Search results for: waste management systems
18051 Sustainable Transboundary Water Management: Challenges and Good Practices of Cooperation in International River Basin Districts
Authors: Aleksandra Ibragimow, Moritz Albrecht, Eerika Albrecht
Abstract:
Close international cooperation between all countries within a river basin has become one of the key aspects of sustainable cross-border water management. This is due to the fact that water does not stop at administrative or political boundaries. Therefore, the preferred mode to protect and manage transnational water bodies is close cooperation between all countries and stakeholders within the natural hydrological unit of the river basin. However, past practices have demonstrated that combining interests of different countries and stakeholders with differing political systems and management approaches to environmental issues upstream as well as downstream can be challenging. The study focuses on particular problems and challenges of water management in international river basin districts by the example of the International Oder River Basin District. The Oder River is one of the largest cross-border rivers of the Baltic Sea basin passing through Poland, Germany, and the Czech Republic. Attention is directed towards the activities and the actions that were carried out during the Districts' first management cycle of transnational river basin management (2009-2015). The results show that actions of individual countries have been focused on the National Water Management Plans while a common appointment about identified supra-regional water management problems has not been solved, and conducted actions can be considered as preliminary and merely a basis for future management. This present state raises the question whether the achievement of main objectives of Water Framework Directive (2000/60/EC) can be a realistic task.Keywords: International River Basin Districts, water management, water frameworkdirective, water management plans
Procedia PDF Downloads 31618050 The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs
Authors: Sawarni Hasibuan, Juliza Hidayati
Abstract:
Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.Keywords: cleaner production innovation, creativity, SMEs Batik, sustainability supply chain
Procedia PDF Downloads 28018049 Green Technologies Developed by JSC “NIUIF”
Authors: Andrey Norov
Abstract:
In the recent years, Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF”, the oldest (established in September 1919) industry-oriented institute in Russia, has developed a range of sustainable, environment-friendly, zero-waste technologies that ensure minimal consumption of materials and energy resources and fully consistent with the principles of Green Chemistry that include: - Ecofriendly energy and resource saving technology of sulfuric acid from sulfur according to DC-DA scheme (double conversion - double absorption); - Improved zero-waste technology of wet phosphoric acid (WPA) by dihydrate-hemihydrate process applicable to various types of phosphate raw materials; - Flexible, efficient, zero-waste, universal technology of NP / NPS / NPK / NPKS fertilizers with maximum heat recovery from chemical processes; - Novel, zero-waste, no-analogue technology of granular PK / PKS / NPKS fertilizers with controlled dissolution rate and nutrient supply into the soil, which allows to process a number of wastes and by-products; - Innovative resource-saving joint processing of wastes from the production of phosphogypsum and fluorosilicic acid (FSA) into ammonium sulfate with simultaneous neutralization of fluoride compounds with no lime used. - New fertilizer technology of increased environmental and agrochemical efficiency (currently under development). All listed green technologies are patented with Russian and Eurasian patents. The development of ecofriendly, safe, green technologies is ongoing in JSC “NIUIF”.Keywords: NPKS fertilizers, FSA, sulfuric acid, WPA
Procedia PDF Downloads 9418048 Catalytic Production of Hydrogen and Carbon Nanotubes over Metal/SiO2 Core-Shell Catalyst from Plastic Wastes Gasification
Authors: Wei-Jing Li, Ren-Xuan Yang, Kui-Hao Chuang, Ming-Yen Wey
Abstract:
Nowadays, plastic product and utilization are extensive and have greatly improved our life. Yet, plastic wastes are stable and non-biodegradable challenging issues to the environment. Waste-to-energy strategies emerge a promising way for waste management. This work investigated the co-production of hydrogen and carbon nanotubes from the syngas which was from the gasification of polypropylene. A nickel-silica core-shell catalyst was applied for syngas reaction from plastic waste gasification in a fixed-bed reactor. SiO2 were prepared through various synthesis solvents by Stöber process. Ni plays a role as modified SiO2 support, which were synthesized by deposition-precipitation method. Core-shell catalysts have strong interaction between active phase and support, in order to avoid catalyst sintering. Moreover, Fe or Co metal acts as promoter to enhance catalytic activity. The effects of calcined atmosphere, second metal addition, and reaction temperature on hydrogen production and carbon yield were examined. In this study, the catalytic activity and carbon yield results revealed that the Ni/SiO2 catalyst calcined under H2 atmosphere exhibited the best performance. Furthermore, Co promoted Ni/SiO2 catalyst produced 3 times more than Ni/SiO2 on carbon yield at long-term operation. The structure and morphological nature of the calcined and spent catalysts were examined using different characterization techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction. In addition, the quality and thermal stability of the nano-carbon materials were also evaluated by Raman spectroscopy and thermogravimetric analysis.Keywords: plastic wastes, hydrogen, carbon nanotube, core-shell catalysts
Procedia PDF Downloads 31918047 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia
Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.
