Search results for: fuzzy search
1614 Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm
Authors: Yuji Kageyama, Shin Nagata, Tatsuya Takino, Izuru Nomura, Hiroyuki Kamata
Abstract:
In previous study, technique to estimate a self-location by using a lunar image is proposed. We consider the improvement of the conventional method in consideration of FPGA implementation in this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time. In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.Keywords: SLIM, Artificial Bee Colony Algorithm, location estimate, evolutional triangle similarity
Procedia PDF Downloads 5181613 Endometrial Ablation and Resection Versus Hysterectomy for Heavy Menstrual Bleeding: A Systematic Review and Meta-Analysis of Effectiveness and Complications
Authors: Iliana Georganta, Clare Deehan, Marysia Thomson, Miriam McDonald, Kerrie McNulty, Anna Strachan, Elizabeth Anderson, Alyaa Mostafa
Abstract:
Context: A meta-analysis of randomized controlled trials (RCTs) comparing hysterectomy versus endometrial ablation and resection in the management of heavy menstrual bleeding. Objective: To evaluate the clinical efficacy, satisfaction rates and adverse events of hysterectomy compared to more minimally invasive techniques in the treatment of HMB. Evidence Acquisition: A literature search was performed for all RCTs and quasi-RCTs comparing hysterectomy with either endometrial ablation endometrial resection of both. The search had no language restrictions and was last updated in June 2020 using MEDLINE, EMBASE, Cochrane Central Register of Clinical Trials, PubMed, Google Scholar, PsycINFO, Clinicaltrials.gov and Clinical trials. EU. In addition, a manual search of the abstract databases of the European Haemophilia Conference on women's health was performed and further studies were identified from references of acquired papers. The primary outcomes were patient-reported and objective reduction in heavy menstrual bleeding up to 2 years and after 2 years. Secondary outcomes included satisfaction rates, pain, adverse events short and long term, quality of life and sexual function, further surgery, duration of surgery and hospital stay and time to return to work and normal activities. Data were analysed using RevMan software. Evidence synthesis: 12 studies and a total of 2028 women were included (hysterectomy: n = 977 women vs endometrial ablation or resection: n = 1051 women). Hysterectomy was compared with endometrial ablation only in five studies (Lin, Dickersin, Sesti, Jain, Cooper) and endometrial resection only in five studies (Gannon, Schulpher, O’Connor, Crosignani, Zupi) and a mixture of the Ablation and Resection in two studies (Elmantwe, Pinion). Of the 1² studies, 10 reported women’s perception of bleeding symptoms as improved. Meta-analysis showed that women in the hysterectomy group were more likely to show improvement in bleeding symptoms when compared with endometrial ablation or resection up to 2-year follow-up (RR 0.75, 95% CI 0.71 to 0.79, I² = 95%). Objective outcomes of improvement in bleeding also favored hysterectomy. Patient satisfaction was higher after hysterectomy within the 2 years follow-up (RR: 0.90, 95%CI: 0.86 to 0.94, I²:58%), however, there was no significant difference between the two groups at more than 2 years follow up. Sepsis (RR: 0.03, 95% CI 0.002 to 0.56; 1 study), wound infection (RR: 0.05, 95% CI: 0.01 to 0.28, I²: 0%, 3 studies) and Urinary tract infection (UTI) (RR: 0.20, 95% CI: 0.10 to 0.42, I²: 0%, 4 studies) all favoured hysteroscopic techniques. Fluid overload (RR: 7.80, 95% CI: 2.16 to 28.16, I² :0%, 4 studies) and perforation (RR: 5.42, 95% CI: 1.25 to 23.45, I²: 0%, 4 studies) however favoured hysterectomy in the short term. Conclusions: This meta-analysis has demonstrated that endometrial ablation and endometrial resection are both viable options when compared with hysterectomy for the treatment of heavy menstrual bleeding. Hysteroscopic procedures had better outcomes in the short term with fewer adverse events including wound infection, UTI and sepsis. The hysterectomy performed better when measuring more long-term impacts such as recurrence of symptoms, overall satisfaction at two years and the need for further treatment or surgery.Keywords: menorrhagia, hysterectomy, ablation, resection
Procedia PDF Downloads 1551612 Unusual Presentation of Colorectal Cancer within Inguinal Hernia: A Systemic Review of Reported Cases
Authors: Sena Park
Abstract:
Background: The concurrent presentation with colorectal cancer in the inguinal hernia has been extremely rare. Due to its rarity, its presentation may lead to diagnostic and therapeutic dilemmas. We aim to review all the reported cases on colorectal cancer incarcerated in the inguinal hernia in the last 20 years, and discuss the operative approaches. Methods: We identified all case reports on colorectal cancer within inguinal hernia using PUBMED (2002-2022) and MEDLINE (2002-2022). The search strategy included the following keywords: colorectal cancer (title/abstract) AND inguinal hernia (title/abstract) OR incarceration (title/abstract). The search did not include letters, book chapters, systemic reviews, meta-analysis and editorials. Results: In the last 20 years, a total of 19 cases on colorectal cancer within the inguinal hernia were