Search results for: fifth-generation district heating network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7117

Search results for: fifth-generation district heating network

6067 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Authors: Danilo López, Nelson Vera, Luis Pedraza

Abstract:

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Keywords: neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis

Procedia PDF Downloads 420
6066 Effect of Monsoon on Ground Water Quality and Contamination: A Case Study of Narsapur-Mogalthur Mandals, West Godavari District, Andhra Pradesh, India

Authors: M. S. V. K. V. Prasad, G. Siva Praveena, P. V. V. Prasada Rao

Abstract:

It is known that the groundwater quality is very important parameter because it is the main factor determining its suitability for drinking, agricultural and industrial purposes. Water Quality Index (WQI) has been calculated for ground water samples taken from Narsapur-Mogalthur mandals, West Godavari district, Andhra Pradesh, India, from 10 different locations in the pre-monsoon season as well as post monsoon. The water samples were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), major cations like calcium, magnesium, sodium, potassium and anions like chloride, nitrate and sulphate in the laboratory using the standard methods given by the American Public Health Association (APHA). The overall quality of water in the study area is somewhat good for all constituents. Drinking water at almost all the locations was found to be slightly contaminated, except a few locations during the year 2014. It was found that some effective measures are urgently required for water quality management in this region.

Keywords: Water Quality Index, Physico-chemical parameters, Quality rating, monsoon

Procedia PDF Downloads 333
6065 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 167
6064 Effects of Education Equity Policy on Housing Prices: Evidence from Simultaneous Admission to Public and Private Schools Policy in Shanghai

Authors: Tianyu Chen

Abstract:

China's school district education policy has encouraged parents to purchase properties in school districts with high-quality education resources. Shanghai has implemented "Simultaneous Admission to Public and Private Schools" (SAPPS) since 2018, which has covered all nine-year compulsory education by 2020. This study examines the impact of SAPPS on the housing market, specifically the premium effect of houses located in dual-school districts. Based on the Hedonic Pricing Model and the Signaling Theory, data is collected from 585 second-hand house transactions in Pudong New Area, Shanghai, and it is analyzed with the Difference-in-Differences (DID) model. The results indicate that the implementation of SAPPS has exacerbated the premium of dual school district housing and weakened the effect of the policy to a certain degree. To ensure equal access to education for all students, the government should work both on the supply and demand sides of the education resource equation.

Keywords: simultaneous admission to public and private schools, housing prices, education policy, education equity

Procedia PDF Downloads 77
6063 Democratising Rivers: Local River Conflicts in Rajasthan

Authors: Renu Sisodia

Abstract:

This paper attempted to explore and explain the local level river water conflicts in the larger context of state - society relations. This study also covered causes of local level river water conflicts in the catchment area of Bandi and Arvari river of Rajasthan. The focus of the study was on the emergence of community driven, decentralised management of river water bodies and strategies used by local communities to protect and manage river water conflicts. The research is conducted through the process of designing a framework based on essential theoretical and practical findings supported by primary and secondary data. Two in depth case study is conducted to understand the phenomenon in depth. The first field site is Bandi River of Pali district, which is about the struggle between textile industries, community and the State government in which water pollution is said to be one of the driving force of the conflict. Finding shows that the state is supporting textile industries in Pali district have not been adherent to the environmental ethics. Present legal infrastructure and local institutions fail to resolve the serious problem of water pollution in Bandi River and its adverse impact on the local community as a result local community resistance against the local administration and the state government. The second case illustrates the plight of Arvari River in Alwar district. Tussle for the ownership of fisheries between local community, the private fish contractor and State government has been the main bone of contestation. To resolve this conflict local community formed conflict management mechanism named as Arvari Parliament. Arvari Parliament has its own principle and rules to resolve water conflicts related to ownership of the river and use of the river water. The research findings also highlight the co-existence between conventional and modern practices in resolving conflicts.

Keywords: water, water pollution, water conflicts, water scarcity, conflict resolution, local community

Procedia PDF Downloads 485
6062 Zoonotic Risk Practices in Rural Households in the Penka-Michel Health District (West Cameroon)

Authors: Namekong Fokeng Armand

Abstract:

Background: Zoonoses are nowadays a serious public health problem in both developing and developed countries. They contribute to increase the economic burden. In case of emergence, rural populations are the most affected, hence the need to investigate risk practices in rural households of Penka-Michel (West Cameroon). Methods: This cross-sectional study was conducted from October to November 2021 among 200 heads of households living in the Penka-Michel health district (West Cameroon). It was done using a pre-tested and validated questionnaire, allowing to obtain socio-demographic, economic data, and data on zoonotic risk practices. Results: The participants [women (56%), men (44%)] worked mainly in the informal private sector (53%) and practiced agriculture secondarily (90%). Their highest level of education, for the most part, was a secondary school (50%); the average household size was 06 persons with a monthly income > 36270 FCFA (72%). 74% of household heads thought that animals can transmit diseases, and 17% had heard about zoonotic diseases through the media (65%). Rats caught in households (60%) were consumed there (74%), as was bush meat (61%) or dog meat (18%). For family food (90%), animals were slaughtered within the household (97%), rarely preceded by a veterinary inspection (6%). 87% of households practiced traditional rites with animal blood, 65% shared the same habitat as their animals, 41% did not systematically wash their hands after handling animals. More than 50% of households owned one or more dogs, usually strays (41%) and 48% of which were vaccinated (rabies). Many households had at least one: poultry (98%); pig (50%); dog (57%), cat (52%). 25% of households slaughtered sick animals for consumption, and 27% ate dead animals. Conclusion: This study identified numerous zoonotic risk practices in households in the Penka-Michel health district (West Cameroon). Concerted, multisectoral communication / awareness-raising actions are needed to break with these practices.

Keywords: zoonoses, risky practices, rural households, penka-michel, cameroon

Procedia PDF Downloads 170
6061 Travel Planning in Public Transport Networks Applying the Algorithm A* for Metropolitan District of Quito

Authors: M. Fernanda Salgado, Alfonso Tierra, Wilbert Aguilar

Abstract:

The present project consists in applying the informed search algorithm A star (A*) to solve traveler problems, applying it by urban public transportation routes. The digitization of the information allowed to identify 26% of the total of routes that are registered within the Metropolitan District of Quito. For the validation of this information, data were taken in field on the travel times and the difference with respect to the times estimated by the program, resulting in that the difference between them was not greater than 2:20 minutes. We validate A* algorithm with the Dijkstra algorithm, comparing nodes vectors based on the public transport stops, the validation was established through the student t-test hypothesis. Then we verified that the times estimated by the program using the A* algorithm are similar to those registered on field. Furthermore, we review the performance of the algorithm generating iterations in both algorithms. Finally, with these iterations, a hypothesis test was carried out again with student t-test where it was concluded that the iterations of the base algorithm Dijsktra are greater than those generated by the algorithm A*.

Keywords: algorithm A*, graph, mobility, public transport, travel planning, routes

Procedia PDF Downloads 239
6060 Measures of Reliability and Transportation Quality on an Urban Rail Transit Network in Case of Links’ Capacities Loss

Authors: Jie Liu, Jinqu Cheng, Qiyuan Peng, Yong Yin

Abstract:

Urban rail transit (URT) plays a significant role in dealing with traffic congestion and environmental problems in cities. However, equipment failure and obstruction of links often lead to URT links’ capacities loss in daily operation. It affects the reliability and transport service quality of URT network seriously. In order to measure the influence of links’ capacities loss on reliability and transport service quality of URT network, passengers are divided into three categories in case of links’ capacities loss. Passengers in category 1 are less affected by the loss of links’ capacities. Their travel is reliable since their travel quality is not significantly reduced. Passengers in category 2 are affected by the loss of links’ capacities heavily. Their travel is not reliable since their travel quality is reduced seriously. However, passengers in category 2 still can travel on URT. Passengers in category 3 can not travel on URT because their travel paths’ passenger flow exceeds capacities. Their travel is not reliable. Thus, the proportion of passengers in category 1 whose travel is reliable is defined as reliability indicator of URT network. The transport service quality of URT network is related to passengers’ travel time, passengers’ transfer times and whether seats are available to passengers. The generalized travel cost is a comprehensive reflection of travel time, transfer times and travel comfort. Therefore, passengers’ average generalized travel cost is used as transport service quality indicator of URT network. The impact of links’ capacities loss on transport service quality of URT network is measured with passengers’ relative average generalized travel cost with and without links’ capacities loss. The proportion of the passengers affected by links and betweenness of links are used to determine the important links in URT network. The stochastic user equilibrium distribution model based on the improved logit model is used to determine passengers’ categories and calculate passengers’ generalized travel cost in case of links’ capacities loss, which is solved with method of successive weighted averages algorithm. The reliability and transport service quality indicators of URT network are calculated with the solution result. Taking Wuhan Metro as a case, the reliability and transport service quality of Wuhan metro network is measured with indicators and method proposed in this paper. The result shows that using the proportion of the passengers affected by links can identify important links effectively which have great influence on reliability and transport service quality of URT network; The important links are mostly connected to transfer stations and the passenger flow of important links is high; With the increase of number of failure links and the proportion of capacity loss, the reliability of the network keeps decreasing, the proportion of passengers in category 3 keeps increasing and the proportion of passengers in category 2 increases at first and then decreases; When the number of failure links and the proportion of capacity loss increased to a certain level, the decline of transport service quality is weakened.

