Search results for: ion beam irradiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1460

Search results for: ion beam irradiation

410 Co-Registered Identification and Treatment of Skin Tumor with Optical Coherence Tomography-Guided Laser Therapy

Authors: Bo-Huei Huang, Chih-Hsun Yang, Meng-Tsan Tsai

Abstract:

Optical coherence tomography (OCT) enables to provide advantages of noninvasive imaging, high resolution, and high imaging speed. In this study, we integrated OCT and a CW laser for tumor diagnosis and treatment. The axial and transverse resolutions of the developed OCT system are 3 μm and 1 μm, respectively. The frame rate of OCT system is 30 frames/s. In this study, the tumor cells were implanted into the mice skin and scanned by OCT to observe the morphological and angiographic changes. With OCT imaging, 3D microstructures and skin angiography of mice skin can be simultaneously acquired, which can be utilized for identification of the tumor distribution. Then, the CW laser beam can be accurately controlled to expose on the center of the tumor, according to the OCT results. Moreover, OCT was used to monitor the induced photothermolysis and to evaluate the treatment outcome. The results showed that OCT-guided laser therapy could efficiently improve the treatment outcome and the extra damage induced by CW can be greatly reduced. Such OCT-guided laser therapy system could be a potential tool for dermatological applications.

Keywords: optical coherence tomography, laser therapy, skin tumor, position guide

Procedia PDF Downloads 272
409 Experimentally Validated Analytical Model for Thermal Analysis of Multi-Stage Depressed Collector

Authors: Vishant Gahlaut, A Mercy Latha, Sanjay Kumar Ghosh

Abstract:

Multi-stage depressed collectors (MDC) are used as an efficiency enhancement technique in traveling wave tubes the high-energy electron beam, after its interaction with the RF signal, gets velocity sorted and collected at various depressed electrodes of the MDC. The ultimate goal is to identify an optimum thermal management scheme (cooling mechanism) that could extract the heat efficiently from the electrodes. Careful thermal analysis, incorporating the cooling mechanism is required to ensure that the maximum temperature does not exceed the safe limits. A simple analytical model for quick prediction of the thermal has been developed. The model has been developed for the worst-case un-modulated DC condition, where all the thermal power is dissipated in the last electrode (typically, fourth electrode in the case of the four-stage depressed collector). It considers the thermal contact resistances at various braze joints accounting for the practical non-uniformities. Analytical results obtained from the model have been validated with simulated and experimental results.

Keywords: multi-stage depressed collector, TWTs, thermal contact resistance, thermal management

Procedia PDF Downloads 217
408 Photocatalysis with Fe/Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2

Authors: Houria Rezala, Jose Luis Valverde, Amaya Romero, Alessandra Molinari, Andrea Maldotti

Abstract:

A pillared montmorillonite containing iron doped titania (Fe/Ti-PILC) has been prepared from a natural clay. This material has been characterized by X-ray diffraction, nitrogen adsorption, temperature programmed desorption of ammonia, inductively coupled plasma atomic emission spectroscopy, atomic absorption, and diffuse reflectance UV-VIS spectroscopy. The layer structure of Fe/Ti-PILC resulted to be ordered with an insertion of pillars, which caused a slight increase in the basal spacing of the clay. Its specific surface area was about three times larger than that of the parent Na-montmorillonite due principally to the creation of a remarkable microporous network. The doped material was a robust photocatalyst able to oxidize liquid alkyl aromatics to the corresponding carbonylic derivatives, using O2 as the oxidizing species, at mild pressure and temperature conditions. Accumulation of valuable carbonylic derivatives was possible since their over-oxidation to carbon dioxide was negligible. Fe/Ti-PILC was able to discriminate between toluene and cyclohexane in favor of the aromatic compound with an efficiency that is about three times higher than that of titanium pillared clays (Ti-PILC). It is likely that the addition of iron favored the formation of new acid sites able to interact with the aromatic substrate. Iron doping caused a significant TiO2 visible light-induced activity (wavelength > 400 nm) with only minor negative effects on its performance under UV-light irradiation (wavelength > 290 nm).