identified. The age of the patients ranged between 48 and 89. Majority of the patients were male (95%). Most commonly involved part of the large intestine was sigmoid colon (79%). Of all the cases, 79 percent of patients received open procedure and 21 percent had laparoscopic procedure. Discussion: Inguinal hernias are common with an incidence of approximately 1.7 percent. Colorectal cancer is the one of the leading causes of cancer-related mortality worldwide. However, their concurrent presentation has been extremely rare. In the last 20 years, 19 cases on concurrent presentation of colorectal cancer and inguinal hernia have been reported. Most patients who had open procedures had two incisions of groin incision and a midline laparotomy. There were 4 cases where the oncological resection was performed laparoscopically. The advantages of laparoscopic resection include reduced blood lost, reduced post-operative pain, reduced length of hospital stay and similar number of lymph nodes taken. From the review of the cases in the last 20 years, both open and laparoscopic approaches seemed to be safe and achieve adequate oncological resections. Conclusion: This is a brief overview of reported cases of colorectal cancer presenting with inguinal hernia concurrently. Due to its rarity, there are no current guidelines on operative approach in clinical practice. The experience in the last 20 years supports both open and laparoscopic approach.Keywords: colorectal cancer, inguinal hernia, incarceration, operative approach
Procedia PDF Downloads 1011611 Method for Improving Antidepressants Adherence in Patients with Depressive Disorder: Systemic Review and Meta-Analysis
Authors: Juntip Kanjanasilp, Ratree Sawangjit, Kanokporn Meelap, Kwanchanok Kruthakool
Abstract:
Depression is a common mental health disorder. Antidepressants are effective pharmacological treatments, but most patients have low medication adherence. This study aims to systematic review and meta-analysis what method increase the antidepressants adherence efficiently and improve clinical outcome. Systematic review of articles of randomized controlled trials obtained by a computerized literature search of The Cochrane, Library, Pubmed, Embase, PsycINFO, CINAHL, Education search, Web of Science and ThaiLIS (28 December 2017). Twenty-three studies were included and assessed the quality of research by ROB 2.0. The results reported that printing media improved in number of people who had medication adherence statistical significantly (p= 0.018), but education, phone call, and program utilization were no different (p=0.172, p=0.127, p=0.659). There was no significant difference in pharmacist’s group, health care team’s group and physician’s group (p=0.329, p=0.070, p=0.040). Times of intervention at 1 month and 6 months improved medication adherence significantly (p= 0.0001, p=0.013). There was significantly improved adherence in single intervention (p=0.027) but no different in multiple interventions (p=0.154). When we analyzed medication adherence with the mean score, no improved adherence was found, not relevant with who gives the intervention and times to intervention. However, the multiple interventions group was statistically significant improved medication adherence (p=0.040). Phone call and the physician’s group were statistically significant improved clinical outcomes in number of improved patients (0.025 and 0.020, respectively). But in the pharmacist’s group and physician’s group were not found difference in the mean score of clinical outcomes (p=0.993, p=0.120, respectively). Times to intervention and number of intervention were not significant difference than usual care. The overall intervention can increase antidepressant adherence, especially the printing media, and the appropriate timing of the intervention is at least 6 months. For effective treatment, the provider should have experience and expert in caring for patients with depressive disorders, such as a psychiatrist. Medical personnel should have knowledge in caring for these patients also.Keywords: depression, medication adherence, clinical outcomes, systematic review, meta-analysis
Procedia PDF Downloads 1341610 Osteoporosis and Weight Gain – Two Major Concerns for Menopausal Women - a Physiotherapy Perspective
Authors: Renu Pattanshetty
Abstract:
The aim of this narrative review is to highlight the impact of menopause on osteoporosis and weight gain. The review also aims to summarize physiotherapeutic strategies to combat the same.A thorough literature search was conducted using electronic databases like MEDline, PUBmed, Highwire Press, PUBmed Central for English language studies that included search terms like menopause, osteoporosis, obesity, weight gain, exercises, physical activity, physiotherapy strategies from the year 2000 till date. Out of 157 studies that included metanalyses, critical reviews and randomized clinical trials, a total of 84 were selected that met the inclusion criteria. Prevalence of obesity is increasing world - wide and is reaching epidemic proportions even in the menopausal women. Prevalence of abdominal obesity is almost double than that general obesity with rates in the US with 65.5% in women ages 40-59 years and 73.8 in women aged 60 years or more. Physical activities and exercises play a vital role in