Keywords: urban rail transit network, reliability, transport service quality, links’ capacities loss, important links

Procedia PDF Downloads 128
6059 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 70
6058 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 464
6057 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 119
6056 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour

Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani

Abstract:

In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.

Keywords: video tracking, particle filter, greedy snake, neural network

Procedia PDF Downloads 342
6055 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation

Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro

Abstract:

More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.

Keywords: reactive power control, solar irradiance, utility-scale PV systems, voltage fluctuations

Procedia PDF Downloads 460
6054 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite

Authors: Mohammad M. Khan, Gajendra Dixit

Abstract:

Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.

Keywords: solid lubricant, sliding wear, grey cast iron, zinc based metal matrix composites

Procedia PDF Downloads 317
6053 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
6052 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 357
6051 Peat Resources, Paleo-Environmental Interpretation as well as Their Utilization, Hakaluki Haor, Moulvibazar and Sylhet District, Bangladesh

Authors: Mohammed Masum, Mohammad Omer Faruk Khan, Md. Nazwanul Haque, Anwar Sadat Md. Sayem, Md. Azhar Hossain

Abstract:

The study area is the Hakaluki Haor which is the second largest wet land of Bangladesh. It spans over the districts of Moulvibazar and Sylhet in southeast Bangladesh. The study was focused in the exploration of peat reserve, reconstruction of the paleo-environment as well as the utilization of the peat resources. Peat is found randomly from 0.5 m to 7 m below the surface and 1 m to 11 m thickness at over 40 beels as well as small plain lands of 90 km2 area of Hakaluki Haor. The total reserve of peat is 282 million ton in wet condition and 112 million ton in dry condition. The peat deposits of Hakaluki Haor area is the largest peat reserves of the Bangladesh. Peat bearing Hakaluki Haor is a low-lying wet land which geological term is synclinal depression. It may be a syncline between two anticlines which was filled with sediments as well as various plant materials derived from the hilly region (anticline) on both sides (west and east) of the Haor. The transportation may be triggered by large natural disasters or any tectonic reason. On the other hand vegetation occurred in this depression as aquatic plants which might have been destroyed by large natural disasters or any tectonic reason. As environment dictates the characteristics and the source of sediments, various aspects of the sediment are indicators of the environment. Peat has mainly industrial importance as a fuel for power production, traditionally used for cooking, domestic heating and in brick fields, also used as insulator in many industries, agricultural purposes, retaining moisture in soil, raw material in horticulture and colour industries etc. Power plants of about 100 MW capacities may be established in this region based on peat of Hakaluki Haor which may be continued more than one hundred years.

Keywords: peat, pale environment, Hakaluki Haor, beel, syncline, anticline

Procedia PDF Downloads 421
6050 Region Coastal Land Management and Tracking Changes in Ownership Status

Authors: Tayfun Cay, Fazil Nacar

Abstract:

Energy investments have increased in North Mediterranean Ceyhan and Yumurtalık districts of Turkey in the last years because of the treaties which are signed between Turkey and other countries for petroleum and natural gas transmission. Authority of land use has passed to district and metropolitan municipalities from town municipalities because of changes in coast legislation and local management legislation. Also Ministry of Environment and Urban Planning and Ministry of Industry and Commerce have had a right to comment on planning unofficially. Public investments increase in area and related planning and expropriation services continue. On the other hand, a lot of private sectors invest in organised industrial sites and industrial areas and it causes a rapid change in ownership status. Also Ceyhan-yumurtalık region is the tourism centre of North Mediterranean. Tourism investments continue in this district. Especially construction sector gain speed and a lot of country sites and apartments are built. In these studies, changes in planning activities in management of different administrative organisations and changes in ownership status and changes in private properties will be presented.

Keywords: coast management, land management, land use, property, public interest

Procedia PDF Downloads 511
6049 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 105
6048 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 726
6047 Integration Network ASI in Lab Automation and Networks Industrial in IFCE

Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro

Abstract:

The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.

Keywords: automation, industrial networks, SCADA systems, lab automation

Procedia PDF Downloads 547
6046 Experimental Investigation of Stain Removal Performance of Different Types of Top Load Washing Machines with Textile Mechanical Damage Consideration

Authors: Ehsan Tuzcuoğlu, Muhammed Emin Çoban, Songül Byraktar

Abstract:

One of the main targets of the washing machine is to remove any dirt and stains from the clothes. Especially, the stain removal is significantly important in the Far East market, where the high percentage of the consumers use the top load washing machines as washing appliance. They use all pretreatment methods (i.e. soaking, prewash, and heavy functions) to eliminate the stains from their clothes. Therefore, with this study it is aimed to study experimentally the stain removal performance of 3 different Top-Loading washing machines of the Far East market with 24 different types of stains which are mostly related to Far East culture. In the meanwhile, the mechanical damge on laundry is examined for each machine to see the mechanical effect of the related stain programs on the textile load of the machines. The test machines vary according to have a heater, moving part(s)on their impeller, and to be in different height/width ratio of the drum. The results indicate that decreasing the water level inside the washing machine might result in better soil removal as well as less textile damage. Beside this, the experimental results reveal that heating has the main effect on stain removal. Two-step (or delayed) heating and a lower amount of water can also be considered as the further parameters

Keywords: laundry, washing machine, top load washing machine, stain removal, textile damage, mechanical textile damage

Procedia PDF Downloads 124
6045 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD

Authors: Mehdi Montakhabrazlighi, Ercan Balikci

Abstract:

The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.

Keywords: neural network, rupture strength, superalloy, thermocalc

Procedia PDF Downloads 313
6044 Analyzing Keyword Networks for the Identification of Correlated Research Topics

Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita

Abstract:

The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is  characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.

Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics

Procedia PDF Downloads 257
6043 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria

Authors: Desmond Okorie, Emmanuel Prince

Abstract:

Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.

Keywords: local area network, Ph measurement, wireless sensor network, zigbee

Procedia PDF Downloads 172
6042 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 223
6041 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach

Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares

Abstract:

Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.

Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network

Procedia PDF Downloads 205
6040 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 147
6039 Internalized HIV Stigma, Mental Health, Coping, and Perceived Social Support among People Living with HIV/AIDS in Aizawl District, Mizoram

Authors: Mary Ann L. Halliday, Zoengpari Gohain

Abstract:

The stigma associated with HIV-AIDS negatively affect mental health and ability to effectively manage the disease. While the number of People living with HIV/AIDS (PLHIV) has been increasing day by day in Mizoram (a small north-eastern state in India), research on HIV/AIDS stigma has so far been limited. Despite the potential significance of Internalized HIV Stigma (IHS) in the lives of PLHIV, there has been very limited research in this area. It was therefore, felt necessary to explore the internalized HIV stigma, mental health, coping and perceived social support of PLHIV in Aizawl District, Mizoram. The present study was designed with the objectives to determine the degree of IHS, to study the relationship between the socio-demographic characteristics and level of IHS, to highlight the mental health status, coping strategies and perceived social support of PLHIV and to elucidate the relationship between these psychosocial variables. In order to achieve the objectives of the study, six hypotheses were formulated and statistical analyses conducted accordingly. The sample consisted of 300 PLWHA from Aizawl District, 150 males and 150 females, of the age group 20 to 70 years. Two- way classification of “Gender” (male and female) and three-way classification of “Level of IHS” (High IHS, Moderate IHS, Low IHS) on the dependent variables was employed, to elucidate the relationship between Internalized HIV Stigma, mental health, coping and perceived social support of PLHIV. The overall analysis revealed moderate level of IHS (67.3%) among PLHIV in Aizawl District, with a small proportion of subjects reporting high level of IHS. IHS was found to be significantly different on the basis of disclosure status, with the disclosure status of PLHIV accounting for 9% variability in IHS.  Results also revealed more or less good mental health among the participants, which was assessed by minimal depression (50.3%) and minimal anxiety (45%), with females with high IHS scoring significantly higher in both depression and anxiety (p<.01). Examination of the coping strategies of PLHIV found that the most frequently used coping styles were Acceptance (91%), Religion (84.3%), Planning (74.7%), Active Coping (66%) and Emotional Support (52.7%). High perception of perceived social support (48%) was found in the present study. Correlation analysis revealed significant positive relationships between IHS and depression as well as anxiety (p<.01), thus revealing that IHS negatively affects the mental health of PLHIV. Results however revealed that this effect may be lessened by the use of various coping strategies by PLHIV as well as their perception of social support.

Keywords: Aizawl, anxiety, depression, internalized HIV stigma, HIV/AIDS, mental health, mizoram, perceived social support

Procedia PDF Downloads 261
6038 Analysis and Performance of Handover in Universal Mobile Telecommunications System (UMTS) Network Using OPNET Modeller

Authors: Latif Adnane, Benaatou Wafa, Pla Vicent

Abstract:

Handover is of great significance to achieve seamless connectivity in wireless networks. This paper gives an impression of the main factors which are being affected by the soft and the hard handovers techniques. To know and understand the handover process in The Universal Mobile Telecommunications System (UMTS) network, different statistics are calculated. This paper focuses on the quality of service (QoS) of soft and hard handover in UMTS network, which includes the analysis of received power, signal to noise radio, throughput, delay traffic, traffic received, delay, total transmit load, end to end delay and upload response time using OPNET simulator.

Keywords: handover, UMTS, mobility, simulation, OPNET modeler

Procedia PDF Downloads 321