Keywords: alkyl aromatics oxidation, heterogeneous photocatalysis, iron doping, pillared clays

Procedia PDF Downloads 442
407 Functionalized Titanium Dioxide Nanoparticles for Targeting and Disrupting Amyloid Fibrils

Authors: Elad Arad, Raz Jelinek, Hanna Rapaport

Abstract:

Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to aggregation. They accumulate to form fibrillar plaques which are implicated in the pathogenesis of Alzheimer, prion, diabetes type II and other diseases. To the best of our knowledge, despite extensive research efforts devoted to plaque aggregates inhibition, there is yet no cure for this phenomenon. Titanium and its alloys are found in growing interest for biomedical applications. Variety of surface modifications enable porous, adhesive, bioactive coatings for its surface. Titanium oxides (titania) are also being developed for photothermal and photodynamic treatments. Inspired by this, we set to explore the effect of functionalized titania nanoparticles in combination with external stimuli, as potential photothermal ablating agents against amyloids. Titania nanoparticles were coated with bi-functional catechol derivatives (dihydroxy-phenylalanine propanoic acid, noted DPA) to gain targeting properties. In conjunction with UV-radiation, these nanoparticles may selectively destroy the vicinity of their target. Titania modified 5 nm nanoparticles coated with DPA were further conjugated to the amyloid-targeting Congo Red (CR). These Titania-DPA-CR nanoparticles were found to target mature amyloid fibril of both amyloid-β (Aβ 1-42 a.a). Moreover, irradiation of the peptides in presence of the modified nanoparticles decreased the aggregate content and oligomer fraction. This work provides insights into the use of modified titania nanoparticles for amyloid plaque targeting and photothermal destruction. It may shed light on future modifications and functionalization of titania nanoparticles for different applications.

Keywords: titanium dioxide, amyloids, photothermal treatment, catechol, Congo-red

Procedia PDF Downloads 143
406 The Effect of Connections Form on Seismic Behavior of Portal Frames

Authors: Kiavash Heidarzadeh

Abstract:

The seismic behavior of portal frames is mainly based on the shape of their joints. In these structures, vertical and inclined connections are the two general forms of connections. The shapes of connections can make differences in seismic responses of portal frames. Hence, in this paper, for the first step, the non-linear performance of portal frames with vertical and inclined connections has been investigated by monotonic analysis. Also, the effect of section sizes is considered in this analysis. For comparison, hysteresis curves have been evaluated for two model frames with different forms of connections. Each model has three various sizes of the column and beam. Other geometrical parameters have been considered constant. In the second step, for every model, an appropriate size of sections has been selected from the previous step. Next, the seismic behavior of each model has been analyzed by the time history method under three near-fault earthquake records. Finite element ABAQUS software is used for simulation and analysis of samples. Outputs show that connections form can impact on reaction forces of portal frames under earthquake loads. Also, it is understood that the load capacity in frames with vertical connections is more than the frames with inclined connections.

Keywords: inclined connections, monotonic, portal frames, seismic behavior, time history, vertical connections

Procedia PDF Downloads 221
405 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene

Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell

Abstract:

A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.

Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO

Procedia PDF Downloads 147
404 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 382
403 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo

Abstract:

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Keywords: mixing ratio, nanofiber, polymer, reference photocatalyst

Procedia PDF Downloads 370
402 Impact of Different Modulation Techniques on the Performance of Free-Space Optics

Authors: Naman Singla, Ajay Pal Singh Chauhan

Abstract:

As the demand for providing high bit rate and high bandwidth is increasing at a rapid rate so there is a need to see in this problem and finds a technology that provides high bit rate and also high bandwidth. One possible solution is by use of optical fiber. Optical fiber technology provides high bandwidth in THz. But the disadvantage of optical fiber is of high cost and not used everywhere because it is not possible to reach all the locations on the earth. Also high maintenance required for usage of optical fiber. It puts a lot of cost. Another technology which is almost similar to optical fiber is Free Space Optics (FSO) technology. FSO is the line of sight technology where modulated optical beam whether infrared or visible is used to transfer information from one point to another through the atmosphere which works as a channel. This paper concentrates on analyzing the performance of FSO in terms of bit error rate (BER) and quality factor (Q) using different modulation techniques like non return to zero on off keying (NRZ-OOK), differential phase shift keying (DPSK) and differential quadrature phase shift keying (DQPSK) using OptiSystem software. The findings of this paper show that FSO system based on DQPSK modulation technique performs better.

Keywords: attenuation, bit rate, free space optics, link length

Procedia PDF Downloads 342
401 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool

Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad

Abstract:

In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.

Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling

Procedia PDF Downloads 261
400 Experimental Analysis of Advanced Multi-Axial Preforms Conformability to Complex Contours

Authors: Andrew Hardman, Alistair T. McIlhagger, Edward Archer

Abstract:

A degree of research has been undertaken in the determination of 3D textile preforms behaviour to compression with direct comparison to 2D counterparts. Multiscale simulations have been developed to try and accurately analyse the behaviour of varying architectures post-consolidation. However, further understanding is required to experimentally identify the mechanisms and deformations that exist upon conforming to a complex contour. Due to the complexity of 3D textile preforms, determination of yarn behaviour to a complex contour is assessed through consolidation by means of vacuum assisted resin transfer moulding (VARTM), and the resulting mechanisms are investigated by micrograph analysis. Varying architectures; with known areal densities, pic density and thicknesses are assessed for a cohesive study. The resulting performance of each is assessed qualitatively as well as quantitatively from the perspective of material in terms of the change in representative unit cell (RVE) across the curved beam contour, in crimp percentage, tow angle, resin rich areas and binder distortion. A novel textile is developed from the resulting analysis to overcome the observed deformations.

Keywords: comformability, compression, binder architecture, 3D weaving, textile preform

Procedia PDF Downloads 159
399 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 278
398 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions

Authors: M. Tehranizadeh, E. Shoushtari Rezvani

Abstract:

Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.

Keywords: soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building

Procedia PDF Downloads 546
397 Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications

Authors: R. Tajau, R. Rohani, M. S. Alias, N. H. Mudri, K. A. Abdul Halim, M. H. Harun, N. Mat Isa, R. Che Ismail, S. Muhammad Faisal, M. Talib, M. R. Mohamed Zin

Abstract:

Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies.

Keywords: palm oil, radiation processing, surface coatings, VOC

Procedia PDF Downloads 180
396 Fiber Based Pushover Analysis of Reinforced Concrete Frame

Authors: Shewangizaw Tesfaye Wolde

Abstract:

The current engineering community has developed a method called performance based seismic design in which we design structures based on predefined performance levels set by the parties. Since we design our structures economically for the maximum actions expected in the life of structures they go beyond their elastic limit, in need of nonlinear analysis. In this paper conventional pushover analysis (nonlinear static analysis) is used for the performance assessment of the case study Reinforced Concrete (RC) Frame building located in Addis Ababa City, Ethiopia where proposed peak ground acceleration value by RADIUS 1999 project and others is more than twice as of EBCS-8:1995 (RADIUS 1999 project) by taking critical planar frame. Fiber beam-column model is used to control material nonlinearity with tension stiffening effect. The reliability of the fiber model and validation of software outputs are checked under verification chapter. Therefore, the aim of this paper is to propose a way for structural performance assessment of existing reinforced concrete frame buildings as well as design check.