prevention and treatment of osteoporosis and weight gain related to menopause that aim to boost the general well-being and any symptoms brought about by natural body changes. Endurance exercises lasting about 30 minutes /day for 5 days/ week has shown to decrease weight and prevent weight gain. In addition, strength training with at least 8 exercises of 8-12 repetitions working for whole body and for large muscle groups has shown to result positive outcomes. Hot flashes can be combatted through yogic breathing and relaxation exercises. Prevention of fall strategies and resistance training are key to treat diagnosed cases of osteoporosis related to menopause. One to three sets with five to eight repetitions of four to six weight bearing exercises have shown positive results. Menopause marks an important time for women to evaluate their risk of obesity and osteoporosis. It is known fact that bone benefit from exercises are lost when training is stopped, hence, practicing bone smart habits and strict adherence to recommended physical activity programs are recommended which are enjoyable, safe and effective.Keywords: menopause, osteoporosis, obesity, weight gain, exercises, physical activity, physiotherapy strategies
Procedia PDF Downloads 3031609 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process
Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization
Procedia PDF Downloads 1161608 Comparing the SALT and START Triage System in Disaster and Mass Casualty Incidents: A Systematic Review
Authors: Hendri Purwadi, Christine McCloud
Abstract:
Triage is a complex decision-making process that aims to categorize a victim’s level of acuity and the need for medical assistance. Two common triage systems have been widely used in Mass Casualty Incidents (MCIs) and disaster situation are START (Simple triage algorithm and rapid treatment) and SALT (sort, asses, lifesaving, intervention, and treatment/transport). There is currently controversy regarding the effectiveness of SALT over START triage system. This systematic review aims to investigate and compare the effectiveness between SALT and START triage system in disaster and MCIs setting. Literatures were searched via systematic search strategy from 2009 until 2019 in PubMed, Cochrane Library, CINAHL, Scopus, Science direct, Medlib, ProQuest. This review included simulated-based and medical record -based studies investigating the accuracy and applicability of SALT and START triage systems of adult and children population during MCIs and disaster. All type of studies were included. Joana Briggs institute critical appraisal tools were used to assess the quality of reviewed studies. As a result, 1450 articles identified in the search, 10 articles were included. Four themes were identified by review, they were accuracy, under-triage, over-triage and time to triage per individual victim. The START triage system has a wide range and inconsistent level of accuracy compared to SALT triage system (44% to 94. 2% of START compared to 70% to 83% of SALT). The under-triage error of START triage system ranged from 2.73% to 20%, slightly lower than SALT triage system (7.6 to 23.3%). The over-triage error of START triage system was slightly greater than SALT triage system (START ranged from 2% to 53% compared to 2% to 22% of SALT). The time for applying START triage system was faster than SALT triage system (START was 70-72.18 seconds compared to 78 second of SALT). Consequently; The START triage system has lower level of under-triage error and faster than SALT triage system in classifying victims of MCIs and disaster whereas SALT triage system is known slightly more accurate and lower level of over-triage. However, the magnitude of these differences is relatively small, and therefore the effect on the patient outcomes is not significance. Hence, regardless of the triage error, either START or SALT triage system is equally effective to triage victims of disaster and MCIs.Keywords: disaster, effectiveness, mass casualty incidents, START triage system, SALT triage system
Procedia PDF Downloads 1331607 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, gaussian mixture models, learning motion patterns, tracked robots for urban search and rescue
Procedia PDF Downloads 4491606 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 1111605 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP
Procedia PDF Downloads 3961604 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1751603 Conditions That Brought Bounce-Back in Southern Europe: An Inter-Temporal and Cross-National Analysis on Female Labour Force Participation with Fuzzy Set Qualitative Comparative Analysis
Authors: A. Onur Kutlu, H. Tolga Bolukbasi
Abstract:
Since the 1990s, governments, international organizations and scholars have drawn increasing attention to the significance of women in the labour force. While advanced industrial countries in North Western Europe and North America have managed to increase female labour force participation (FLFP) in the early post world war two period, emerging economies of the 1970s have only been able to increase FLFP only a decade later. Among these areas, Southern Europe features a wave of remarkable bounce backs in FLFP. However, despite striking similarities between the features in Southern Europe and those in Turkey, Turkey has not been able to pull women into the labour force. Despite a host of institutional similarities, Turkey has failed to reach to the level of her Southern European neighbours. This paper addresses the puzzle why Turkey lag behind in FLFP in comparison to her Southern European neighbours. There are signs showing that FLFP is currently reaching a critical threshold at a time when structural factors may allow a trend. It is not known, however, the constellation of conditions which may bring rising FLFP in Turkey. In order to gain analytical leverage from similar transitions in countries that share similar labour market and welfare state regime characteristics, this paper identifies the conditions in Southern Europe that brought rising FLFP to be able to explore the prospects for Turkey. Second, this paper takes these variables in the fuzzy set Qualitative Comparative Analysis (fsQCA) as conditions which can potentially explain the outcome of rising FLFP in Portugal, Spain, Italy, Greece and Turkey. The purpose here is to identify any causal pathway there may exist that lead to rising FLFP in Southern Europe. In order to do so, this study analyses two time periods in all cases, which represent different periods for different countries. The first period is identified on the basis of low FLFP and the second period on the basis of the transition to significantly higher FLFP. Third, the conditions are treated following the standard procedures in fsQCA, which provide equifinal: two distinct paths to higher levels of FLFP in Southern Europe, each of which may potentially increase FLFP in Turkey. Based on this analysis, this paper proposes that there exist two distinct paths leading to higher levels of FLFP in Southern Europe. Among these paths, salience of left parties emerges as a sufficient condition. In cases where this condition was not present, a second path combining enlarging service sector employment, increased tertiary education among women and increased childcare enrolment rates led to increasing FLFP.Keywords: female labour force participation, fsQCA, Southern Europe, Turkey
Procedia PDF Downloads 3261602 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2151601 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand
Authors: Hamed Saremi
Abstract:
One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.Keywords: anfis, dematel, brand, cosmetic product, brand value
Procedia PDF Downloads 4091600 Cooperative Learning Mechanism in Intelligent Multi-Agent System
Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour
Abstract:
In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning
Procedia PDF Downloads 6851599 Applications of Artificial Neural Networks in Civil Engineering
Authors: Naci Büyükkaracığan
Abstract:
Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics
Procedia PDF Downloads 4121598 Teaching Physics: History, Models, and Transformation of Physics Education Research
Authors: N. Didiş Körhasan, D. Kaltakçı Gürel
Abstract:
Many students have difficulty in learning physics from elementary to university level. In addition, students' expectancy, attitude, and motivation may be influenced negatively with their experience (failure) and prejudice about physics learning. For this reason, physics educators, who are also physics teachers, search for the best ways to make students' learning of physics easier by considering cognitive, affective, and psychomotor issues in learning. This research critically discusses the history of physics education, fundamental pedagogical approaches, and models to teach physics, and transformation of physics education with recent research.Keywords: pedagogy, physics, physics education, science education
Procedia PDF Downloads 2641597 The Influence of Emotional Intelligence Skills on Innovative Start-Ups Coaching: A Neuro-Management Approach
Authors: Alina Parincu, Giuseppe Empoli, Alexandru Capatina
Abstract:
The purpose of this paper is to identify the most influential predictors of emotional intelligence skills, in the case of 20 business innovation coaches, on the co-creation of knowledge through coaching services delivered to innovative start-ups from Europe, funded through Horizon 2020 – SME Instrument. We considered the emotional intelligence skills (self-awareness, self-regulation, motivation, empathy and social skills) as antecedent conditions of the outcome: the quality of coaching services, perceived by the entrepreneurs who received funding within SME instrument, using fuzzy-sets qualitative comparative analysis (fsQCA) approach. The findings reveal that emotional intelligence skills, trained with neuro-management techniques, were associated with increased goal-focused business coaching skills.Keywords: neuro-management, innovative start-ups, business coaching, fsQCA
Procedia PDF Downloads 1741596 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand
Authors: Waraporn Wimuktalop
Abstract:
This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding
Procedia PDF Downloads 2331595 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects
Authors: Tayfun Çay, Yasar İnceyol, Abdurrahman Özbeyaz
Abstract:
Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.Keywords: land consolidation, landholding, land reallocation, optimization, genetic algorithm
