Search results for: dew point temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11450

Search results for: dew point temperature

1670 Investigating the Status of Black Women in Brazil: Beyond Housekeepers and Samba Dancers

Authors: Sandra Maria Cerqueira Da Silva

Abstract:

The construction of the material world involves a series of social power relations. These relations, in a way, can dictate, shape, judge and drive the profiles of so-called ‘ideal’ individuals. Gender relations, as power relations, are defined based on hierarchies, obediences and inequalities, and male domination seems, with few exceptions, to be rooted in every society around the world. The profile of the Brazilian woman, beyond patriarchal and market determinations, is strongly subjected to media products. Women are, numerically, the majority in Brazilian society. The social indicators point to slight advances in terms of years of study and professional qualification, as well as access to the job market; yet, differences in opportunity and conditions — often explained though the ‘unquestionable’ cultural rancidness argument — still hinder women’s ability to reach and keep job positions. These unequalities are also visible in everyday interactions and in gender relations, and they become greater once race is added to the analysis. For a black woman, her racial origins may play a part in determining the construction of her gender roles. In these terms, there is need to investigate the racial character of the sexual differences within a larger social proccess of naturalization and justification of cultural hierarchies. Thus, the goal of this study is to identify and discuss the media-built image of black women in Brazil. Furthermore, it is necessary to seek views different than those of the ruling classes. The study uses a qualitative approach based on the feminist standpoint, which intends to hold women’s experiences as central. The body of the research — images taken from the Internet — was treated through critical content analysis. The results show that in Brazil the profile of black women, beyond the machist and sexist generalizations, objectifies them or sees them as servants, always at the disposal of non-blacks. It is necessary to overcome the history of this nation, always considering the contribution of these women to the growth and development of places and societies. This can be done through the acknowledgement and highlighting of the few black women who were able to overcome the many barriers in their path and reach leadership position in the country. There are still many important challenges in the way of finding affirmative policies and reaching a more equal society in terms of gender and race; a serious and firm political commitment seems sine qua non.

Keywords: black woman, feminist standpoint, markings, objectification

Procedia PDF Downloads 272
1669 Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace

Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini

Abstract:

Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.

Keywords: energy cunsumption, energy recovery, modeling, energy eficiency

Procedia PDF Downloads 70
1668 Linguistic Analysis of Argumentation Structures in Georgian Political Speeches

Authors: Mariam Matiashvili

Abstract:

Argumentation is an integral part of our daily communications - formal or informal. Argumentative reasoning, techniques, and language tools are used both in personal conversations and in the business environment. Verbalization of the opinions requires the use of extraordinary syntactic-pragmatic structural quantities - arguments that add credibility to the statement. The study of argumentative structures allows us to identify the linguistic features that make the text argumentative. Knowing what elements make up an argumentative text in a particular language helps the users of that language improve their skills. Also, natural language processing (NLP) has become especially relevant recently. In this context, one of the main emphases is on the computational processing of argumentative texts, which will enable the automatic recognition and analysis of large volumes of textual data. The research deals with the linguistic analysis of the argumentative structures of Georgian political speeches - particularly the linguistic structure, characteristics, and functions of the parts of the argumentative text - claims, support, and attack statements. The research aims to describe the linguistic cues that give the sentence a judgmental/controversial character and helps to identify reasoning parts of the argumentative text. The empirical data comes from the Georgian Political Corpus, particularly TV debates. Consequently, the texts are of a dialogical nature, representing a discussion between two or more people (most often between a journalist and a politician). The research uses the following approaches to identify and analyze the argumentative structures Lexical Classification & Analysis - Identify lexical items that are relevant in argumentative texts creating process - Creating the lexicon of argumentation (presents groups of words gathered from a semantic point of view); Grammatical Analysis and Classification - means grammatical analysis of the words and phrases identified based on the arguing lexicon. Argumentation Schemas - Describe and identify the Argumentation Schemes that are most likely used in Georgian Political Speeches. As a final step, we analyzed the relations between the above mentioned components. For example, If an identified argument scheme is “Argument from Analogy”, identified lexical items semantically express analogy too, and they are most likely adverbs in Georgian. As a result, we created the lexicon with the words that play a significant role in creating Georgian argumentative structures. Linguistic analysis has shown that verbs play a crucial role in creating argumentative structures.