Keywords: seismic, performance, fiber model, tension stiffening, reinforced concrete

Procedia PDF Downloads 66
395 Environmental and Safety Studies for Advanced Fuel Cycle Fusion Energy Systems: The ESSENTIAL Approach

Authors: Massimo Zucchetti

Abstract:

In the US, the SPARC-ARC projects of compact tokamaks are being developed: both are aimed at the technological demonstration of fusion power reactors with cutting-edge technology but following different design approaches. However, they show more similarities than differences in the fuel cycle, safety, radiation protection, environmental, waste and decommissioning aspects: all reactors, either experimental or demonstration ones, have to fulfill certain "essential" requirements to pass from virtual to real machines, to be built in the real world. The paper will discuss these "essential" requirements. Some of the relevant activities in these fields, carried out by our research group (ESSENTIAL group), will be briefly reported, with the aim of showing some methodology aspects that have been developed and might be of wider interest. Also, a non-competitive comparison between our results for different projects will be included when useful. The question of advanced D-He3 fuel cycles to be used for those machines will be addressed briefly. In the past, the IGNITOR project of a compact high-magnetic field D-T ignition experiment was found to be able to sustain limited D-He3 plasmas, while the Candor project was a more decisive step toward D-He3 fusion reactors. The following topics will be treated: Waste management and radioactive safety studies for advanced fusion power plants; development of compact high-field advanced fusion reactors; behavior of nuclear materials under irradiation: neutron-induced radioactivity due to side DT reactions, radiation damage; accident analysis; reactor siting.

Keywords: advanced fuel fusion reactors, deuterium-helium3, high-field tokamaks, fusion safety

Procedia PDF Downloads 79
394 Effect of Barium Doping on Structural, Morphological, Optical, and Photocatalytic Properties of Sprayed ZnO Thin Films

Authors: Halima Djaaboube, Redha Aouati, Ibtissem Loucif, Yassine Bouachiba, Mouad Chettab, Adel Taabouche, Sihem Abed, Salima Ouendadji, Abderrahmane Bouabellou

Abstract:

Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and therefore the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping, this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.

Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO.

Procedia PDF Downloads 111
393 Structural Health Monitoring of Buildings and Infrastructure

Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi

Abstract:

Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.

Keywords: structural health monitoring, natural frequency, modal analysis, finite element model updating

Procedia PDF Downloads 331
392 Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls

Authors: Anas M. Fares

Abstract:

Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam.

Keywords: cantilever shear walls, flexural deformation, lateral deflection, lateral loads, reinforced concrete shear walls, rigidity, shear deformation, virtual work theorem

Procedia PDF Downloads 213
391 Enhancement in Seebeck Coefficient of MBE Grown Un-Doped ZnO by Thermal Annealing

Authors: M. Asghar, K. Mahmood, F. Malik, Lu Na, Y-H Xie, Yasin A. Raja, I. Ferguson

Abstract:

In this paper, we have reported an enhancement in Seebeck coefficient of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at 500°C – 800°C, keeping a step of 100°C for one hour. Room temperature Seebeck measurements showed that Seebeck coefficient and power factor increased from 222 to 510 µV/K and 8.8×10^-6 to 2.6×10^-4 Wm^-1K^-2 as annealing temperature increased from 500°C to 800°C respectively. This is the highest value of Seebeck coefficient ever reported for un-doped MBE grown ZnO according to best of our knowledge. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Keywords: ZnO, MBE, thermoelectric properties, annealing temperature, crystal structure

Procedia PDF Downloads 441
390 Green Synthesis of Spinach Derived Carbon Dots for Photocatalytic Generation of Hydrogen from Sulfide Wastewater

Authors: Priya Ruban, Thirunavoukkarasu Manikkannan, Sakthivel Ramasamy

Abstract:

Sulfide is one of the major pollutants of tannery effluent which is mainly generated during the process of unhairing. Recovery of Hydrogen green fuel from sulfide wastewater using photocatalysis is a ‘Cleaner Production Method’, since renewable solar energy is utilized. It has triple advantages of the generation of H2, waste minimization and odor or pollution control. Designing of safe and green photocatalysts and developing suitable solar photoreactor is important for promoting this technology to large-scale application. In this study, green photocatalyst i.e., spinach derived carbon dots (SCDs 5 wt % and 10 wt %)/TiO2 nanocomposite was synthesized for generation of H2 from sulfide wastewater using lab-scale solar photocatalytic reactor. The physical characterization of the synthesized solar light responsive nanocomposites were studied by using DRS UV-Vis, XRD, FTIR and FESEM analysis. The absorption edge of TiO2 nanoparticles is extended to visible region by the incorporation of SCDs, which was used for converting noxious pollutant sulfide into eco-friendly solar fuel H2. The SCDs (10 wt%)-TiO2 nanocomposite exhibits enhanced photocatalytic hydrogen production i.e. ~27 mL of H2 (180 min) from simulated sulfide wastewater under LED visible light irradiation which is higher as compared to SCDs. The enhancement in the photocatalytic generation of H2 is attributed to combining of SCDs which increased the charge mobility. This work may provide new insights to usage of naturally available and cheap materials to design novel nanocomposite as a visible light active photocatalyst for the generation of H2 from sulfide containing wastewater.

Keywords: carbon dots, hydrogen fuel, hydrogen sulfide, photocatalysis, sulfide wastewater

Procedia PDF Downloads 382
389 Visible-Light-Driven OVs-BiOCl Nanoplates with Enhanced Photocatalytic Activity toward NO Oxidation

Authors: Jiazhen Liao, Xiaolan Zeng

Abstract:

A series of BiOCl nanoplates with different oxygen vacancies (OVs) concentrations were successfully synthesized via a facile solvothermal method. The concentration of OVs of BiOCl can be tuned by the ratios of water/ethylene glycol. Such nanoplates containing oxygen vacancies served as an efficient visible-light-driven photocatalyst for NO oxidation. Compared with pure BiOCl, the enhanced photocatalytic performance was mainly attributed to the introduction of OVs, which greatly enhanced light absorption, promoted electron transfer, activated oxygen molecules. The present work could provide insights into the understanding of the role of OVs in photocatalysts for reference. Combined with characterization analysis, such as XRD(X-ray diffraction), XPS(X-ray photoelectron spectroscopy), TEM(Transmission Electron Microscopy), PL(Fluorescence Spectroscopy), and DFT (Density Functional Theory) calculations, the effect of vacancies on photoelectrochemical properties of BiOCl photocatalysts are shown. Furthermore, the possible reaction mechanisms of photocatalytic NO oxidation were also revealed. According to the results of in situ DRIFTS ( Diffused Reflectance Infrared Fourier Transform Spectroscopy), various intermediates were produced during different time intervals of NO photodegradation. The possible pathways are summarized below. First, visible light irradiation induces electron-hole pairs on the surface of OV-BOC (BiOCl with oxygen vacancies). Second, photogenerated electrons form superoxide radical with the contacted oxygen. Then, the NO molecules adsorbed on the surface of OV-BOC are attacked by superoxide radical and form nitrate instead of NO₂ (by-products). Oxygen vacancies greatly improve the photocatalytic oxidation activity of NO and effectively inhibit the production of harmful by-products during the oxidation of NO.