Procedia PDF Downloads 4311594 Critical Evaluation of Occupational Health and Safety Challenges Facing the Construction Sector in the UK and Developing Anglophone West African Countries, Particularly the Gambia
Authors: Bintou Jobe
Abstract:
The construction sector, both in the United Kingdom (UK) and developing Anglophone West African countries, specifically The Gambia, is facing significant health and safety challenges. While the UK has established legislation and regulations to support Occupational Health and Safety (OHS) in the industry, the same level of support is lacking in developing countries. The significance of this review is to assess the extent and effectiveness of OHS legislation and regulatory reform in the construction industry, with a focus on understanding the challenges faced by both the UK and developing Anglophone West African countries. It aims to highlight the benefits of implementing an OHS management system, specifically ISO 45001. This study uses a literature review approach, synthesizing publications from the past decade and identifying common themes and best practices related to Occupational Health and Safety in the construction industry. Findings were analysed, compared, and conclusions and recommendations were drawn after developing research questions and addressing them. This comprehensive review of the literature allows for a detailed understanding of the challenges faced by the industry in both contexts. The findings of the study indicate that while the UK has established robust health and safety legislation, many UK construction companies have not fully met the standards outlined in ISO 45001. These challenges faced by the UK include poor data management, inadequate communication of best practices, insufficient training, and a lack of safety culture mirroring those observed in the developing Anglophone countries. Therefore, compliance with OHS management systems has been shown to yield benefits, including injury prevention and centralized health and safety documentation. In conclusion, the effectiveness of OHS legislation for developing Anglophone West African countries should consider the positive impact experienced by the UK. The implementation of ISO 45001 can serve as a benchmark standard and potentially inform recommendations for developing countries. The selection criteria for literature include search keywords and phrases, such as occupational health and safety challenges, The Gambia, developing countries management systems, ISO 45001, and impact and effectiveness of OHS legislation. The literature was sourced from Google Scholar, the UK Health and Safety Executive websites, and Google Advanced Search.Keywords: ISO 45001, developing countries, occupational health and safety, UK
Procedia PDF Downloads 1011593 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis
Procedia PDF Downloads 4851592 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.Keywords: ANFIS, fault location, underground cable, wavelet transform
Procedia PDF Downloads 5131591 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity
Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki
Abstract:
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity
Procedia PDF Downloads 4331590 Evaluating Service Trustworthiness for Service Selection in Cloud Environment
Authors: Maryam Amiri, Leyli Mohammad-Khanli
Abstract:
Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction
Procedia PDF Downloads 2871589 Emergency Multidisciplinary Continuing Care Case Management
Authors: Mekroud Amel
Abstract:
Emergency departments are known for the workload, the variety of pathologies and the difficulties in their management with the continuous influx of patients The role of our service in the management of patients with two or three mild to moderate organ failures, involving several disciplines at the same time, as well as the effect of this management on the skills and efficiency of our team has been demonstrated Borderline cases between two or three or even more disciplines, with instability of a vital function, which have been successfully managed in the emergency room, the therapeutic procedures adopted, the consequences on the quality and level of care delivered by our team, as well as that the logistical consequences, and the pedagogical consequences are demonstrated. The consequences found are Positive on the emergency teams, in rare situations are negative Regarding clinical situations, it is the entanglement of hemodynamic distress with right, left or global participation, tamponade, low flow with acute pulmonary edema, and/or state of shock With respiratory distress with more or less profound hypoxemia, with haematosis disorder related to a bacterial or viral lung infection, pleurisy, pneumothorax, bronchoconstrictive crisis. With neurological disorders such as recent stroke, comatose state, or others With metabolic disorders such as hyperkalaemia renal insufficiency severe ionic disorders with accidents with anti vitamin K With or without septate effusion of one or more serous membranes with or without tamponade It’s a Retrospective, monocentric, descriptive study Period 05.01.2022 to 10.31.2022 the purpose of our work: Search for a statistically significant link between the type of moderate to severe pathology managed in the emergency room whose problems are multivisceral on the efficiency of the healthcare team and its level of care and optional care offered for patients Statistical Test used: Chi2 test to prove the significant link between the resolution of serious multidisciplinary cases in the emergency room and the effectiveness of the team in the management of complicated cases Search for a statistically significant link : The management of the most difficult clinical cases for organ specialties has given general practitioner emergency teams a great perspective and has been able to improve their efficiency in the face of emergencies receivedKeywords: emergency care teams, management of patients with dysfunction of more than one organ, learning curve, quality of care
