Search results for: pre-b cell acute lymphoblastic leukemia
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4552

Search results for: pre-b cell acute lymphoblastic leukemia

3562 Prospects of Acellular Organ Scaffolds for Drug Discovery

Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen

Abstract:

Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.

Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering

Procedia PDF Downloads 295
3561 Investigation of The Effects of Hydroxytyrosol on Cytotoxicity, Apoptosis, PI3K/Akt, and ERK 1/2 Pathways in Ovarian Cancer Cell Cultures

Authors: Latife Merve Oktay, Berrin Tugrul

Abstract:

Hydroxytyrosol (HT) is a phenolic phytochemical molecule derived from the hydrolysis of oleuropein, which originates during the maturation of the olives. It has recently received particular attention because of its antioxidant, anti-proliferative, pro-apoptotic and anti-inflammatory activities. In this study, we investigated the cytotoxic and apoptotic effects of hydroxytyrosol and its effects on phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase 1/2 (ERK 1/2) signaling pathways in human ovarian cancer cell lines OVCAR-3 and MDAH-2774. XTT cell proliferation kit, Cell Death Detection Elisa Plus Kit (Roche) and Human Apoptosis Array (R&D Systems) were used to determine the cytotoxic and apoptotic effects of HT in OVCAR-3 and MDAH-2774 cell lines at 24, 48, 72, and 96 h. Effect of HT on PI3K/Akt and ERK 1/2 signaling pathways were investigated by using specific inhibitors of these pathways. IC50 values of HT were found to be 102.3 µM in MDAH-2774 cells at 72 h and 51.5 µM in OVCAR-3 cells at 96 h. Apoptotic effect of HT in MDAH-2774 cells was the highest at 50 µM at 72 h, and kept decreasing at 100 and 150 µM concentrations and was not seen at 200 µM and higher concentrations. Highest apoptotic effect was seen at 100 µM concentration in OVCAR-3 cells at 96 h, however apoptotic effect was decreased over 100 µM concentrations. According to antibody microarray results, HT increased the levels of pro-apoptotic molecules Bad, Bax, active caspase-3, Htra2/Omi by 2.0-, 1.4-, 1.2-, 4.2-fold, respectively and also increased the levels of pro-apoptotic death receptors TRAIL R1/DR4, TRAIL R2/DR5, FAS/TNFRSF6 by 2.1-, 1.7-, 1.6-fold, respectively, however, it decreased the level of Survivin by 1.6-fold which is one of the inhibitor of apoptosis protein (IAP) family in MDAH-2774 cells. In OVCAR-3 cells, HT decreased the levels of anti-apoptotic proteins Bcl-2, pro-caspase 3 by 3.1-, 8.2-fold, respectively and IAP family proteins CIAP-1, CIAP-2, XIAP, Livin, Survivin by 6.5-, 6.0-, 3.2-, 2.2-, 2.7-fold, respectively and increased the level of cytochrome-c by 1.2-fold. We have shown that HT shows its cytotoxic and apoptotic effect through inhibiting ERK 1/2 signaling pathway in both OVCAR-3 and MDAH-2774 cells. Further studies are needed to investigate molecular mechanisms and modulatory effects of hydroxytyrosol.

Keywords: apoptosis, cytotoxicity, hydroxytyrosol, ovarian cancer

Procedia PDF Downloads 352
3560 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell

Authors: Sujit Kumar Guchhait, Subir Paul

Abstract:

One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.

Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM

Procedia PDF Downloads 298
3559 Prospective Randomized Trial of Na/K Citrate for the Prevention of Contrast-Induced Nephropathy in High-Risk Patients

Authors: Leili Iranirad, Mohammad Saleh Sadeghi, Seyed Fakhreddin Hejazi, Negar Vakili Razlighi

Abstract:

Objective: Contrast-induced nephropathy (CIN) or contrast-induced acute kidney injury (CI-AKI) is an unknown acute kidney injury (AKI) occurring after exposure to contrast media (CM). Contrast agents are most often used for diagnostic procedures or therapeutic angiographic interventions. Recently, Na/K citrate as a urine alkalinization has been evaluated for the prevention of CIN. We conducted this experiment to evaluate the efficiency of Na/K citrate on CIN in high-risk patients treated with cardiac catheterization. Methods: A prospective randomized clinical trial was conducted on 400 patients having moderate to high-risk factors for CIN treated with elective percutaneous coronary intervention (PCI) and were assigned randomly to the control group or the Na/K citrate group. The Na/K citrate group (n=200) received 5 g Na/K citrate solution, which was diluted in 200 mL water two h before and four hours after the first administration and intravenous hydration for two h prior to and six h after the procedure, while the control group (n=200) only received intravenous hydration. Serum creatinine (SCr) was calculated prior to the contrast exposure and after 48 h. CIN was described as a 25% increase in creatinine of serum (SCr) or >0.5 mg/dl 48 h after contrast administration. Results: CIN was observed in 33 patients (16.5%) in the control group and in 6 patients (3%) in the Na/K citrate group. A significant variation was recorded in the CIN incidence between the two groups 48 h after the radiocontrast agent administration (p < 0.001). Conclusion: Our results show that Na/K citrate is useful and substantially reduces the incidence of CIN.