Abstract:
Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy
Procedia PDF Downloads 13518046 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement
Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan
Abstract:
In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength
Procedia PDF Downloads 8918045 Managing Multiple Change Projects in Supply Chains: A Case Study of a Moroccan Multi-Technical Services Company
Authors: Abdelouahab Errida, Bouchra Lotfi, Elalami Semma
Abstract:
In this paper, we try to address the topic of multiple change management by adopting an engineered research methodology, conducted within a Moroccan company during its implementation of several change projects that aim at improving its supply chain management performance. Firstly, we present the key concepts related to our research, namely change management, multiproject management and supply chain management. Then, we try to assess how the change management and multi-project management are applied in this company. Finally, we try to propose an approach that will help managers in dealing with multiple change projects. This approach proposes to integrate change management, project management and multi-project management for managing change projects according to three organizational levels: executive level, project portfolio level and change project level.Keywords: change management, multi-project management, project management, change portfolio, supply chain management,
Procedia PDF Downloads 23618044 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India
Authors: Anupama Singh, Papia Raj
Abstract:
Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.Keywords: municipal solid waste, Patna, public health, sustainable recycling
Procedia PDF Downloads 32318043 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction
Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain
Abstract:
As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development
Procedia PDF Downloads 38618042 Effect of Concrete Waste Quality on the Compressive Strength of Recycled Concrete
Authors: Kebaili Bachir
Abstract:
The reuse of concrete waste as a secondary aggregate could be an efficient solution for sustainable development and long-term environmental protection. The variable nature of waste concrete, with various compressive strengths, can have a negative effect on the final compressive strength of recycled concrete. Accordingly, an experimental test programme was developed to evaluate the effect of parent concrete qualities on the performance of recycled concrete. Three grades with different compressive strengths 10MPa, 20MPa, and 30MPa were considered in the study; moreover, an unknown compressive strength was introduced as well. The trial mixes used 40% secondary aggregates (both course and fine) and 60% of natural aggregates. The compressive strength of the test concrete decrease between 15 and 25% compared to normal concrete with no secondary aggregates. This work proves that the strength properties of the parent concrete have a limited effect on the compressive strength of recycled concrete. Low compressive strength parent concrete when crushed generate a high percentage of recycled coarse aggregates with the less attached mortar and give the same compressive strength as an excellent parent concrete. However, the decrease in compressive strength can be mitigated by increasing the cement content 4% by weight of recycled aggregates used.Keywords: compressive, concrete, quality, recycled, strength
Procedia PDF Downloads 32718041 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net
Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi
Abstract:
Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation
Procedia PDF Downloads 18318040 Agroforestry Systems and Practices and Its Adoption in Kilombero Cluster of Sagcot, Tanzania
Authors: Lazaro E. Nnko, Japhet J. Kashaigili, Gerald C. Monela, Pantaleo K. T. Munishi
Abstract:
Agroforestry systems and practices are perceived to improve livelihood and sustainable management of natural resources. However, their adoption in various regions differs with the biophysical conditions and societal characteristics. This study was conducted in Kilombero District to investigate the factors influencing the adoption of different agroforestry systems and practices in agro-ecosystems and farming systems. A household survey, key informant interviews, and focus group discussion was used for data collection in three villages. Descriptive statistics and multinomial logistic regression in SPSS were applied for analysis. Results show that Igima and Ngajengwa villages had home garden practices dominated, as revealed by 63.3% and 66.7%, respectively, while Mbingu village had mixed intercropping practice with 56.67%. Agrosilvopasture systems were dominant in Igima and Ngajengwa villages with 