prediction of Fatigue Crack Propagation in Bonded Joints Using Fracture Mechanics

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with λ=0 the ends of the debonding front propagates forward more than its middle, while in cases with λ=0.5 or λ=1 it is vice versa. Moreover, regardless of value of λ, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases λ=0.5 and λ=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value.

Keywords: fatigue, debonding, Paris law, APDL, adhesive

Procedia PDF Downloads 363
1449 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
1448 Settlement of Group of Stone Columns

Authors: Adel Hanna, Tahar Ayadat, Mohammad Etezad, Cyrille Cros

Abstract:

A number of theoretical methods have been developed over the years to calculate the amount settlement of the soil reinforced with group of stone columns. The results deduced from these methods sometimes show large disagreement with the experimental observations. The reason of this divergence might be due to the fact that many of the previous methods assumed the deform shape of the columns which is different with the actual case. A new method to calculate settlement of the ground reinforced with group of stone columns is presented in this paper which overcomes the restrictions made by previous theories. This method is based on results deduced from numerical modeling. Results obtained from the model are validated.

Keywords: stone columns, group, soft soil, settlement, prediction

Procedia PDF Downloads 505
1447 An Alteration of the Boltzmann Superposition Principle to Account for Environmental Degradation in Fiber Reinforced Plastics

Authors: Etienne K. Ngoy

Abstract:

This analysis suggests that the comprehensive degradation caused by any environmental factor on fiber reinforced plastics under mechanical stress can be measured as a change in viscoelastic properties of the material. The change in viscoelastic characteristics is experimentally determined as a time-dependent function expressing the amplification of the stress relaxation. The variation of this experimental function provides a measure of the environmental degradation rate. Where real service environment conditions can be reliably simulated in the laboratory, it is possible to generate master curves that include environmental degradation effect and hence predict the durability of the fiber reinforced plastics under environmental degradation.

Keywords: environmental effects, fiber reinforced plastics durability, prediction, stress effect

Procedia PDF Downloads 192
1446 Predicting the Areal Development of the City of Mashhad with the Automaton Fuzzy Cell Method

Authors: Mehran Dizbadi, Daniyal Safarzadeh, Behrooz Arastoo, Ansgar Brunn

Abstract:

Rapid and uncontrolled expansion of cities has led to unplanned aerial development. In this way, modeling and predicting the urban growth of a city helps decision-makers. In this study, the aspect of sustainable urban development has been studied for the city of Mashhad. In general, the prediction of urban aerial development is one of the most important topics of modern town management. In this research, using the Cellular Automaton (CA) model developed for geo data of Geographic Information Systems (GIS) and presenting a simple and powerful model, a simulation of complex urban processes has been done.

Keywords: urban modeling, sustainable development, fuzzy cellular automaton, geo-information system

Procedia PDF Downloads 132
1445 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537
1444 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)

Authors: Azimollah Aleshzadeh, Enver Vural Yavuz

Abstract:

The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.

Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping

Procedia PDF Downloads 132
1443 Effects of Different Types of Perioperative Analgesia on Minimal Residual Disease Development After Colon Cancer Surgery

Authors: Lubomir Vecera, Tomas Gabrhelik, Benjamin Tolmaci, Josef Srovnal, Emil Berta, Petr Prasil, Petr Stourac

Abstract:

Cancer is the second leading cause of death worldwide and colon cancer is the second most common type of cancer. Currently, there are only a few studies evaluating the effect of postoperative analgesia on the prognosis of patients undergoing radical colon cancer surgery. Postoperative analgesia in patients undergoing colon cancer surgery is usually managed in two ways, either with strong opioids (morphine, piritramide) or epidural analgesia. In our prospective study, we evaluated the effect of postoperative analgesia on the presence of circulating tumor cells or minimal residual disease after colon cancer surgery. A total of 60 patients who underwent radical colon cancer surgery were enrolled in this prospective, randomized, two-center study. Patients were randomized into three groups, namely piritramide, morphine and postoperative epidural analgesia. We evaluated the presence of carcinoembryonic antigen (CEA) and cytokeratin 20 (CK-20) mRNA positive circulating tumor cells in peripheral blood before surgery, immediately after surgery, on postoperative day two and one month after surgery. The presence of circulating tumor cells was assessed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). In the priritramide postoperative analgesia group, the presence of CEA mRNA positive cells was significantly lower on a postoperative day two compared to the other groups (p=0.04). The value of CK-20 mRNA positive cells was the same in all groups on all days. In all groups, both types of circulating tumor cells returned to normal levels one month after surgery. Demographic and baseline clinical characteristics were similar in all groups. Compared with morphine and epidural analgesia, piritramide significantly reduces the amount of CEA mRNA positive circulating tumor cells after radical colon cancer surgery.