Keywords: contrast media, citrate, PCI

Procedia PDF Downloads 96
3558 Evaluation of Cytotoxic Effect of Two Diterpenes from Plectranthus barbatus

Authors: Nawal Al Musayeib, Musarat Amina, Perwez Alam

Abstract:

Plectranthus barbatus Andrews (Lamiaceae) is the most common species of genus Plectranthus. It is used for treating various ailments. In this study, two rare diterpenes 11,14-dihydroxy-8,11,13-abietatrien-7-one (1) and 12-hydroxyabieta-8(14),9(11),12-trien-7-one (2) were isolated for the first time from P. barbatus. Their chemical structures were verified utilizing various spectroscopic experiments. The effect of diterpenes against undifferentiated/anaplastic thyroid cancer cell line (FRO) was evaluated and they were quantitatively analysed using HPTLC method. The two diterpenes were found to be cytotoxic, however compound 1 showed significant cytotoxic effects where 95% reduction in the cell viability was observed in different time intervals. The quantity of compound 1 and compound 2 in PBCE were found to be 2.04 and15.97 μg/mg, respectively of dried weight of the extract.

Keywords: abietatrien, cancer, diterpenes, Plectranthus barbatus

Procedia PDF Downloads 247
3557 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 102
3556 Tumour-Associated Tissue Eosinophilia as a Prognosticator in Oral Squamous Cell Carcinoma

Authors: Karen Boaz, C. R. Charan

Abstract:

Background: The infiltration of tumour stroma by eosinophils, Tumor-Associated Tissue Eosinophilia (TATE), is known to modulate the progression of Oral Squamous Cell Carcinoma (OSCC). Eosinophils have direct tumoricidal activity by release of cytotoxic proteins and indirectly they enhance permeability into tumor cells enabling penetration of tumoricidal cytokines. Also, eosinophils may promote tumor angiogenesis by production of several angiogenic factors. Identification of eosinophils in the inflammatory stroma has been proven to be an important prognosticator in cancers of mouth, oesophagus, larynx, pharynx, breast, lung, and intestine. Therefore, the study aimed to correlate TATE with clinical and histopathological variables, and blood eosinophil count to assess the role of TATE as a prognosticator in Oral Squamous Cell Carcinoma (OSCC). Methods: Seventy two biopsy-proven cases of OSCC formed the study cohort. Blood eosinophil counts and TNM stage were obtained from the medical records. Tissue sections (5µm thick) were stained with Haematoxylin and Eosin. The eosinophils were quantified at invasive tumour front (ITF) in 10HPF (40x magnification) with an ocular grid. Bryne’s grading of ITF was also performed. A subset of thirty cases was also assessed for association of TATE with recurrence, involvement of lymph nodes and surgical margins. Results: 1) No statistically significant correlation was found between TATE and TNM stage, blood eosinophil counts and most parameters of Bryne’s grading system. 2) Statistically significant relation of intense degree of TATE was associated with the absence of distant metastasis, increased lympho-plasmacytic response and increased survival (diseasefree and overall) of OSCC patients. 3) In the subset of 30 cases, tissue eosinophil counts were higher in cases with lymph node involvement, decreased survival, without margin involvement and in cases that did not recur. Conclusion: While the role of eosinophils in mediating immune responses seems ambiguous as eosinophils support cell-mediated tumour immunity in early stages while inhibiting the same in advanced stages, TATE may be used as a surrogate marker for determination of prognosis in oral squamous cell carcinoma.

Keywords: tumour-associated tissue eosinophilia, oral squamous cell carcinoma, prognosticator, tumoral immunity

Procedia PDF Downloads 243
3555 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell

Authors: Abidullah, Basharat Hussain, Jong Seok Kim

Abstract:

Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.

Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs

Procedia PDF Downloads 120
3554 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 554
3553 Discovery, Design and Synthesis of Some Novel Antitumor 1,2,4-Triazine Derivatives as C-Met Kinase Inhibitors

Authors: Ibrahim M. Labouta, Marwa H. El-Wakil, Hayam M. Ashour, Ahmed M. Hassan, Manal N. Saudi

Abstract:

The receptor tyrosine kinase c-Met is an attractive target for therapeutic treatment of cancers nowadays. Among the wide variety of heterocycles that have been explored for developing c-Met kinase inhibitors, the 1,2,4-triazines have been rarely investigated, although they are well known in the literature to possess antitumor activities. Herein we describe the design and synthesis of a novel series of 1,2,4-triazine derivatives possessing N-acylarylhydrazone moiety and another series combining the 1,2,4-triazine scaffold to the well-known anticancer drug 6-MP in order to explore their “double-drug” effect. The synthesized compounds were evaluated for their in vitro antitumor activity against three c-Met addicted cancer cell lines (A549, HT-29 and MKN-45). Most compounds showed moderate to excellent antiproliferative activity and four compounds showed potent inhibitory activity more than the reference drug Foretinib against one or more cancer cell lines. The obtained results revealed that the potent compounds are highly selective to A549 (lung adenocarcinoma) cancer cell line. The c-Met kinase inhibitory activity of the potent derivatives is still under investigation. The present study clearly demonstrates that the 1,2,4-triazine core ring exhibits promising antitumor activity with potential c-Met kinase inhibitory activity.