Keywords: georgian, argumentation schemas, argumentation structures, argumentation lexicon

Procedia PDF Downloads 69
1667 Role of Matric Suction in Mechanics behind Swelling Characteristics of Expansive Soils

Authors: Saloni Pandya, Nikhil Sharma, Ajanta Sachan

Abstract:

Expansive soils in the unsaturated state are part of vadose zone and encountered in several arid and semi-arid parts of the world. Influence of high temperature, low precipitation and alternate cycles of wetting and drying are responsible for the chemical weathering of rocks, which results in the formation of expansive soils. Shrinkage-swelling (expansive) soils cover a substantial portion of area in India. Damages caused by expansive soils to various geotechnical structures are alarming. Matric suction develops in unsaturated soil due to capillarity and surface tension phenomena. Matric suction influences the geometric arrangement of soil skeleton, which induces the volume change behaviour of expansive soil. In the present study, an attempt has been made to evaluate the role of matric suction in the mechanism behind swelling characteristics of expansive soil. Four different soils have been collected from different parts of India for the current research. Soil sample S1, S2, S3 and S4 were collected from Nagpur, Bharuch, Bharuch-Dahej highway and Ahmedabad respectively. DFSI (Differential Free Swell Index) of these soils samples; S1, S2, S3, and S4; were determined to be 134%, 104%, 70% and 30% respectively. X-ray diffraction analysis of samples exhibited that percentage of Montmorillonite mineral present in the soils reduced with the decrease in DFSI. A series of constant volume swell pressure tests and in-contact filter paper tests were performed to evaluate swelling pressure and matric suction of all four soils at 30% saturation and 1.46 g/cc dry density. Results indicated that soils possessing higher DFSI exhibited higher matric suction as compared to lower DFSI expansive soils. Significant influence of matric suction on swelling pressure of expansive soils was observed with varying DFSI values. Higher matric suction of soil might govern the water uptake in the interlayer spaces of Montmorillonite mineral present in expansive soil leading to crystalline swelling.

Keywords: differential free swell index, expansive soils, matric suction, swelling pressure

Procedia PDF Downloads 162
1666 Facial Behavior Modifications Following the Diffusion of the Use of Protective Masks Due to COVID-19

Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Daniel Zaccariello

Abstract:

Our study explores the usefulness of implementing facial expression recognition capabilities and using the Facial Action Coding System (FACS) in contexts where the other person is wearing a mask. In the communication process, the subjects use a plurality of distinct and autonomous reporting systems. Among them, the system of mimicking facial movements is worthy of attention. Basic emotion theorists have identified the existence of specific and universal patterns of facial expressions related to seven basic emotions -anger, disgust, contempt, fear, sadness, surprise, and happiness- that would distinguish one emotion from another. However, due to the COVID-19 pandemic, we have come up against the problem of having the lower half of the face covered and, therefore, not investigable due to the masks. Facial-emotional behavior is a good starting point for understanding: (1) the affective state (such as emotions), (2) cognitive activity (perplexity, concentration, boredom), (3) temperament and personality traits (hostility, sociability, shyness), (4) psychopathology (such as diagnostic information relevant to depression, mania, schizophrenia, and less severe disorders), (5) psychopathological processes that occur during social interactions patient and analyst. There are numerous methods to measure facial movements resulting from the action of muscles, see for example, the measurement of visible facial actions using coding systems (non-intrusive systems that require the presence of an observer who encodes and categorizes behaviors) and the measurement of electrical "discharges" of contracting muscles (facial electromyography; EMG). However, the measuring system invented by Ekman and Friesen (2002) - "Facial Action Coding System - FACS" is the most comprehensive, complete, and versatile. Our study, carried out on about 1,500 subjects over three years of work, allowed us to highlight how the movements of the hands and upper part of the face change depending on whether the subject wears a mask or not. We have been able to identify specific alterations to the subjects’ hand movement patterns and their upper face expressions while wearing masks compared to when not wearing them. We believe that finding correlations between how body language changes when our facial expressions are impaired can provide a better understanding of the link between the face and body non-verbal language.