Procedia PDF Downloads 801588 The Relationship between Body Positioning and Badminton Smash Quality
Authors: Gongbing Shan, Shiming Li, Zhao Zhang, Bingjun Wan
Abstract:
Badminton originated in ancient civilizations in Europe and Asia more than 2000 years ago. Presently, it is played almost everywhere with estimated 220 million people playing badminton regularly, ranging from professionals to recreational players; and it is the second most played sport in the world after soccer. In Asia, the popularity of badminton and involvement of people surpass soccer. Unfortunately, scientific researches on badminton skills are hardly proportional to badminton’s popularity. A search of literature has shown that the literature body of biomechanical investigations is relatively small. One of the dominant skills in badminton is the forehand overhead smash, which consists of 1/5 attacks during games. Empirical evidences show that one has to adjust the body position in relation to the coming shuttlecock to produce a powerful and accurate smash. Therefore, positioning is a fundamental aspect influencing smash quality. A search of literature has shown that there is a dearth/lack of study on this fundamental aspect. The goals of this study were to determine the influence of positioning and training experience on smash quality in order to discover information that could help learn/acquire the skill. Using a 10-camera, 3D motion capture system (VICON MX, 200 frames/s) and 15-segment, full-body biomechanical model, 14 skilled and 15 novice players were measured and analyzed. Results have revealed that the body positioning has direct influence on the quality of a smash, especially on shuttlecock release angle and clearance height (passing over the net) of offensive players. The results also suggest that, for training a proper positioning, one could conduct a self-selected comfort position towards a statically hanged shuttlecock and then step one foot back – a practical reference marker for learning. This perceptional marker could be applied in guiding the learning and training of beginners. As one gains experience through repetitive training, improved limbs’ coordination would increase smash quality further. The researchers hope that the findings will benefit practitioners for developing effective training programs for beginners.Keywords: 3D motion analysis, biomechanical modeling, shuttlecock release speed, shuttlecock release angle, clearance height
Procedia PDF Downloads 4981587 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 1321586 Thermal Conductivity and Diffusivity of Alternative Refrigerants as Retrofit for Freon 12
Authors: Mutalubi Aremu Akintunde, John Isa
Abstract:
The negative impact on the atmosphere, of chlorofluorocarbon refrigerants (CFC) radical changes and measures were put in place to replace them. This has led to search for alternative refrigerants over the past decades. This paper presents thermal conductivity, diffusivity and performance of two alternative refrigerants as replacement to R12, which has been a versatile refrigerant which had turned the refrigeration industries around for decades, but one of the offensive refrigerants. The new refrigerants were coded RA1 (50%R600a/50%R134a;) and RA2 (70%R600a/30%R134a). The diffusivities for RA1 and RA2 were estimated to be, 2.76384 X 10-8 m2/s and 2.74386 X 10-8 m2/s respectively, while that of R12 under the same experimental condition is 2.43772 X 10-8 m2/s. The performances of the two refrigerants in a refrigerator initially designed for R12, were very close to that of R12. Other thermodynamic parameters showed that R12 can be replaced with both RA1 and RA2.Keywords: alternative refrigerants, conductivity, diffusivity, performance, refrigerants
Procedia PDF Downloads 1621585 A Method of the Semantic on Image Auto-Annotation
Authors: Lin Huo, Xianwei Liu, Jingxiong Zhou
Abstract:
Recently, due to the existence of semantic gap between image visual features and human concepts, the semantic of image auto-annotation has become an important topic. Firstly, by extract low-level visual features of the image, and the corresponding Hash method, mapping the feature into the corresponding Hash coding, eventually, transformed that into a group of binary string and store it, image auto-annotation by search is a popular method, we can use it to design and implement a method of image semantic auto-annotation. Finally, Through the test based on the Corel image set, and the results show that, this method is effective.Keywords: image auto-annotation, color correlograms, Hash code, image retrieval
Procedia PDF Downloads 497