Keywords: 1, 2, 4-triazine, antitumor, c-Met inhibitor, double-drug

Procedia PDF Downloads 333
3552 Inter-Cell-Interference Mitigation Scheme in Wireless Communication System

Authors: Jae-Hyun Ro, Yong-Jun Kim, Eui-Hak Lee, Hyoung-Kyu Song

Abstract:

Mobile communication has been developing very rapidly since it appeared. However, although mobile communication market has been rapidly developing, many mobile users are not offered good quality of service (QoS) due to increment of the amount of data traffic. Recently, femtocell is very hot issue in mobile communication because femtocell can solve the problems of data traffic and offer better QoS to mobile users. However, the deployment of femtocell in existing macrocell coverage area is not so simple due to the influence of inter-cell-interference (ICI) with existing macrocell. Thus, this paper proposes femtocell scheme which is able to reduce the influence of ICI to deploy femtocell easily.

Keywords: CDD, femtocell, interference, macrocell, OFDM

Procedia PDF Downloads 499
3551 Placebo Analgesia in Older Age: Evidence from Event-Related Potentials

Authors: Angelika Dierolf, K. Rischer, A. Gonzalez-Roldan, P. Montoya, F. Anton, M. Van der Meulen

Abstract:

Placebo analgesia is a powerful cognitive endogenous pain modulation mechanism with high relevance in pain treatment. Older people would benefit, especially from non-pharmacologic pain interventions, since this age group is disproportionately affected by acute and chronic pain, while pharmacological treatments are less suitable due to polypharmacy and age-related changes in drug metabolism. Although aging is known to affect neurobiological and physiological aspects of pain perception, as for example, changes in pain threshold and pain tolerance, its effects on cognitive pain modulation strategies, including placebo analgesia, have hardly been investigated so far. In the present study, we are assessing placebo analgesia in 35 older adults (60 years and older) and 35 younger adults (between 18 and 35 years). Acute pain was induced with short transdermal electrical pulses to the inner forearm, using a concentric stimulating electrode. Stimulation intensities were individually adjusted to the participant’s threshold. Next to the stimulation site, we applied sham transcutaneous electrical nerve stimulation (TENS). Participants were informed that sometimes the TENS device would be switched on (placebo condition), and sometimes it would be switched off (control condition). In reality, it was always switched off. Participants received alternating blocks of painful stimuli in the placebo and control condition and were asked to rate the intensity and unpleasantness of each stimulus on a visual analog scale (VAS). Pain-related evoked potentials were recorded with a 64-channel EEG. Preliminary results show a reduced placebo effect in older compared to younger adults in both behavioral and neurophysiological data. Older people experienced less subjective pain reduction under sham TENS treatment compared to younger adults, as evidenced by the VAS ratings. The N1 and P2 event-related potential components were generally reduced in the older group. While younger adults showed a reduced N1 and P2 under sham TENS treatment, this reduction was considerably smaller in older people. This reduced placebo effect in the older group suggests that cognitive pain modulation is altered in aging and may at least partly explain why older adults experience more pain. Our results highlight the need for a better understanding of the efficacy of non-pharmacological pain treatments in older adults and how these can be optimized to meet the specific requirements of this population.

Keywords: placebo analgesia, aging, acute pain, TENS, EEG

Procedia PDF Downloads 136
3550 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications

Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy

Abstract:

Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.

Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr

Procedia PDF Downloads 511
3549 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke

Authors: Kyou Hee Shim, Hwa Sung Shin

Abstract:

When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.

Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration

Procedia PDF Downloads 220
3548 Adverse Effects of Natural Pesticides on Human and Animals: An Experimental Analysis

Authors: Abdel-Tawab H. Mossa

Abstract:

Synthetic pesticides are widely used in large-scale worldwide for control pests in agriculture and public health sectors in both developed and developing countries. Although the positive role of pesticides, they have many adverse toxic effects on humans, animals, and the ecosystem. Therefore, in the last few years, scientists have been searching for new active compounds from natural resources as an alternative to synthetic pesticides. Currently, many commercial natural pesticides are available commercially worldwide. These products are recommended for uses in organic farmers and considered as safe pesticides. This paper focuses on the adverse effects of natural pesticides on mammals. Available commercial pesticides in the market contain essential oils (e.g. pepper, cinnamon, and garlic), plant extracts, microorganism (e.g. bacteria, fungi or their toxin), mineral oils and some active compounds from natural recourses e.g. spinosad, neem, pyrethrum, rotenone, abamectin and other active compounds from essential oils (EOs). Some EOs components, e.g., thujone, pulegone, and thymol have high acute toxicity (LD50) is 87.5, 150 and 980 mg/kg. B.wt on mice, respectively. Natural pesticides such as spinosad, pyrethrum, neem, abamectin, and others have toxicological effects to mammals and ecosystem. These compounds were found to cause hematotoxicity, hepato-renal toxicity, biochemical alteration, reproductive toxicity, genotoxicity, and mutagenicity. It caused adverse effects on the ecosystem. Therefore, natural pesticides in general not safe and have high acute toxicity and can induce adverse effects at long-term exposure.