Keywords: facial action coding system, COVID-19, masks, facial analysis

Procedia PDF Downloads 75
1665 Physiological Assessment for Straightforward Symptom Identification (PASSify): An Oral Diagnostic Device for Infants

Authors: Kathryn Rooney, Kaitlyn Eddy, Evan Landers, Weihui Li

Abstract:

The international mortality rate for neonates and infants has been declining at a disproportionally low rate when compared to the overall decline in child mortality in recent decades. A significant portion of infant deaths could be prevented with the implementation of low-cost and easy to use physiological monitoring devices, by enabling early identification of symptoms before they progress into life-threatening illnesses. The oral diagnostic device discussed in this paper serves to continuously monitor the key vital signs of body temperature, respiratory rate, heart rate, and oxygen saturation. The device mimics an infant pacifier, designed to be easily tolerated by infants as well as orthodontically inert. The fundamental measurements are gathered via thermistors and a pulse oximeter, each encapsulated in medical-grade silicone and wired internally to a microcontroller chip. The chip then translates the raw measurements into physiological values via an internal algorithm, before outputting the data to a liquid crystal display screen and an Android application. Additionally, a biological sample collection chamber is incorporated into the internal portion of the device. The movement within the oral chamber created by sucking on the pacifier-like device pushes saliva through a small check valve in the distal end, where it is accumulated and stored. The collection chamber can be easily removed, making the sample readily available to be tested for various diseases and analytes. With the vital sign monitoring and sample collection offered by this device, abnormal fluctuations in physiological parameters can be identified and appropriate medical care can be sought. This device enables preventative diagnosis for infants who may otherwise have gone undiagnosed, due to the inaccessibility of healthcare that plagues vast numbers of underprivileged populations.

Keywords: neonate mortality, infant mortality, low-cost diagnostics, vital signs, saliva testing, preventative care

Procedia PDF Downloads 151
1664 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 126
1663 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy

Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright

Abstract:

The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.

Keywords: information entropy, communication in manufacturing, mass customisation, scheduling

Procedia PDF Downloads 243
1662 Aptamers: A Potential Strategy for COVID-19 Treatment

Authors: Mohamad Ammar Ayass, Natalya Griko, Victor Pashkov, Wanying Cao, Kevin Zhu, Jin Zhang, Lina Abi Mosleh

Abstract:

Respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Early evidence pointed at the angiotensin-converting enzyme 2 (ACE-2) expressed on the epithelial cells of the lung as the main entry point of SARS-CoV-2 into the cells. The viral entry is mediated by the binding of the Receptor Binding Domain (RBD) of the spike protein that is expressed on the surface of the virus to the ACE-2 receptor. As the number of SARS-CoV-2 variants continues to increase, mutations arising in the RBD of SARS-CoV-2 may lead to the ineffectiveness of RBD targeted neutralizing antibodies. To address this limitation, the objective of this study is to develop a combination of aptamers that target different regions of the RBD, preventing the binding of the spike protein to ACE-2 receptor and subsequent viral entry and replication. A safe and innovative biomedical tool was developed to inhibit viral infection and reduce the harms of COVID-19. In the present study, DNA aptamers were developed against a recombinant trimer S protein using the Systematic Evolution of Ligands by Exponential enrichment (SELEX). Negative selection was introduced at round number 7 to select for aptamers that bind specifically to the RBD domain. A series of 9 aptamers (ADI2010, ADI2011, ADI201L, ADI203L, ADI205L, ADIR68, ADIR74, ADIR80, ADIR83) were selected and characterized with high binding affinity and specificity to the RBD of the spike protein. Aptamers (ADI25, ADI2009, ADI203L) were able to bind and pull down endogenous spike protein expressed on the surface of SARS-CoV-2 virus in COVID-19 positive patient samples and determined by liquid chromatography- tandem mass spectrometry analysis (LC-MS/MS). LC-MS/MS data confirmed that aptamers can bind to the RBD of the spike protein. Furthermore, results indicated that the combination of the 9 best aptamers inhibited the binding of the purified trimer spike protein to the ACE-2 receptor found on the surface of Vero E6 cells. In the same experiment, the combined aptamers displayed a better neutralizing effect than antibodies. The data suggests that the selected aptamers could be used in therapy to neutralize the effect of the SARS-CoV-2 virus by inhibiting the interaction between the RBD and ACE-2 receptor, preventing viral entry into target cells and therefore blocking viral replication.