56.7% and 66.7%, respectively, while in Mbingu village, the dominant system was agrosilviculture with 66.7%. The results from multinomial logistic regression show that different explanatory variable was statistical significance as predictors of the adoption of agroforestry systems and practices. Residence type and sex were the most dominant factor influencing the adoption of agroforestry systems. Duration of stay in the village, availability of extension education, residence, and sex were the dominant factor influencing the adoption of agroforestry practices. The most important and statistically significant factors among these were residence type and sex. The study concludes that agroforestry will be more successful if the local priorities, which include social-economic need characteristics of the society, will be considered in designing systems and practices. The socio-economic need of the community should be addressed in the process of expanding the adoption of agroforestry systems and practices.Keywords: agroforestry adoption, agroforestry systems, agroforestry practices, agroforestry, Kilombero
Procedia PDF Downloads 11818039 The Impact of Direct and Indirect Pressure Measuring Systems on the Pressure Mapping for the Medical Compression Garments
Authors: Arash M. Shahidi, Tilak Dias, Gayani K. Nandasiri
Abstract:
While graduated compression is the foundation of treatment and management of many medical complications such as leg ulcer, varicose veins, and lymphedema, monitoring the interface pressure has been conducted using different sensors that operate based on diverse approaches. The variations existed from the pressure readings collected using different interface pressure measurement systems would cause difficulties in taking a decision regarding the compression therapy. It is crucial to acknowledge the differences existing between direct and indirect pressure measurement systems while considering the commercially available systems such as AMI, Picopress and OPM which are under direct measurements systems, and HATRA (BSI), HOSY (RAL-GZ) and FlexiForce which comes under the indirect measurement system. Furthermore, Piezo-resistive sensors (Flexiforce) can measure the changes in resistance corresponding to the applied force on the sensing area. Direct pressure measuring systems are capable of measuring interface pressure on the three-dimensional states, while the indirect pressure measuring systems stretch the fabric in the two-dimensional direction and extrapolate pressure from surface tension measured on the device and neglect the vital factor which is the radius of curvature. In this study, a leg mannequin of known dimensions is selected with a knitted class 3 compression stocking. It has been decided to evaluate the data collected from different available systems (AMI, PicoPress, FlexiForce, and HATRA) and compare the results. The results showed a discrepancy between Hatra, AMI, Picopress, and Flexiforce against the pressure standard used to generate class 3 compression stocking. As predicted a higher pressure value with direct interface measuring systems were monitored against HATRA due to the effect of the radius of curvature.Keywords: AMI, FlexiForce, graduated compression, HATRA, interface pressure, PicoPress
Procedia PDF Downloads 35218038 Framework for Incorporating Environmental Performance in Network-Level Pavement Maintenance Program
Authors: Jessica Achebe, Susan Tighe
Abstract:
The reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to an optimal allocation of resources and reduced road user cost. This is the essence of incorporating environmental sustainability into pavement management. The functionality of performance measurement approach has made it one of the most valuable tool to Pavement Management Systems (PMSs) to account for different criteria in the decision-making process. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this paper present the first step, the intention is to review the previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for network-level sustainable maintenance and rehabilitation programming.Keywords: pavement management, environment sustainability, network-level evaluation, performance measures
Procedia PDF Downloads 30618037 Smart Interior Design: A Revolution in Modern Living
Authors: Fatemeh Modirzare
Abstract:
Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design
Procedia PDF Downloads 7018036 A Study of the Replacement of Natural Coarse Aggregate by Spherically-Shaped and Crushed Waste Cathode Ray Tube Glass in Concrete
Authors: N. N. M. Pauzi, M. R. Karim, M. Jamil, R. Hamid, M. F. M. Zain
Abstract:
The aim of this study is to conduct an experimental investigation on the influence of complete replacement of natural coarse aggregate with spherically-shape and crushed waste cathode ray tube (CRT) glass to the aspect of workability, density, and compressive strength of the concrete. After characterizing the glass, a group of concrete mixes was prepared to contain a 40% spherical CRT glass and 60% crushed CRT glass as a complete (100%) replacement of natural coarse aggregates. From a total of 16 types of concrete mixes, the optimum proportion was selected based on its best performance. The test results showed that the use of spherical and crushed glass that possesses a smooth surface, rounded, irregular and elongated shape, and low water absorption affects the workability of concrete. Due to a higher specific gravity of crushed glass, concrete mixes containing CRT glass had a higher density compared to ordinary concrete. Despite the spherical and crushed CRT glass being stronger than gravel, the results revealed a reduction in compressive strength of the concrete. However, using a lower water to binder (w/b) ratio and a higher superplasticizer (SP) dosage, it is found to enhance the compressive strength of 60.97 MPa at 28 days that is lower by 13% than the control specimen. These findings indicate that waste CRT glass in the form of spherical and crushed could be used as an alternative of coarse aggregate that may pave the way for the disposal of hazardous e-waste.Keywords: cathode ray tube, glass, coarse aggregate, compressive strength
Procedia PDF Downloads 16218035 Hybrid Energy Harvesting System with Energy Storage Management
Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia
Abstract:
In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting
Procedia PDF Downloads 8218034 Bio-Hub Ecosystems: Profitability through Circularity for Sustainable Forestry, Energy, Agriculture and Aquaculture
Authors: Kimberly Samaha
Abstract:
The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding biomass as a feedstock for power plants. Yet the lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. This study analyzed data and submittals to the Born Global Maine Innovation Challenge. The Innovation Challenge was a global innovation challenge to identify process innovations that could address a ‘whole-tree’ approach of maximizing the products, byproducts, energy value and process slip-streams into a circular zero-waste design. Participating companies were at various stages of developing bioproducts and included biofuels, lignin-based products, carbon capture platforms and biochar used as both a filtration medium and as a soil amendment product. This case study shows the QCA (Qualitative Comparative Analysis) methodology of the prequalification process and the resulting techno-economic model that was developed for the maximizing profitability of the Bio-Hub Ecosystem through continuous expansion of system waste streams into valuable process inputs for co-hosts. A full site plan for the integration of co-hosts (biorefinery, land-based shrimp and salmon aquaculture farms, a tomato green-house and a hops farm) at an operating forestry-based biomass to energy plant in West Enfield, Maine USA. This model and process for evaluating the profitability not only proposes models for integration of forestry, aquaculture and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. In this particular study, profitability is assessed at two levels CAPEX (Capital Expenditures) and in OPEX (Operating Expenditures). Given that these projects start with repurposing facilities where the industrial level infrastructure is already built, permitted and interconnected to the grid, the addition of co-hosts first realizes a dramatic reduction in permitting, development times and costs. In addition, using the biomass energy plant’s waste streams such as heat, hot water, CO₂ and fly ash as valuable inputs to their operations and a significant decrease in the OPEX costs, increasing overall profitability to each of the co-hosts bottom line. This case study utilizes a proprietary techno-economic model to demonstrate how utilizing waste streams of a biomass energy plant and/or biorefinery, results in significant reduction in OPEX for both the biomass plants and the agriculture and aquaculture co-hosts. Economically viable Bio-Hubs with favorable environmental and community impacts may prove critical in garnering local and federal government support for pilot programs and more wide-scale adoption, especially for those living in severely economically depressed rural areas where aging industrial sites have been shuttered and local economies devastated.Keywords: bio-economy, biomass energy, financing, zero-waste
Procedia PDF Downloads 13418033 Metal Contamination in an E-Waste Recycling Community in Northeastern Thailand
Authors: Aubrey Langeland, Richard Neitzel, Kowit Nambunmee
Abstract:
Electronic waste, ‘e-waste’, refers generally to discarded electronics and electrical equipment, including products from cell phones and laptops to wires, batteries and appliances. While e-waste represents a transformative source of income in low- and middle-income countries, informal e-waste workers use rudimentary methods to recover materials, simultaneously releasing harmful chemicals into the environment and creating a health hazard for themselves and surrounding communities. Valuable materials such as precious metals, copper, aluminum, ferrous metals, plastic and components are recycled from e-waste. However, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and some polybrominated diphenyl ethers (PBDEs), and heavy metals are toxicants contained within e-waste and are of great concern to human and environmental health. The current study seeks to evaluate the environmental contamination resulting from informal e-waste recycling in a predominantly agricultural community in northeastern Thailand. To accomplish this objective, five types of environmental samples were collected and analyzed for concentrations of eight metals commonly associated with e-waste recycling during the period of July 2016 through July 2017. Rice samples from the community were collected after harvest and analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and gas furnace atomic spectroscopy (GF-AS). Soil samples were collected and analyzed using methods similar to those used in analyzing the rice samples. Surface water samples were collected and analyzed using absorption colorimetry for three heavy metals. Environmental air samples were collected using a sampling pump and matched-weight PVC filters, then analyzed using Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICAP-AES). Finally, surface wipe samples were collected from surfaces in homes where e-waste recycling activities occur and were analyzed using ICAP-AES. Preliminary1 results indicate that some rice samples have concentrations of lead and cadmium significantly higher than limits set by the United States Department of Agriculture (USDA) and the World Health Organization (WHO). Similarly, some soil samples show levels of copper, lead and cadmium more than twice the maximum permissible level set by the USDA and WHO, and significantly higher than other areas of Thailand. Surface water samples indicate that areas near e-waste recycling activities, particularly the burning of e-waste products, result in increased levels of cadmium, lead and copper in surface waters. This is of particular concern given that many of the surface waters tested are used in irrigation of crops. Surface wipe samples measured concentrations of metals commonly associated with e-waste, suggesting a danger of ingestion of metals during cooking and other activities. Of particular concern is the relevance of surface contamination of metals to child health. Finally, air sampling showed that the burning of e-waste presents a serious health hazard to workers and the environment through inhalation and deposition2. Our research suggests a need for improved methods of e-waste recycling that allows workers to continue this valuable revenue stream in a sustainable fashion that protects both human and environmental health. 1Statistical analysis to be finished in October 2017 due to follow-up field studies occurring in July and August 2017. 2Still awaiting complete analytic results.Keywords: e-waste, environmental contamination, informal recycling, metals
Procedia PDF Downloads 36218032 Physico-chemical and Biological Characterization of Urban Municipal Landfill Leachate and Treatment by Ozone Process
Authors: Ramdani Nadia, Kheddaoui Abdelkrim, Nemmich Said, Tilmatine Amar
Abstract:
The waste production nationwide is increasing every year, on account of therapid urbanization and growing populations, also consumption modes. Algerian political authorities have chosen Technical Landfill Centres (TLC) as a competitive and safe technique of waste management. However, storing these wastes in a bad way poses several environmental challenges, especially in the Department of Saïda, the latter have significant groundwaters. The major problem registered on this Landfill is the leachate resulting from the degradation of buried wastes which were disposed off the outside of the leachate basin and present a source of pollution for the local groundwaters by heavy metals and pathogenic germs. The present paper investigates the leachate treatment ozone process produced by Dielectric Barrier Discharge (DBD) under high potential. The experimental results obtained allowed us to show the efficiency of the treatment process by ozone based on the micro pollutant analysis (DCO, DBO5 , COT, heavy metals) and microbial analysis, after ozonation treatment. The results show that 80% of micro pollutants are eliminated and 100% destruction of all bacteria which reveals the high efficiency of the process.Keywords: landfill, leachate, treatment, ozone, polluants, bacteria, micropolluant