Keywords: cancer progression, colon cancer, minimal residual disease, perioperative analgesia.

Procedia PDF Downloads 189
1442 The Impact of Psychopathology Course on Students' Attitudes towards Mental Illness

Authors: Lorato Itumeleng Kenosi

Abstract:

Background: Negative attitudes towards the mentally ill are widespread and a course for concern as they have a detrimental impact on individuals affected by mental illness. A possible avenue for changing attitudes towards mental illness is through mental health literacy. In a college or university setting, an abnormal psychology course may be introduced in an attempt to change student’s attitudes towards the mentally ill. Objective: To determine if and how students’ attitudes towards the mentally ill change as a result of taking a course in abnormal psychology. Methods: Twenty nine (29) students were recruited from an abnormal psychology class at the University of Botswana. Attitude Scale for Mental Illness (ASMI) questionnaire was administered to participants at the beginning and end of the semester. SPSS was employed to analyze data. Pooled means were used to determine whether the student’s attitudes towards mental illness were negative or positive. A mean of 2.5 translated to negative attitude for both total attitude and attitudes in different domains of the scale. Paired sample t-test was then used to assess whether any changes noted in attitudes were statistically significant or not. Statistical significance was assumed at p < 0.05. Results: Students’ general attitude towards mental illness remained positive although the pooled mean value increased from 2.08 to 2.24. The change was not statistically significant. In relation to different sub scales, the values of the pooled means for all the sub scales showed an increase although the changes were not statistically significant except for the Stereotyping sub scale (p = 0.031). The stereotyping domain reflected a statistically significant change in student’s attitude from positive attitude to negative (X² = 2.06 to X² = 2.55). For the pessimistic prediction domain, students consistently showed a negative attitude (X² = 3.34 to X² = 3.55). The other 4 domains indicated that students had positive attitude toward mentally ill throughout. Discussion: Abnormal psychology students have a positive attitude towards the mentally ill generally. This could be attributed to the fact that all students in the abnormal psychology course are majoring in psychology and research has shown that interest in psychology can affect one’s attitude towards mental illness. The students continuously held the view that people with mental illness are unlikely to improve as evidenced by a high score for Pessimistic prediction domain for both pre and post-test. Students initially had no stereotyping attitude towards the mentally ill, but at the end of the course, they were of the opinion that people with mental illness can be defined in a certain behavioural pattern and mental ability. This results could be an indication that students have learnt well how to differentiate abnormal from normal behaviour not necessarily that students had developed a negative attitude. Conclusion: A course in abnormal psychology does have an impact on the students’ attitudes towards the mentally ill. The impact does not solely depend on knowledge of mental illness but also on several other factors such as contact with the mentally ill, interest in psychology, and teaching methods. However, it should be noted that sometimes improved knowledge in mental illness can be misunderstood for a negative attitude. For example, stereotyping attitudes may be a reflection of the ability to differentiate between abnormal and normal behaviour.

Keywords: attitudes, mental illness, psychopathology, students

Procedia PDF Downloads 286
1441 Job Resource, Personal Resource, Engagement and Performance with Balanced Score Card in the Integrated Textile Companies in Indonesia

Authors: Nurlaila Effendy

Abstract:

Companies in Asia face a number of constraints in tight competitiveness in ASEAN Economic Community 2015 and globalization. An economic capitalism system as an integral part of globalization processing brings broad impacts. They need to improve business performance in globalization and ASEAN Economic Community. Organizational development has quite clearly demonstrated that aligning individual’s personal goals with the goals of the organization translates into measurable and sustained performance improvement. Human capital is a key to achieve company performance. Employee Engagement (EE) creates and expresses themselves physically, cognitively and emotionally to achieve company goals and individual goals. One will experience a total involvement when they undertake their jobs and feel a self integration to their job and organization. A leader plays key role in attaining the goals and objectives of a company/organization. Any Manager in a company needs to have leadership competence and global mindset. As one the of positive organizational behavior developments, psychological capital (PsyCap) is assumed to be one of the most important capitals in the global mindset, in addition to intellectual capital and social capital. Textile companies also need to face a number of constraints in tight competitiveness in regional and global. This research involved 42 managers in two textiles and a spinning companies in a group, in Central Java, Indonesia. It is a quantitative research with Partial Least Squares (PLS) studying job resource (Social Support & Organizational Climate) and Personal Resource (4 dimensions of Psychological Capital & Leadership Competence) as prediction of Employee Engagement, also Employee Engagement and leadership competence as prediction of leader’s performance. The performance of a leader is measured by means of achievement on objective strategies in terms of 4 perspectives (financial and non-financial perspectives) in a Balanced Score Card (BSC). It took one year during a business plan of year 2014, from January to December 2014. The result of this research is there is correlation between Job Resource (coefficient value of Social Support is 0.036 & coefficient value of organizational climate is 0.220) and Personal Resource (coefficient value of PsyCap is 0.513 & coefficient value of Leadership Competence is 0.249) with employee engagement. There is correlation between employee engagement (coefficient value is 0.279) and leadership competence (coefficient value is 0.581) with performance.