Keywords: natural pesticides, toxicity, safety, genotoxicity, ecosystem, biochemical

Procedia PDF Downloads 165
3547 Differences in Guilt, Shame, Self-Anger, and Suicide Cognitions Based on Recent Suicide Ideation and Lifetime Suicide Attempt History

Authors: E. H. Szeto, E. Ammendola, J. V. Tabares, A. Starkey, J. Hay, J. G. McClung, C. J. Bryan

Abstract:

Introduction: Suicide is a leading cause of death globally, which accounts for more deaths annually than war, acquired immunodeficiency syndrome, homicides, and car accidents, while an estimated 140 million individuals have significant suicide ideation (SI) each year in the United States. Typical risk factors such as hopelessness, depression, and psychiatric disorders can predict suicide ideation but cannot distinguish between those who ideate from those who attempt suicide (SA). The Fluid Vulnerability Theory of suicide posits that a person’s activation of the suicidal mode is predicated on one’s predisposition, triggers, baseline/acute risk, and protective factors. The current study compares self-conscious cognitive-affective states (including guilt, shame, anger towards the self, and suicidal beliefs) among patients based on the endorsement of recent SI (i.e., past two weeks; acute risk) and lifetime SA (i.e., baseline risk). Method: A total of 2,722 individuals in an outpatient primary care setting were included in this cross-sectional, observational study; data for 2,584 were valid and retained for analysis. The Differential Emotions Scale measuring guilt, shame, and self-anger and the Suicide Cognitions Scale measuring suicide cognitions were administered. Results: A total of 2,222 individuals reported no recent SI or lifetime SA (Group 1), 161 reported recent SI only (Group 2), 145 reported lifetime SA only (Group 3), 56 reported both recent SI and lifetime SA (Group 4). The Kruskal-Wallis test showed that guilt, shame, self-anger, and suicide cognitions were the highest for Group 4 (both recent SI and lifetime SA), followed by Group 2 (recent SI-only), then Group 3 (lifetime SA-only), and lastly, Group 1 (no recent SI or lifetime SA). Conclusion: The results on recent SI-only versus lifetime SA-only contribute to the literature on the Fluid Vulnerability Theory of suicide by capturing SI and SA in two different time periods, which signify the acute risks and chronic baseline risks of the suicidal mode, respectively. It is also shown that: (a) people with a lifetime SA reported more severe symptoms than those without, (b) people with recent SI reported more severe symptoms than those without, and (c) people with both recent SI and lifetime SA were the most severely distressed. Future studies may replicate the findings here with other pertinent risk factors such as thwarted belongingness, perceived burdensomeness, and acquired capability, the last of which is consistently linked to attempting among ideators.

Keywords: suicide, guilt, shame, self-anger, suicide cognitions, suicide ideation, suicide attempt

Procedia PDF Downloads 157
3546 Physiological Indicators and Stress Index of Scavenging Chickens at Lafarge and Dangote Cement Factory Areas of Ogun State

Authors: Oluwadele Joshua Femi, Akinlabi Ebenezer Yemi, Onaopemipo Adeitan, Kazeem Bello, Anthony Ekeocha, Miraim Tawose

Abstract:

This study was carried out to determine the physiological and stress index of scavenging chickens in LAFARGE (Ewekoro) and Dangote (Ibese) Cement Factories Area of Ogun State. One hundred adult scavenging chickens comprising of 25 chickens from LAFARGE, Dangote and respective adjourning communities (Imasayi and Wasimi) were used. Experimental birds were caught at night on their perch and kept in cages till the next morning. Data were collected on rectal temperature, pulse rate, and respiratory rate of the birds. Also, 5ml blood was collected through the wing vein of the chickens in each location using a sterilized needle and syringe and transported to laboratory for analysis. Significant (P<0.05) highest pulse rate (215.64 beat/minute) and respiratory rate (19.90 breaths/minute) were recorded among scavenging chickens at LAFARGE (Ewekoro) Area and the least (198.61 beat/minute and 16.93 breaths/minute, respectively) at Imasayi. There was no significant (P>0.05) difference in the rectal temperature of the birds in the study area. Significant (P<0.05) differences were also recorded in the Packed Cell Volume (PCV), Hemoglobin (Hb), White Blood Cell (WBC), Monocyte, and Glucose level of the chickens in study area with the highest (P<0.05) Packed Cell Volume (28.06%) and Haemoglobin (4.01g/dl) recorded in Ibese and the least Packed Cell Volume (22.00%) and Haemoglobin (288g/dl) in Imasayi. Highest (P<0.05) Monocyte (4.28%) and glucose (256.53g/dl) were recorded among scavenging chickens at Dangote (Ibese) while the least Monocyte (0.00%) and Glucose (194.53g/dl) was recorded among chickens at Wasimi. Highest (P<0.05) White Blood Cell (6488.89×103µl) was recorded among chickens at Ewekoro and the lowest value in Ibese (4388.44×103µl). There was no significant (P>0.05) difference in the Heterophyl, Lymphocyte, Basophyl and Heterophyl/Lymphocyte ratio of the chickens in the study Area. The study concluded that chickens reared at LAFARGE (Ewekoro) were stressed and had comprised welfare and health status compared to Dangote (Ibese) cement area and other agrarian communities. Effective environmental mitigation programme should be put in place to enhance the welfare of the scavenging chickens in LAFARGE Cement Factory Area.