Keywords: OVs-BiOCl nanoplate, oxygen vacancies, NO oxidation, photocatalysis

Procedia PDF Downloads 130
388 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N

Abstract:

The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 120
387 Flange/Web Distortional Buckling of Cold-Formed Steel Beams with Web Holes under Pure Bending

Authors: Nan-Ting Yu, Boksun Kim, Long-Yuan Li

Abstract:

The cold-formed steel beams with web holes are widely used as the load-carrying members in structural engineering. The perforations can release the space of the building and let the pipes go through. However, the perforated cold-formed steel (PCFS) beams may fail by distortional buckling more easily than beams with plain web; this is because the rotational stiffness from the web decreases. It is well known that the distortional buckling can be described as the buckling of the compressed flange-lip system. In fact, near the ultimate failure, the flange/web corner would move laterally, which indicates the bending of the web should be taken account. The purpose of this study is to give a specific solution for the critical stress of flange/web distortional buckling of PCFS beams. The new model is deduced based on classical energy method, and the deflection of the web is represented by the shape function of the plane beam element. The finite element analyses have been performed to validate the accuracy of the proposed model. The comparison of the critical stress calculated from Hancock's model, FEA, and present model, shows that the present model can provide a splendid prediction for the flange/web distortional buckling of PCFS beams.

Keywords: cold-formed steel, beams, perforations, flange-web distortional buckling, finite element analysis

Procedia PDF Downloads 126
386 Development of a Laboratory Laser-Produced Plasma “Water Window” X-Ray Source for Radiobiology Experiments

Authors: Daniel Adjei, Mesfin Getachew Ayele, Przemyslaw Wachulak, Andrzej Bartnik, Luděk Vyšín, Henryk Fiedorowicz, Inam Ul Ahad, Lukasz Wegrzynski, Anna Wiechecka, Janusz Lekki, Wojciech M. Kwiatek

Abstract:

Laser produced plasma light sources, emitting high intensity pulses of X-rays, delivering high doses are useful to understand the mechanisms of high dose effects on biological samples. In this study, a desk-top laser plasma soft X-ray source, developed for radio biology research, is presented. The source is based on a double-stream gas puff target, irradiated with a commercial Nd:YAG laser (EKSPLA), which generates laser pulses of 4 ns time duration and energy up to 800 mJ at 10 Hz repetition rate. The source has been optimized for maximum emission in the “water window” wavelength range from 2.3 nm to 4.4 nm by using pure gas (argon, nitrogen and krypton) and spectral filtering. Results of the source characterization measurements and dosimetry of the produced soft X-ray radiation are shown and discussed. The high brightness of the laser produced plasma soft X-ray source and the low penetration depth of the produced X-ray radiation in biological specimen allows a high dose rate to be delivered to the specimen of over 28 Gy/shot; and 280 Gy/s at the maximum repetition rate of the laser system. The source has a unique capability for irradiation of cells with high pulse dose both in vacuum and He-environment. Demonstration of the source to induce DNA double- and single strand breaks will be discussed.

Keywords: laser produced plasma, soft X-rays, radio biology experiments, dosimetry

Procedia PDF Downloads 582
385 Comparison of Er:YAG Laser with Bur Prepared Cavities: A Systematic Review

Authors: Sarina Sahmeddini, Fahimeh Safarpour, Forough Pazhuheian

Abstract:

With the concepts of minimally invasive treatment and preventive dentistry gaining more and more recognition by dentists, there are many published clinical trials comparing the use of the erbium laser with traditional drilling for caries removal. However, the efficacy of the erbium laser is still controversial. The aim of this review study is to compare the effects of tooth preparation by laser irradiation and conventional preparation by bur to identify the best means for cavity preparation and reduction of recurrent caries. Randomized controlled trials, controlled clinical trials, and prospective, and retrospective cohort studies were included in this review. The eligibility criteria included studies in humans’ permanent teeth in which cavities were conducted in their cervical third and proximal surfaces. PubMed, Google scholar, and Scopus about Er:YAG laser and bur prepared cavities were carried out. The studies’ details were organized in four tables according to the groups: (1) Microleakage; (2) Morphological changes; (3) Microhardness; and (4) Bond strength. The initial search resulted in 134 articles, 12 studies published from 2012 up to March 2020 were included in this review. According to the risk of bias evaluation, all studies were classified as high quality. Clinical implications: Er:YAG lasers with the energy levels between 250 to 300 mJ can be proper alternatives to conventional burs, as minimal invasive instruments with no significant differences or better results in microleakage, microhardness, and bond strength compared with conventional burs. In conclusion, Er:YAG laser irradiations accompanied by phosphoric acid etching can reduce the chance of recurrent carries.