Procedia PDF Downloads 2218031 Waste Water Treatment and Emerging Waste Water Contaminants in Developing Countries
Authors: Opata Obinna Johnpaul
Abstract:
Wastewater is one of the day-to–day concerns of humans and the environment, in general, due to its importance to the environment. This is because of the presence of various contaminants that are involved in waste water. Wastewater treatment can be defined as the proportion of wastewater that is treated, in order to reduce pollutants before being discharged to the environment, by the level of treatment. This work discusses wastewater treatment, its contaminants, as well as the technologies, involved.The major focus is to analyze Okomu Oil Palm Company Plc, their effluent treatment facility. Okomu Oil Palm Company is based in Nigeria, which is one of the developing countries of the world. Okomu Oil Palm Company uses aquatic treatment technology for their effluent treatment and applies the physio-chemical level of advanced chemical treatment of wastewater treatment process. This work will discuss the outcome of the laboratory sample taken on the 30th January, 2015 and analyzed between 30th January- 4th February 2015.Keywords: wastewater treatment, contaminants, physio-chemical process, Okomu oil palm
Procedia PDF Downloads 35818030 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells
Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser
Abstract:
Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.Keywords: cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security
Procedia PDF Downloads 32618029 Quantification of Leachate Potential of the Quezon City Controlled Dumping Facility Using Help Model
Authors: Paul Kenneth D. Luzon, Maria Antonia N. Tanchuling
Abstract:
The Quezon City Controlled Dumping facility also known as Payatas produces leachate which can contaminate soil and water environment in the area. The goal of this study is to quantify the leachate produced by the QCCDF using the Hydrologic Evaluation of Landfill Performance (HELP) model. Results could be used as input for groundwater contaminant transport studies. The HELP model is based on a simple water budget and is an essential “model requirement” used by the US Environmental Protection Agency (EPA). Annual waste profile of the QCCDF was calculated. Based on topographical maps and estimation of settlement due to overburden pressure and degradation, a total of 10M m^3 of waste is contained in the landfill. The input necessary for the HELP model are weather data, soil properties, and landfill design. Results showed that from 1988 to 2011, an average of 50% of the total precipitation percolates through the bottom layer. Validation of the results is still needed due to the assumptions made in the study. The decrease in porosity of the top soil cover showed the best mitigation for minimizing percolation rate. This study concludes that there is a need for better leachate management system in the QCCDF.Keywords: help model, landfill, payatas trash slide, quezon city controlled dumping facility
Procedia PDF Downloads 29118028 Green Amphiphilic Nanostructures from CNSL
Authors: Ermelinda Bloise, Giuseppe Mele
Abstract:
In recent years, Cashew Nut Shell Liquid (CNSL) has received great attention from researchers because it is an abundant waste material from the agri-food industry that fits perfectly into the idea of reusing waste from renewable resources for the production of new functional materials. The different components of this waste showed a certain chemical versatility and, above all, various biological activities. Take advantage of their surface-active capacity in particular conditions, various amphiphilic nanostructures have been prepared through sustainable chemical processes using cardanol (CA) and anacardic acid (AA) as two main components of the CNSL. In-batch solvent-free method has been developed to obtain new versatile green nanovesicles capable of effectively incorporating and stabilizing both hydrophobic and hydrophilic bioactive molecules. Furthermore, these nanosystems have shown antioxidant and cytotoxic properties and, in vitroinvestigations, established that they efficiently taken-up some human cells. With the idea of meeting the principles of green chemistry, even more, some improvements of the synthetic procedure have been implemented in terms of milder temperature and pH conditions, producing one-component nanovesicles, in which the AA and CA-derivatives are the sole building block of the green nanosystems. Finally, a new experimental approach has been carried out by a microfluidic route, with the advantage to operate at continuous flows, with a reduced amount of reagents, waste, and at lower temperatures, ensuring the achievement of size-monodisperse amphiphilic nanostructures that do not need further purification steps.Keywords: bioactive nanosystems, bio-based renewables, cashew oil, green nanoformulations