Keywords: blood, chicken, poisonous substances, pack cell volume, communities

Procedia PDF Downloads 80
3545 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek

Abstract:

Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.

Keywords: experimental, photovoltaic, solar, temperature

Procedia PDF Downloads 481
3544 Plasma Engineered Nanorough Substrates for Stem Cells in vitro Culture

Authors: Melanie Macgregor-Ramiasa, Isabel Hopp, Patricia Murray, Krasimir Vasilev

Abstract:

Stem cells based therapies are one of the greatest promises of new-age medicine due to their potential to help curing most dreaded conditions such as cancer, diabetes and even auto-immune disease. However, establishing suitable in vitro culture materials allowing to control the fate of stem cells remain a challenge. Amongst the factor influencing stem cell behavior, substrate chemistry and nanotopogaphy are particularly critical. In this work, we used plasma assisted surface modification methods to produce model substrates with tailored nanotopography and controlled chemistry. Three different sizes of gold nanoparticles were bound to amine rich plasma polymer layers to produce homogeneous and gradient surface nanotopographies. The outer chemistry of the substrate was kept constant for all substrates by depositing a thin layer of our patented biocompatible polyoxazoline plasma polymer on top of the nanofeatures. For the first time, protein adsorption and stem cell behaviour (mouse kidney stem cells and mesenchymal stem cells) were evaluated on nanorough plasma deposited polyoxazoline thin films. Compared to other nitrogen rich coatings, polyoxazoline plasma polymer supports the covalent binding of proteins. Moderate surface nanoroughness, in both size and density, triggers cell proliferation. In association with polyoxazoline coating, cell proliferation is further enhanced on nanorough substrates. Results are discussed in term of substrates wetting properties. These findings provide valuable insights on the mechanisms governing the interactions between stem cells and their growth support.

Keywords: nanotopography, stem cells, differentiation, plasma polymer, oxazoline, gold nanoparticles

Procedia PDF Downloads 276
3543 Effects of Kolavironon Liver Oxidative Stress and Beta-Cell Damage in Streptozotocin-Induced Diabetic Rats

Authors: Omolola R. Ayepola, Nicole L. Brooks, Oluwafemi O. Oguntibeju

Abstract:

The liver plays an important role in the regulation of blood glucose and is a target organ of hyperglycaemia. Hyperglycemia plays a crucial role in the onset of various liver diseases and may culminate into hepatopathy if untreated. Alteration in antioxidant defense and increase in oxidative stress that results in tissue injury is characteristic of diabetes. We evaluated the protective effects of kolaviron-a biflavonoid complex, on hepatic antioxidants, lipid peroxidation and apoptosis in the liver of diabetic rats. To induce type I diabetes, rats were injected with streptozotocin intraperitoneally at a single dose of 50 mg/kg. Oral treatment of diabetic rats with kolaviron (100 mg/kg) started on the 6th day after diabetes induction and continued for 6 weeks (5 times weekly). Diabetic rats exhibited a significant increase in the peroxidation of hepatic lipids as observed from the elevated level of malondialdehyde (MDA) estimated by High-Performance Liquid Chromatography. In addition, Oxygen Radical Absorbance Capacity (ORAC), ratio of reduced to oxidized glutathione (GSH/GSSG) and catalase (CAT) activity was decreased in the liver of diabetic rats. TUNEL assay revealed increased apoptotic cell death in the liver of diabetic rats. Examination of Pancreatic beta-cells by immunohistochemical methods revealed beta cell degeneration and reduction in beta cell/ islet area in the diabetic controls. Kolaviron-treatment increased the area of insulin immunoreactive beta-cells significantly. Kolaviron attenuated lipid peroxidation and apoptosis in the liver of diabetic rats, increased CAT activity GSH levels and the resultant GSH: GSSG. The ORAC of kolaviron-treated diabetic liver was restored to near-normal values. Kolaviron protects the liver against oxidative and apoptotic damage induced by hyperglycemia. The antidiabetic effect of kolaviron may also be related to its beneficial effects on beta-cell function.

Keywords: diabetes mellitus, kolaviron, oxidative stress, liver, apoptosis

Procedia PDF Downloads 380
3542 Biocompatible Beta Titanium Alloy Ti36Nb6Ta as a Suitable Material for Bone Regeneration

Authors: Vera Lukasova, Eva Filova, Jana Dankova, Vera Sovkova, Matej Daniel, Michala Rampichova

Abstract:

Proper bone implants should promote fast adhesion of cells, stimulate cell differentiation and support the formation of bone tissue. Nowadays titanium is used as a biocompatible material capable of bone tissue integration. This study was focused on comparison of bioactive properties of two titanium alloys - beta titanium alloy Ti36Nb6Ta and standard medical titanium alloy Ti6A14V. The advantage of beta titanium alloy Ti36Nb6Ta is mainly that this material does not contain adverse elements like vanadium or aluminium. Titanium alloys were sterilized in ethanol, placed into 48 well plates and seeded with porcine mesenchymal stem cells. Cells were cultivated for 14 days in standard growth cultivation media with osteogenic supplements. Cell metabolic activity was quantified using MTS assay (Promega). Cell adhesion on day 1 and cell proliferation on further days were verified immunohistochemically using beta-actin monoclonal antibody and secondary antibody conjugated with AlexaFluor®488. Differentiation of cells was evaluated using alkaline phosphatase assay. Additionally, gene expression of collagen I was measured by qRT-PCR. Porcine mesenchymal stem cells adhered and spread well on beta titanium alloy Ti36Nb6Ta on day 1. During the 14 days’ time period the cells were spread confluently on the surface of the beta titanium alloy Ti36Nb6Ta. The metabolic activity of cells increased during the whole cultivation period. In comparison to standard medical titanium alloy Ti6A14V, we did not observe any differences. Moreover, the expression of collagen I gene revealed no statistical differences between both titanium alloys. Therefore, a beta titanium alloy Ti36Nb6Ta promotes cell adhesion, metabolic activity, proliferation and collagen I expression equally to standard medical titanium alloy Ti6A14V. Thus, beta titanium is a suitable material that provides sufficient biocompatible properties. This project was supported by the Czech Science Foundation: grant No. 16-14758S.

Keywords: beta titanium alloy, biocompatibility, differentiation, mesenchymal stem cells

Procedia PDF Downloads 487
3541 Downregulation of Epidermal Growth Factor Receptor in Advanced Stage Laryngeal Squamous Cell Carcinoma

Authors: Sarocha Vivatvakin, Thanaporn Ratchataswan, Thiratest Leesutipornchai, Komkrit Ruangritchankul, Somboon Keelawat, Virachai Kerekhanjanarong, Patnarin Mahattanasakul, Saknan Bongsebandhu-Phubhakdi

Abstract:

In this globalization era, much attention has been drawn to various molecular biomarkers, which may have the potential to predict the progression of cancer. Epidermal growth factor receptor (EGFR) is the classic member of the ErbB family of membrane-associated intrinsic tyrosine kinase receptors. EGFR expression was found in several organs throughout the body as its roles involve in the regulation of cell proliferation, survival, and differentiation in normal physiologic conditions. However, anomalous expression, whether over- or under-expression is believed to be the underlying mechanism of pathologic conditions, including carcinogenesis. Even though numerous discussions regarding the EGFR as a prognostic tool in head and neck cancer have been established, the consensus has not yet been met. The aims of the present study are to assess the correlation between the level of EGFR expression and demographic data as well as clinicopathological features and to evaluate the ability of EGFR as a reliable prognostic marker. Furthermore, another aim of this study is to investigate the probable pathophysiology that explains the finding results. This retrospective study included 30 squamous cell laryngeal carcinoma patients treated at King Chulalongkorn Memorial Hospital from January 1, 2000, to December 31, 2004. EGFR expression level was observed to be significantly downregulated with the progression of the laryngeal cancer stage. (one way ANOVA, p = 0.001) A statistically significant lower EGFR expression in the late stage of the disease compared to the early stage was recorded. (unpaired t-test, p = 0.041) EGFR overexpression also showed the tendency to increase recurrence of cancer (unpaired t-test, p = 0.128). A significant downregulation of EGFR expression was documented in advanced stage laryngeal cancer. The results indicated that EGFR level correlates to prognosis in term of stage progression. Thus, EGFR expression might be used as a prevailing biomarker for laryngeal squamous cell carcinoma prognostic prediction.

Keywords: downregulation, epidermal growth factor receptor, immunohistochemistry, laryngeal squamous cell carcinoma

Procedia PDF Downloads 101
3540 Robust Single/Multi bit Memristor Based Memory

Authors: Ahmed Emara, Maged Ghoneima, Mohamed Dessouky

Abstract:

Demand for low power fast memories is increasing with the increase in IC’s complexity, in this paper we introduce a proposal for a compact SRAM based on memristor devices. The compact size of the proposed cell (1T2M compared to 6T of traditional SRAMs) allows denser memories on the same area. In this paper, we will discuss the proposed memristor memory cell for single/multi bit data storing configurations along with the writing and reading operations. Stored data stability across successive read operation will be illustrated, operational simulation results and a comparison of our proposed design with previously conventional SRAM and previously proposed memristor cells will be provided.

Keywords: memristor, multi-bit, single-bit, circuits, systems

Procedia PDF Downloads 365
3539 BRG1 and Ep300 as a Transcriptional Regulators of Breast Cancer Growth

Authors: Maciej Sobczak, Julita Pietrzak, Tomasz Płoszaj, Agnieszka Robaszkiewicz

Abstract:

Brg1, a member of SWI/SNF complex, plays a role in chromatin remodeling, therefore, regulates expression of many genes. Brg1 is an ATPase of SWI/SNF complex, thus its activity requires ATP. Through its bromodomain recognizes acetylated histone residues and evicts them, thus promoting transcriptionally active state of chromatin. One of the enzymes that is responsible for acetylation of histone residues is Ep300. It was previously shown in the literature that cooperation of Brg1 and Ep300 occurs at the promoter regions that have binding sites for E2F-family transcription factors as well as CpG islands. According to literature, approximately 20% of human cancer possess mutation in Brg1 or any other crucial SWI/SNF subunit. That phenomenon makes Brg1-Ep300 a very promising target for anti-cancer therapy. Therefore in our study, we investigated if physical interaction between Brg1 and Ep300 exists and what impact those two proteins have on key for breast cancer cells processes such as DNA damage repair and cell proliferation. Bioinformatical analysis pointed out, that genes involved in cell proliferation and DNA damage repair are overexpressed in MCF7 and MDA-MB-231 cells. Moreover, promoter regions of these genes are highly acetylated, which suggests high transcriptional activity of those sites. Notably, many of those gene possess within their promoters an E2F, Brg1 motives, as well as CpG islands and acetylated histones. Our data show that Brg1 physically interacts with Ep300, and together they regulate expression of genes involved in DNA damage repair and cell proliferation. Upon inhibiting Brg1 or Ep300, expression of vital for cancer cell survival genes such as CDK2/4, BRCA1/2, PCNA, and XRCC1 is decreased in MDA-MB-231 and MCF7 cells. Moreover, inhibition or silencing of either Brg1 or Ep300 leads to cell cycle arrest in G1. After inhibition of BRG1 or Ep300 on tested gene promoters, the repressor complex including Rb, HDAC1, and EZH2 is formed, which inhibits gene expression. These results highlight potentially significant target for targeted anticancer therapy to be introduced as a supportive therapy.

Keywords: brg1, ep300, breast cancer, epigenetics

Procedia PDF Downloads 173
3538 PRENACEL: Development and Evaluation of an M-Health Strategy to Improve Prenatal Care in Brazil

Authors: E. M. Vieira, C. S. Vieira, L. P. Bonifácio, L. M. de Oliveira Ciabati, A. C. A. Franzon, F. S. Zaratini, J. A. C. Sanchez, M. S. Andrade, J. P. Dias de Souza

Abstract:

The quality of prenatal care is key to reduce maternal morbidity and mortality. Communication between the health service and users can stimulate prevention and care. M-health has been an important and low cost strategy to health education. The PRENACEL programme (prenatal in the cell phone) was developed. It consists of a programme of information via SMS from the 20th week of pregnancy up to 12th week after delivery. Messages were about prenatal care, birth, contraception and breastfeeding. Communication of the pregnant woman asking questions about their health was possible. The objective of this study was to evaluate the implementation of PRENACEL as a useful complement to the standard prenatal care. Twenty health clinics were selected and randomized by cluster, 10 as the intervention group and 10 as the control group. In the intervention group, women and their partner were invited to participate. The control group received the standard prenatal care. All women were interviewed in the immediate post-partum and in the 12th and 24th week post-partum. Most women were married, had more than 8 years of schooling and visit the clinic more than 6 times during prenatal care. The intervention group presented lowest percentage of higher economic participants (5.6%), less single mothers and no drug user. It also presented more prenatal care visits than the control group and it was less likely to present Severe Acute Maternal Mortality when compared to control group as well as higher percentage of partners (75.4%) was present at the birth compared to control group. Although the study is still being carried out, preliminary data are showing positive results of the compliance of women to prenatal care.

Keywords: cellphone, health technology, prenatal care, prevention

Procedia PDF Downloads 386
3537 Cryptosporidium Parvum oocytic Antigen Induced a Pro-Inflammatory DC Phenotype

Authors: Connick K, Lalor R, Murphy A, O’Neill S. M., Rabab S. Zalat, Eman E. El Shanawany

Abstract:

Cryptosporidium parvum is an opportunistic intracellular parasite that causes mild to severe diarrhea in human and animal populations and is an important zoonotic disease globally. In immunocompromised hosts, infection Canbe life-threatening as no effective treatments are currently available to control infection. To increase our understanding of the mechanisms that play a role in host-parasite interactions at the level of the immune response, we investigated the effects of Cryptosporidium parvum antigen (CPA) on bone marrow-derived (DCS). Herein we examined cytokine secretion and cell surface marker expression on DCs exposed to CPA. We also measured cytokine production in CD4+ cells co-cultured with CPA primed DCs in the presence of anti-CD3. CPA induced a significant increase in the production of interleukin(IL)-12p40, IL-10, IL-6, and TNF-α by DCs and enhanced the expression of the cell surface markers TLR4, CD80, CD86, and MHC11. CPA primed DC co-cultured in the presence of anti-CD3 with CD4+ T-cells inhibited the secretion of Th2 associated cytokines, notably IL-5 and IL-13, with no effects on the secretions of interferon (IFN)-γ, IL-2, IL-17, and IL-10. These findings support studies in the literature that CPA can induce the full maturation of DCs that subsequently initiate Th1 immune responses critical to the resolution of C. parvum infection.