Keywords: aptamer, ACE-2 receptor, binding inhibitor, COVID-19, spike protein, SARS-CoV-2, treatment

Procedia PDF Downloads 183
1661 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.

Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy (FTIR), micro-Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)

Procedia PDF Downloads 321
1660 Influence of the Location of Flood Embankments on the Condition of Oxbow Lakes and Riparian Forests: A Case Study of the Middle Odra River Beds on the Example of Dragonflies (Odonata), Ground Beetles (Coleoptera: Carabidae) and Plant Communities

Authors: Magda Gorczyca, Zofia Nocoń

Abstract:

Past and current studies from different countries showed that river engineering leads to environmental degradation and extinction of many species - often those protected by local and international wildlife conservation laws. Through the years, the main focus of rivers utilization has shifted from industrial applications to recreation and wildlife preservation with a focus on keeping the biodiversity which plays a significant role in preventing climate changes. Thus an opportunity appeared to recreate flooding areas and natural habitats, which are very rare in the scale of Europe. Additionally, river restoration helps to avoid floodings and periodic droughts, which are usually very damaging to the economy. In this research, the biodiversity of dragonflies and ground beetles was analyzed in the context of plant communities and forest stands structure. Results were enriched with data from past and current literature. A comparison was made between two parts of the Odra river. A part where oxbow lake and riparian forest were separated from the river bed by embankment and a part of the river with floodplains left intact. Validity assessment of embankments relocation was made based on the research results. In the period between May and September, insects were collected, phytosociological analysis were taken, and forest stand structure properties were specified. In the part of the river not separated by the embankments, rare and protected species of plants were spotted (e.g., Trapanatans, Salvinianatans) as well as greater species and quantitive diversity of dragonfly. Ground beetles fauna, though, was richer in the area separated by the embankment. Even though the research was done during only one season and in a limited area, the results can be a starting point for further extended research and may contribute to acquiring legal wildlife protection and restoration of the researched area. During the research, the presence of invasive species Impatiens parviflora, Echinocystislobata, and Procyonlotor were observed, which may lead to loss of the natural values of the researched areas.

Keywords: carabidae, floodplains, middle Odra river, Odonata, oxbow lakes, riparian forests

Procedia PDF Downloads 139
1659 Learning Gains and Constraints Resulting from Haptic Sensory Feedback among Preschoolers' Engagement during Science Experimentation

Authors: Marios Papaevripidou, Yvoni Pavlou, Zacharias Zacharia

Abstract:

Embodied cognition and additional (touch) sensory channel theories indicate that physical manipulation is crucial to learning since it provides, among others, touch sensory input, which is needed for constructing knowledge. Given these theories, the use of Physical Manipulatives (PM) becomes a prerequisite for learning. On the other hand, empirical research on Virtual Manipulatives (VM) (e.g., simulations) learning has provided evidence showing that the use of PM, and thus haptic sensory input, is not always a prerequisite for learning. In order to investigate which means of experimentation, PM or VM, are required for enhancing student science learning at the kindergarten level, an empirical study was conducted that sought to investigate the impact of haptic feedback on the conceptual understanding of pre-school students (n=44, age mean=5,7) in three science domains: beam balance (D1), sinking/floating (D2) and springs (D3). The participants were equally divided in two groups according to the type of manipulatives used (PM: presence of haptic feedback, VM: absence of haptic feedback) during a semi-structured interview for each of the domains. All interviews followed the Predict-Observe-Explain (POE) strategy and consisted of three phases: initial evaluation, experimentation, final evaluation. The data collected through the interviews were analyzed qualitatively (open-coding for identifying students’ ideas in each domain) and quantitatively (use of non-parametric tests). Findings revealed that the haptic feedback enabled students to distinguish heavier to lighter objects when held in hands during experimentation. In D1 the haptic feedback did not differentiate PM and VM students' conceptual understanding of the function of the beam as a mean to compare the mass of objects. In D2 the haptic feedback appeared to have a negative impact on PM students’ learning. Feeling the weight of an object strengthen PM students’ misconception that heavier objects always sink, whereas the scientifically correct idea that the material of an object determines its sinking/floating behavior in the water was found to be significantly higher among the VM students than the PM ones. In D3 the PM students outperformed significantly the VM students with regard to the idea that the heavier an object is the more the spring will expand, indicating that the haptic input experienced by the PM students served as an advantage to their learning. These findings point to the fact that PMs, and thus touch sensory input, might not always be a requirement for science learning and that VMs could be considered, under certain circumstances, as a viable means for experimentation.

Keywords: haptic feedback, physical and virtual manipulatives, pre-school science learning, science experimentation

Procedia PDF Downloads 134
1658 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification

Procedia PDF Downloads 253
1657 Trend Analysis of Rainfall: A Climate Change Paradigm

Authors: Shyamli Singh, Ishupinder Kaur, Vinod K. Sharma

Abstract:

Climate Change refers to the change in climate for extended period of time. Climate is changing from the past history of earth but anthropogenic activities accelerate this rate of change and which is now being a global issue. Increase in greenhouse gas emissions is causing global warming and climate change related issues at an alarming rate. Increasing temperature results in climate variability across the globe. Changes in rainfall patterns, intensity and extreme events are some of the impacts of climate change. Rainfall variability refers to the degree to which rainfall patterns varies over a region (spatial) or through time period (temporal). Temporal rainfall variability can be directly or indirectly linked to climate change. Such variability in rainfall increases the vulnerability of communities towards climate change. Increasing urbanization and unplanned developmental activities, the air quality is deteriorating. This paper mainly focuses on the rainfall variability due to increasing level of greenhouse gases. Rainfall data of 65 years (1951-2015) of Safdarjung station of Delhi was collected from Indian Meteorological Department and analyzed using Mann-Kendall test for time-series data analysis. Mann-Kendall test is a statistical tool helps in analysis of trend in the given data sets. The slope of the trend can be measured through Sen’s slope estimator. Data was analyzed monthly, seasonally and yearly across the period of 65 years. The monthly rainfall data for the said period do not follow any increasing or decreasing trend. Monsoon season shows no increasing trend but here was an increasing trend in the pre-monsoon season. Hence, the actual rainfall differs from the normal trend of the rainfall. Through this analysis, it can be projected that there will be an increase in pre-monsoon rainfall than the actual monsoon season. Pre-monsoon rainfall causes cooling effect and results in drier monsoon season. This will increase the vulnerability of communities towards climate change and also effect related developmental activities.

Keywords: greenhouse gases, Mann-Kendall test, rainfall variability, Sen's slope

Procedia PDF Downloads 204
1656 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations

Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta

Abstract:

The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).

Keywords: absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle

Procedia PDF Downloads 109
1655 Formulation and Evaluation of Antioxidant Cream Containing Nepalese Medicinal Plants

Authors: Ajaya Acharya, Prem Narayan Paudel, Rajendra Gyawali

Abstract:

Due to strong tyrosinase inhibition and antioxidant effects, green tea and Licorice are valuable in cosmetics for the skin. However, data on the addition of essential oils to green tea and Licorice in cream formulation to examine antioxidant activities are limited. The purpose of this study was to develop and assess a phytocosmetic cream’s antioxidant and tyrosinase inhibitory characteristics using crude aqueous extracts of green tea, Licorice, and loaded with essential oils. To load the best concentration on cream formulations, plant aqueous extracts were designed, evaluated, and correlated in terms of total phenolic content (TPC), total flavonoids content (TFC), and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Moreover, o. tenuiflorum and o. basilicum essential oils were extracted and added to a cream formulation. The spreadability profile, water washability, centrifugation test, and organoleptic characteristics of formulated oil in water cream were all satisfactory. The cream exhibited a non-Newtonian rheological profile and pH range of 6.353 ± 0.065 to 6.467±0.050 over successive 0, 1, 2, and 3 months at normal room temperature. The 50% inhibition concentrations shown by herbal cream were 13.764 ± 0.153 µg/ml, 301.445 ± 1.709 µg/ml and 8.082 ± 0.055 respectively for 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric (Fe³⁺) reducing antioxidant power (FRAP) and 2, 2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and that of standard ascorbic acid were 6.716 ± 0.077 µg/ml, 171.604 ± 1.551µg/ml and 5.645±0.034µg/ml which showed formulated cream had strong antioxidant characteristics. The formulated herbal cream with a 50% tyrosinase inhibition concentration of 22.254 ± 0.369µg/ml compared to standard Kojic acid 12.535 ± 0.098µg/ml demonstrated a satisfactory tyrosinase inhibition profile for skin whitening property. Herbal cream was reportedly stable in physical and chemical parameters for successive 0, 1, 2, and 3 months at both real and accelerated time study zones, according to obtained stability study results.

Keywords: crude extracts, antioxidant, tyrosinase inhibition, green tea polyphenols

Procedia PDF Downloads 20
1654 An Analytical Approach for the Fracture Characterization in Concrete under Fatigue Loading

Authors: Bineet Kumar

Abstract:

Many civil engineering infrastructures frequently encounter repetitive loading during their service life. Due to the inherent complexity observed in concrete, like quasi-brittle materials, understanding the fatigue behavior in concrete still posesa challenge. Moreover, the fracture process zone characteristics ahead of the crack tip have been observed to be different in fatigue loading than in the monotonic cases. Therefore, it is crucial to comprehend the energy dissipation associated with the fracture process zone (FPZ) due to repetitive loading. It is well known that stiffness degradation due to cyclic loadingprovides a better understanding of the fracture behavior of concrete. Under repetitive load cycles, concrete members exhibit a two-stage stiffness degradation process. Experimentally it has been observed that the stiffness decreases initially with an increase in crack length and subsequently increases. In this work, an attempt has been made to propose an analytical expression to predict energy dissipation and later the stiffness degradation as a function of crack length. Three-point bend specimens have been considered in the present work to derive the formulations. In this approach, the expression for the resultant stress distribution below the neutral axis has been derived by correlating the bending stress with the cohesive stresses developed ahead of the crack tip due to the existence of the fracture process zone. This resultant stress expression is utilized to estimate the dissipated energydue to crack propagation as a function of crack length. Further, the formulation for the stiffness degradation has been developed by relating the dissipated energy with the work done. It can be used to predict the critical crack length and fatigue life. An attempt has been made to understand the influence of stress amplitude on the damage pattern by using the information on the rate of stiffness degradation. It has been demonstrated that with the increase in the stress amplitude, the damage/FPZ proceeds more in the direction of crack propagation compared to the damage in the direction parallel to the span of the beam, which causes a lesser rate of stiffness degradation for the incremental crack length. Further, the effect of loading frequency has been investigated in terms of stiffness degradation. Under low-frequency loading cases, the damage/FPZ has been found to spread more in the direction parallel to the span, in turn reducing the critical crack length and fatigue life. In such a case, a higher rate of stiffness degradation has been observed in comparison to the high-frequency loading case.