Keywords: organizational climate, social support, psychological capital leadership competence, employee engagement, performance, integrated textile companies

Procedia PDF Downloads 433
1440 Ethanol in Carbon Monoxide Intoxication: Focus on Delayed Neuropsychological Sequelae

Authors: Hyuk-Hoon Kim, Young Gi Min

Abstract:

Background: In carbon monoxide (CO) intoxication, the pathophysiology of delayed neurological sequelae (DNS) is very complex and remains poorly understood. And predicting whether patients who exhibit resolved acute symptoms have escaped or will experience DNS represents a very important clinical issue. Brain magnetic resonance (MR) imaging has been conducted to assess the severity of brain damage as an objective method to predict prognosis. And co-ingestion of a second poison in patients with intentional CO poisoning occurs in almost one-half of patients. Among patients with co-ingestions, 66% ingested ethanol. We assessed the effects of ethanol on neurologic sequelae prevalence in acute CO intoxication by means of abnormal lesion in brain MR. Method: This study was conducted retrospectively by collecting data for patients who visited an emergency medical center during a period of 5 years. The enrollment criteria were diagnosis of acute CO poisoning and the measurement of the serum ethanol level and history of taking a brain MR during admission period. Official readout data by radiologist are used to decide whether abnormal lesion is existed or not. The enrolled patients were divided into two groups: patients with abnormal lesion and without abnormal lesion in Brain MR. A standardized extraction using medical record was performed; Mann Whitney U test and logistic regression analysis were performed. Result: A total of 112 patients were enrolled, and 68 patients presented abnormal brain lesion on MR. The abnormal brain lesion group had lower serum ethanol level (mean, 20.14 vs 46.71 mg/dL) (p-value<0.001). In addition, univariate logistic regression analysis showed the serum ethanol level (OR, 0.99; 95% CI, 0.98 -1.00) was independently associated with the development of abnormal lesion in brain MR. Conclusion: Ethanol could have neuroprotective effect in acute CO intoxication by sedative effect in stressful situation and mitigative effect in neuro-inflammatory reaction.

Keywords: carbon monoxide, delayed neuropsychological sequelae, ethanol, intoxication, magnetic resonance

Procedia PDF Downloads 252
1439 Psychopathy Evaluation for People with Intellectual Disability Living in Institute Using Chinese Version of the Psychopathology Inventory

Authors: Lin Fu-Gong

Abstract:

Background: As WHO announced, people with intellectual disability (ID) were vulnerable to mental health problems. And there were few custom-made mental health scales for those people to monitor their mental health. Those people with mental problems often accompanied worse prognosis and usually became to be a heavier burden on the caregivers. Purpose: In this study, we intend to develop a psychopathy scale as a practical tool for monitoring the mental health for people with ID living in institute. Methods: In this study, we adopt the Psychopathology Inventory for Mentally Retarded Adults developed by professor Matson with certified reliability and validity in Western countries with Dr. Matson’s agreement in advance. We first translated the inventory into Chinese validated version considering the domestic culture background in the past year. And the validity and reliability evaluation of mental health status using this inventory among the people with intellectual living in the institute were done. Results: The inventory includes eight psychiatric disorder scales as schizophrenic, affective, psychosexual, adjustment, anxiety, somatoform, personality disorders and inappropriate mental adjustment. Around 83% of 40 invested people, who randomly selected from the institute, were found to have at least one disorder who were recommended with medical help by two evaluators. Among the residents examined, somatoform disorder and inappropriate mental adjustment were most popular with 60% and 78% people respectively. Conclusion: The result showed the prevalence psychiatric disorders were relatively high among people with ID in institute and the mental problems need to be further cared and followed for their mental health. The results showed that the psychopathology inventory was a useful tool for institute caregiver, manager and for long-term care policy to the government. In the coming stage, we plan to extend the use of the valid Chinese version inventory among more different type institutes for people with ID to establish their dynamic mental health status including medical need, relapse and rehabilitation to promote their mental health.

Keywords: intellectual disability, psychiatric disorder, psychopathology inventory, mental health, the institute

Procedia PDF Downloads 276
1438 Predictions of Values in a Causticizing Process

Authors: R. Andreola, O. A. A. Santos, L. M. M. Jorge

Abstract:

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.

Keywords: causticizing, lime, prediction, process

Procedia PDF Downloads 354
1437 Affects Associations Analysis in Emergency Situations

Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko

Abstract:

Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.

Keywords: data mining, emergency phone calls, emotional profiles, rules

Procedia PDF Downloads 408
1436 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN

Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu

Abstract:

Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.

Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network

Procedia PDF Downloads 144
1435 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator

Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira

Abstract:

True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).

Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve

Procedia PDF Downloads 442
1434 Long-Term Effects of Psychosocial Interventions for Adolescents on Depression and Anxiety: A Systematic Review and Meta-Analysis

Authors: Denis Duagi, Ben Carter, Maria Farrelly, Stephen Lisk, June S. L. Brown

Abstract:

Background: Adolescence represents a distinctive phase of development, and variables linked to this developmental period could affect the efficiency of prevention and treatment for depression and anxiety, as well as the long-term prognosis. The objectives of this study were to investigate the long-term effectiveness of psychosocial interventions for adolescents on depression and anxiety symptoms and to assess the influence of different intervention parameters on the long-term effects. Methods: Searches were carried out on the 11ᵗʰ of August 2022 using five databases (Cochrane Library, Embase, Medline, PsychInfo, Web of Science), as well as trial registers. Randomized controlled trials of psychosocial interventions targeting specifically adolescents were included if they assessed outcomes at 1-year post-intervention or more. The Cochrane risk of bias-2 quality assessment tool was used. The primary outcome was depression, and studies were pooled using a standardised mean difference, with an associated 95% confidence interval, p-value, and I². The study protocol was pre-registered (CRD42022348668). Findings: A total of 57 reports (n= 46,678 participants) were included in the review. Psychosocial interventions led to small reductions in depressive symptoms, with a standardised mean difference (SMD) at 1-year of -0.08 (95%CI -0.20, -0.03, p=0.002, I²=72%), 18-months SMD=-0.12, 95% CI -0.22, -0.01, p=0.03, I²=63%) and 2-years SMD=-0.12 (95% CI -0.20, -0.03, p=0.01, I²=68%). Sub-group analyses indicated that targeted interventions produced stronger effects, particularly when delivered by trained mental health professionals (K=18, SMD=-0.24, 95% CI -0.38, -0.10, p=0.001, I²=60%). No effects were detected for anxiety at any assessment. Conclusion: Psychosocial interventions specifically targeting adolescents were shown to have small but positive effects on depression symptoms but not anxiety symptoms, which were sustained for up to 2 years. These findings highlight the potential population-level preventive effects if such psychosocial interventions become widely implemented in accessible settings such as schools.

Keywords: psychosocial, adolescent, interventions, depression, anxiety, meta-analysis, randomized controlled trial

Procedia PDF Downloads 71
1433 Entropy Risk Factor Model of Exchange Rate Prediction

Authors: Darrol Stanley, Levan Efremidze, Jannie Rossouw

Abstract:

We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets.

Keywords: currency trading, entropy, market timing, risk factor model

Procedia PDF Downloads 271
1432 Pattern of Prostate Specific Antigen Request in a Tertiary Health Institution S’ Tumor Marker Laboratory in Nigeria: A Two Year Review

Authors: Ademola Azeez

Abstract:

Background: This study is a two year review of requests pattern for Prostate Specific Antigen (PSA), in a Nigerian tertiary health care institution. Prostate specific antigen was first described about 44 years ago but is still in use today for, diagnosis, monitoring, screening and prognosis of prostatic carcinoma though not-very specific as was widely believed. Prostate cancer is an increasingly important public health problem among adult men worldwide. Nigeria, which was formerly regarded as a low-incidence area by several authors is now witnessing a steep rise in the occurrence of this disease. This has been suggested to be due to increasing availability of screening tests and diagnostic facilities and not necessarily because of increased incidence of the diseases. Many notable Nigerians have died due to this dreaded disease. Methods: All plasma samples for PSA from January 2021-December 2022 were analyzed weekly by abbot autoanalyser, chemiluminescence assay method. Bio-data from request form were collated and analyzed. A total of 385 requests were received for the period under review. Result: There was an increase of request from inception to the last year of review. Smoked food, consumption of local herb and alcohol in order of importance, respectively, appears to be prominent factor in patient requested for PSA. The mean age was 67.years; the youngest was 29, while the oldest was 93years. Age 70 has the highest frequency of 8.5% .Mean PSA was 12.9ng/ml. There was a positive correlation between age and PSA (R=0.255, P < 0.05).Significant increase in PSA with age were reported. Men who retired from active jobs constitute the highest request for PSA test. Conclusion: There was an increasing trend in the proportion of requests with values outside the reference interval especially in patients diagnosed of benign prostatic hyperplasia, prostate cancer, while some routine test for PSA were elevated for the first time .This is in line with earlier report of increasing incidence of prostate cancer in Nigeria despite the increasing knowledge of healthy lifestyle.

Keywords: pattern, PSA, tertiary institution, Nigeria

Procedia PDF Downloads 29