Keywords: cryptosporidium parvum, dendritic cells, IL-12 p70, cell surface marker

Procedia PDF Downloads 170
3536 Investigations on the Cytotoxicity and Antimicrobial Activities of Terezine E and 14-Hydroxyterezine D

Authors: Mariam Mojally, Randa Abdou, Wisal Bokhari, Sultan Sab, Mohammed Dawoud, Amjad Albohy

Abstract:

Secondary metabolites produced by endophytes are an excellent source of biologically active compounds. In our current study, we evaluated terezine E and 14-hydroxyterezine D for binding to the active site of histone deacetylase (PDB ID: 4CBT) and matrix metalloproteinase 9 (PDB ID: 4H3X) by molecular docking using AutoDock Vina software after having tested their cytotoxic activities on three cell lines (human ductal breast epithelial tumor cells (T47D)-HCC1937), human hepatocarcinoma cell line (HepG2)-HB8065), and human colorectal carcinoma cells (HCT-116)-TCP1006, purchased from ATCC, USA)). Additionally, their antimicrobial activities were investigated, and their minimum inhibitory concentration (MIC) values were determined against P. notatum and S. aureus by the broth microdilution method. Higher cytotoxicity was observed for terezine E against all tested cell lines compared to 14-hydroxyterezine D. Molecular docking results supported the high cytotoxicity of terezine E and showed higher binding affinity with 4CBT with an energy score of 9 kcal/mol. Terezine E showed higher antibacterial and antifungal activities than 14-hydroxyrerezine D: MIC values were 15.45 and 21.73 mg/mL against S. aureus and 8.61 and 11.54 mg/mL against P. notatum, respectively

Keywords: Terezine E, 14-Hydroxyterezine D, cytotoxicity, antimicrobial activity, molecular docking

Procedia PDF Downloads 61
3535 Fabrication of 3D Scaffold Consisting of Spiral-Like Micro-Sized PCL Struts and Selectively Deposited Nanofibers as a Tissue Regenerative Material

Authors: Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering scaffolds must be biocompatible and biodegradable, provide adequate mechanical strength and cell attachment site for proliferation and differentiation. Furthermore, the scaffold morphology (such as pore size, porosity and pore interconnectivity) plays an important role. The electrospinning process has been widely used to fabricate micro/nano-sized fibres. Electrospinning allows for the fabrication of non-woven meshes containing micro- to nano-sized fibers providing high surface-to-volume area for cell attachment. Due to its advantageous characteristics, electrospinning is a useful method for skin, cartilage, bone, and nerve regeneration. In this study, we fabricated PCL scaffolds (SP) consisting of spiral-like struts using 3D melt-plotting system and micro/nanofibers using direct electrospinning writing. By altering the conditions of the conventional melt-plotting method, spiral-like struts were generated. Then, micro/nanofibers were deposited selectively. The control scaffold composed of perpendicular PCL struts was fabricated using the conventional melt-plotting method to compare the cellular activities. The effect on the attached cells (osteoblast-like cells (MG63)) was evaluated depending on the bending instability of the struts. The SP scaffolds showed enhanced biological properties such as initial cell attachment, proliferation and osteogenic differentiation. These results suggest that the SP scaffolds has potential as a bioengineered substitute for soft and hard tissue regeneration.

Keywords: cell attachment, electrospinning, mechanical strength, melt-plotting

Procedia PDF Downloads 313
3534 In silico Analysis of Differentially Expressed Genes in High-Grade Squamous Intraepithelial Lesion and Squamous Cell Carcinomas Stages of Cervical Cancer

Authors: Rahul Agarwal, Ashutosh Singh

Abstract:

Cervical cancer is one of the women related cancers which starts from the pre-cancerous cells and a fraction of women with pre-cancers of the cervix will develop cervical cancer. Cervical pre-cancers if treated in pre-invasive stage can prevent almost all true cervical squamous cell carcinoma. The present study investigates the genes and pathways that are involved in the progression of cervical cancer and are responsible in transition from pre-invasive stage to other advanced invasive stages. The study used GDS3292 microarray data to identify the stage specific genes in cervical cancer and further to generate the network of the significant genes. The microarray data GDS3292 consists of the expression profiling of 10 normal cervices, 7 HSILs and 21 SCCs samples. The study identifies 70 upregulated and 37 downregulated genes in HSIL stage while 95 upregulated and 60 downregulated genes in SCC stages. Biological process including cell communication, signal transduction are highly enriched in both HSIL and SCC stages of cervical cancer. Further, the ppi interaction of genes involved in HSIL and SCC stages helps in identifying the interacting partners. This work may lead to the identification of potential diagnostic biomarker which can be utilized for early stage detection.

Keywords: cervical cancer, HSIL, microarray, SCC

Procedia PDF Downloads 227
3533 Synthesis of Erlotinib Analogues, Conjugation of BSA to Erlotinib Alcohol and Their Anti-Cancer Activity against NSCLC

Authors: Ramalingam Boobalan, Chinpiao Chen, Jui-I. Chiao

Abstract:

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The key reactions that involved in synthesis are one-pot oxime formation-dehydration for the formation of nitrile, quinazoline ring formation reaction between aniline and o-cyanoaniline via formamidine intermediate, Fe/NH4Cl catalyzed reduction-hetereocyclization-reductive ring opening reaction for the formation of o-aminobenzamide, high yielding seal tube reactions for O-demethylation, sodium iodide substitution, ammonia substitution. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.

Keywords: anti-cancer, BSA, EGFR, Erlotinib

Procedia PDF Downloads 324