Keywords: fatigue life, fatigue, fracture, concrete

Procedia PDF Downloads 95
1653 Evaluation of the Antibacterial Effects of Turmeric Oleoresin, Capsicum Oleoresin and Garlic Essential Oil against Salmonella enterica Typhimurium

Authors: Jun Hyung Lee, Robin B. Guevarra, Jin Ho Cho, Bo-Ra Kim, Jiwon Shin, Doo Wan Kim, Young Hwa Kim, Minho Song, Hyeun Bum Kim

Abstract:

Salmonella is one of the most important swine pathogens, causing acute or chronic digestive diseases, such as enteritis. The acute form of enteritis is common in young pigs of 2-4 months of age. Salmonellosis in swine causes a huge economic burden to swine industry by reducing production. Therefore, it is necessary that swine industries should strive to decrease Salmonellosis in pigs in order to reduce economic losses. Thus, we tested three types of natural plant extracts(PEs) to evaluate antibacterial effects against Salmonella enterica Typhimurium isolated from the piglet with Salmonellosis. Three PEs including turmeric oleoresin (containing curcumin 79 to 85%), capsicum oleoresin (containing capsaicin 40%-40.1%), and garlic essential oil (100% natural garlic) were tested using the direct contact agar diffusion test, minimum inhibitory concentration test, growth curve assay, and heat stability test. The tests were conducted with PEs at each concentration of 2.5%, 5%, and 10%. For the heat stability test, PEs with 10% concentration were incubated at each 4, 20, 40, 60, 80, and 100 °C for 1 hour; then the direct contact agar diffusion test was used. For the positive and negative controls, 0.5N HCl and 1XPBS were used. All the experiments were duplicated. In the direct contact agar diffusion test, garlic essential oil with 2.5%, 5%, and 10% concentration showed inhibit zones of 1.5cm, 2.7cm, and 2.8cm diameters compared to that of 3.5cm diameter for 0.5N HCl. The minimum inhibited concentration of garlic essential oil was 2.5%. Growth curve assay showed that the garlic essential oil was able to inhibit Salmonella growth significantly after 4hours. The garlic essential oil retained the ability to inhibit Salmonella growth after heat treatment at each temperature. However, turmeric and capsicum oleoresins were not able to significantly inhibit Salmonella growth by all the tests. Even though further in-vivo tests will be needed to verify effects of garlic essential oil for the Salmonellosis prevention for piglets, our results showed that the garlic essential oil could be used as a potential natural agent to prevent Salmonellosis in swine.

Keywords: garlic essential oil, pig, salmonellosis, Salmonella enterica

Procedia PDF Downloads 171
1652 Harmonization of Accreditation Standards in Education of Central Asian Countries: Theoretical Aspect

Authors: Yskak Nabi, Onolkan Umankulova, Ilyas Seitov

Abstract:

Tempus project about “Central Asian network for quality assurance – CANQA” had been implemented in 2009-2012. As the result of the project, two accreditation agencies were established: the agency for quality assurance in the field of education, “EdNet” in Kyrgyzstan, center of progressive technologies in Tajikistan. The importance of the research studies of the project is supported by the idea that the creation of Central-Asian network for quality assurance in education is still relevant, and results of the International forum “Global in regional: Kazakhstan in Bologna process and EU projects,” that was held in Nur-Sultan in October 2020, proves this. At the same time, the previous experience of the partnership between accreditation agencies of Central Asia shows that recommendations elaborated within the CANQA project were not theoretically justified. But there are a number of facts and arguments that prove the practical appliance of these recommendations. In this respect, joint activities of accreditation agencies of Kyrgyzstan and Kazakhstan are representative. For example, independent Kazakh agency of accreditation and rating successfully conducts accreditation of Kyrgyz universities; based on the memorandum about joint activity between the agency for quality assurance in the field of education “EdNet” (Kyrgyzstan) and Astana accreditation agency (Kazakhstan), the last one provides its experts for accreditation procedures in EdNet. Exchange of experience among the agencies shows an effective approach towards adaptation of European standards to the reality of education systems of Central Asia with consideration of not only a legal framework but also from the point of European practices view. Therefore, the relevance of the research is identified as there is a practical partnership between accreditation agencies of Central Asian countries, but the absence of theoretical justification of integrational processes in the accreditation field. As a result, the following hypothesis was put forward: “if to develop theoretical aspects for harmonization of accreditation standards, then integrational processes would be improved since the implementation of Bologna process principles would be supported with wider possibilities, and particularly, students and academic mobility would be improved.” Indeed, for example, in Kazakhstan, the total share of foreign students was 5,04% in 2020, and most of them are coming from Kyrgyzstan, Tajikistan, and Uzbekistan, and if integrational processes will be improved, then this share can increase.