Procedia PDF Downloads 9018027 Flow Performance of Hybrid Cement Based Mortars
Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal
Abstract:
The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow
Procedia PDF Downloads 30718026 Optimizing Parallel Computing Systems: A Java-Based Approach to Modeling and Performance Analysis
Authors: Maher Ali Rusho, Sudipta Halder
Abstract:
The purpose of the study is to develop optimal solutions for models of parallel computing systems using the Java language. During the study, programmes were written for the examined models of parallel computing systems. The result of the parallel sorting code is the output of a sorted array of random numbers. When processing data in parallel, the time spent on processing and the first elements of the list of squared numbers are displayed. When processing requests asynchronously, processing completion messages are displayed for each task with a slight delay. The main results include the development of optimisation methods for algorithms and processes, such as the division of tasks into subtasks, the use of non-blocking algorithms, effective memory management, and load balancing, as well as the construction of diagrams and comparison of these methods by characteristics, including descriptions, implementation examples, and advantages. In addition, various specialised libraries were analysed to improve the performance and scalability of the models. The results of the work performed showed a substantial improvement in response time, bandwidth, and resource efficiency in parallel computing systems. Scalability and load analysis assessments were conducted, demonstrating how the system responds to an increase in data volume or the number of threads. Profiling tools were used to analyse performance in detail and identify bottlenecks in models, which improved the architecture and implementation of parallel computing systems. The obtained results emphasise the importance of choosing the right methods and tools for optimising parallel computing systems, which can substantially improve their performance and efficiency.Keywords: algorithm optimisation, memory management, load balancing, performance profiling, asynchronous programming.
Procedia PDF Downloads 1218025 Security Issues on Smart Grid and Blockchain-Based Secure Smart Energy Management Systems
Authors: Surah Aldakhl, Dafer Alali, Mohamed Zohdy
Abstract:
The next generation of electricity grid infrastructure, known as the "smart grid," integrates smart ICT (information and communication technology) into existing grids in order to alleviate the drawbacks of existing one-way grid systems. Future power systems' efficiency and dependability are anticipated to significantly increase thanks to the Smart Grid, especially given the desire for renewable energy sources. The security of the Smart Grid's cyber infrastructure is a growing concern, though, as a result of the interconnection of significant power plants through communication networks. Since cyber-attacks can destroy energy data, beginning with personal information leaking from grid members, they can result in serious incidents like huge outages and the destruction of power network infrastructure. We shall thus propose a secure smart energy management system based on the Blockchain as a remedy for this problem. The power transmission and distribution system may undergo a transformation as a result of the inclusion of optical fiber sensors and blockchain technology in smart grids. While optical fiber sensors allow real-time monitoring and management of electrical energy flow, Blockchain offers a secure platform to safeguard the smart grid against cyberattacks and unauthorized access. Additionally, this integration makes it possible to see how energy is produced, distributed, and used in real time, increasing transparency. This strategy has advantages in terms of improved security, efficiency, dependability, and flexibility in energy management. An in-depth analysis of the advantages and drawbacks of combining blockchain technology with optical fiber is provided in this paper.Keywords: smart grids, blockchain, fiber optic sensor, security
Procedia PDF Downloads 11918024 The Integrated Safety Promotion Program on Safety Work Behaviors Among Waste Collectors
Authors: Natnicha Wareesamarn, Waruntorn Jongrungrotsakul, Anon Wisutthananon
Abstract:
Occupational illnesses and injuries are the partial results of unsafe work behaviors. Safety training, an occupational health and safety standard, could either reduce or prevent such illnesses and injuries. This quasi-experimental research aimed to examine the effect of integrated safety training on safety work behaviors among 54 waste collectors working in the Su-ngai Kolok and Muang districts in Narathiwat Province. The workers were equally divided into an experimental or a control group (27 in each). The study was implemented from September to November 2021. The research instruments consisted of 1) an integrated safety promotion program on safety work behaviors which was developed based on the literature review, and 2) a questionnaire on safe working behaviors among waste collectors modified from a safety work behaviors questionnaire by Sitthichai Jaikhan et al. (2019). The content validity of the questionnaire was confirmed by experts with a content validity index of 0.97, while reliability was at an acceptable level (0.86 - 0.90). Data were analyzed using descriptive statistics and a t-test. The findings showed that after receiving the integrated safety promotion program on safety work behaviors, the mean scores for safety work behaviors among the experimental group (x ̅ = 73.89, S.D.=1.12) were significantly higher than those of the control group (x ̅ = 47.93, S.D.= 2.45) (p<.001). Furthermore, it was found that the mean score for safety work behaviors among the experimental group after receiving the integrated safety promotion program (x ̅=73.89, S.D.= 2.45) was significantly higher than that before receiving the program (x ̅=47.85, S.D.= 2.16) (p<.001). These findings indicate that occupational health nurses and related staff should place great concern on the application of integrated safety promotion programs into their own work. This is anticipated to enhance safe work behaviors, thereby reducing occupational illnesses and injuries, as well as enhancing the quality of working life among waste collectors.Keywords: integrated safety promotion program, safety work behaviors, waste collectors, safety training
Procedia PDF Downloads 11518023 Analyzing the Quality of Cloud-Based E-Learning Systems on the Perception of the Learners and the Teachers
Authors: R. W. C. Devindi, S. M. Buddika Harshanath
Abstract:
E-learning is a widely used technology for learning in the modern world. With the pandemic situation the popularity of using e-learning has been increased in a larger capacity. The e-learning educational systems require software resources as well as hardware usually but it is hard for most of the education institutions to afford those resources. Also with the massive user load e-learning has to broaden the server side resources as well. Therefore, in the present cloud computing was implemented in order to make the e – learning systems more efficient. The researcher has analyzed the quality of the e-learning systems on the perception of the learners and the teachers with the aid of hypothesis and has given the analyzed results and the discussion in this report. Therefore, the future research will be able to get some steps to increase the quality of the online learning systems furthermore. In the case of e-learning, quality assurance and cost effectiveness are essential. A complex quality assurance system is used in the stated project. There are no well-defined standard evaluation measures in this field. As a result, accurately assessing the e-learning system's overall quality is challenging. The researcher has done the analysis with the aid of standard methods and software.Keywords: LMS–learning management system, SPSS–statistical package for social sciences (software), eigen value, hypothesis
Procedia PDF Downloads 10718022 Operation Strategies of Residential Micro Combined Heat and Power Technologies
Authors: Omar A. Shaneb, Adell S. Amer
Abstract:
Reduction of CO2 emissions has become a priority for several countries due to increasing concerns about global warming and climate change, especially in the developed countries. Residential sector is considered one of the most important sectors for considerable reduction of CO2 emissions since it represents a significant amount of the total consumed energy in those countries. A significant CO2 reduction cannot be achieved unless some initiatives have been adopted in the policy of these countries. Introducing micro combined heat and power (µCHP) systems into residential energy systems is one of these initiatives, since such a technology offers several advantages. Moreover, µCHP technology has the opportunity to be operated not only by natural gas but it could also be operated by renewable fuels. However, this technology can be operated by different operation strategies. Each strategy has some advantages and disadvantages. This paper provides a review of different operation strategies of such a technology used for residential energy systems, especially for single dwellings. The review summarizes key points that outline the trend of previous research carried out in this field.Keywords: energy management, µCHP systems, residential energy systems, sustainable houses, operation strategy.
Procedia PDF Downloads 429