Keywords: lasers, drilling, caries, micro leakage

Procedia PDF Downloads 126
384 Azadrachea indica Leaves Extract Assisted Green Synthesis of Ag-TiO₂ for Degradation of Dyes in Aqueous Medium

Authors: Muhammad Saeed, Sheeba Khalid

Abstract:

Aqueous pollution due to the textile industry is an important issue. Photocatalysis using metal oxides as catalysts is one of the methods used for eradication of dyes from textile industrial effluents. In this study, the synthesis, characterization, and evaluation of photocatalytic activity of Ag-TiO₂ are reported. TiO₂ catalysts with 2, 4, 6 and 8% loading of Ag were prepared by green methods using Azadrachea indica leaves' extract as reducing agent and titanium dioxide and silver nitrate as precursor materials. The 4% Ag-TiO₂ exhibited the best catalytic activity for degradation of dyes. Prepared catalyst was characterized by advanced techniques. Catalytic degradation of methylene blue and rhodamine B were carried out in Pyrex glass batch reactor. Deposition of Ag greatly enhanced the catalytic efficiency of TiO₂ towards degradation of dyes. Irradiation of catalyst excites electrons from conduction band of catalyst to valence band yielding an electron-hole pair. These photoexcited electrons and positive hole undergo secondary reaction and produce OH radicals. These active radicals take part in the degradation of dyes. More than 90% of dyes were degraded in 120 minutes. It was found that there was no loss catalytic efficiency of prepared Ag-TiO₂ after recycling it for two times. Photocatalytic degradation of methylene blue and rhodamine B followed Eley-Rideal mechanism which states that dye reacts in fluid phase with adsorbed oxygen. 27 kJ/mol and 20 kJ/mol were found as activation energy for photodegradation of methylene blue and rhodamine B dye respectively.

Keywords: TiO₂, Ag-TiO₂, methylene blue, Rhodamine B., photo degradation

Procedia PDF Downloads 159
383 Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite.

Keywords: sugarcane bagasse (SCB), polypropylene (PP), mechanical properties, scanning electron microscope (SEM), gamma radiation, water uptake tests and soil degradation

Procedia PDF Downloads 130
382 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue

Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez

Abstract:

Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.

Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial

Procedia PDF Downloads 365
381 Sympathetic Cooling of Antiprotons with Molecular Anions

Authors: Sebastian Gerber, Julian Fesel, Christian Zimmer, Pauline Yzombard, Daniel Comparat, Michael Doser

Abstract:

Molecular anions play a central role in a wide range of fields: from atmospheric and interstellar science, anionic superhalogens to the chemistry of highly correlated systems. However, up to now the synthesis of negative ions in a controlled manner at ultracold temperatures, relevant for the processes in which they are involved, is currently limited to a few Kelvin by supersonic beam expansion followed by resistive, buffer gas or electron cooling in cryogenic environments. We present a realistic scheme for laser cooling of C2- molecules to sub-Kelvin temperatures, which has so far only been achieved for a few neutral diatomic molecules. The generation of a pulsed source of C2- and subsequent laser cooling techniques of C2- molecules confined in a Penning trap are reviewed. Further, laser cooling of one anionic species would allow to sympathetically cool other molecular anions, electrons and antiprotons that are confined in the same trapping potential. In this presentation the status of the experiment and the feasibility of C2- sympathetic Doppler laser cooling, photo-detachment cooling and AC-Stark Sisyphus cooling will be reviewed.

Keywords: antiprotons, anions, cooling of ions and molecules, Doppler cooling, photo-detachment, penning trap, Sisyphus cooling, sympathetic cooling

Procedia PDF Downloads 374