Keywords: accreditation standards in education, Central Asian countries, pedagogical theory, model

Procedia PDF Downloads 198
1651 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems

Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas

Abstract:

Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).

Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting

Procedia PDF Downloads 114
1650 Evaluation of the Antibacterial Effects of Turmeric Oleoresin, Capsicum Oleoresin and Garlic Essential Oil against Shiga Toxin-Producing Escherichia coli

Authors: Jun Hyung Lee, Robin B. Guevarra, Jin Ho Cho, Bo-Ra Kim, Jiwon Shin, Doo Wan Kim, Young Hwa Kim, Minho Song, Hyeun Bum Kim

Abstract:

Colibacillosis is one of the major health problems in young piglets ultimately resulting in their death, and it is common especially in young piglets. For the swine industry, colibacillosis is one of the important economic burdens. Therefore, it is necessary for the swine industries to prevent Colibacillosis in piglets in order to reduce economic losses. Thus, we tested three types of natural plant extracts (PEs) to evaluate antibacterial effects against Shiga toxin-producing Escherichia coli (STEC) isolated from the piglet. Three PEs including turmeric oleoresin (containing curcumin 79 to 85%), capsicum oleoresin (containing capsaicin 40%-40.1%), and garlic essential oil (100% natural garlic) were tested using the direct contact agar diffusion test, minimum inhibitory concentration test, growth curve assay, and heat stability test. The tests were conducted with PEs at each concentration of 2.5%, 5%, and 10%. For the heat stability test, PEs with 10% concentration were incubated at each 4, 20, 40, 60, 80, and 100 °C for 1 hour, then the direct contact agar diffusion test was used. For the positive and negative controls, 0.5N HCl and 1XPBS were used. All the experiments were duplicated. In the direct contact agar diffusion test, garlic essential oil with 2.5%, 5%, and 10% concentration showed inhibit zones of 1.1cm, 3.0cm, and 3.6 cm in diameters compared to that of 3.5cm diameter for 0.5N HCl. The minimum inhibited concentration of garlic essential oil was 2.5%. Growth curve assay showed that the garlic essential oil was able to inhibit STEC growth significantly after 4 hours. The garlic essential oil retained the ability to inhibit STEC growth after heat treatment at each temperature. However, turmeric and capsicum oleoresins were not able to significantly inhibit STEC growth by all the tests. Even though further tests using the piglets will be required to evaluate effects of garlic essential oil for the Colibacillosis prevention for piglets, our results showed that the garlic essential oil could be used as a potential natural agent to prevent Colibacillosis in swine.

Keywords: garlic essential oil, pig, Colibacillosis, Escherichia coli

Procedia PDF Downloads 257
1649 Effect of Downstream Pressure in Tuning the Flow Control Orifices of Pressure Fed Reaction Control System Thrusters

Authors: Prakash M.N, Mahesh G, Muhammed Rafi K.M, Shiju P. Nair

Abstract:

Introduction: In launch vehicle missions, Reaction Control thrusters are being used for the three-axis stabilization of the vehicle during the coasting phases. A pressure-fed propulsion system is used for the operation of these thrusters due to its less complexity. In liquid stages, these thrusters are designed to draw propellant from the same tank used for the main propulsion system. So in order to regulate the propellant flow rates of these thrusters, flow control orifices are used in feed lines. These orifices are calibrated separately as per the flow rate requirement of individual thrusters for the nominal operating conditions. In some missions, it was observed that the thrusters were operated at higher thrust than nominal. This point was addressed through a series of cold flow and hot tests carried out in-ground and this paper elaborates the details of the same. Discussion: In order to find out the exact reason for this phenomenon, two flight configuration thrusters were identified and hot tested in the ground with calibrated orifices and feed lines. During these tests, the chamber pressure, which is directly proportional to the thrust, is measured. In both cases, chamber pressures higher than the nominal by 0.32bar to 0.7bar were recorded. The increase in chamber pressure is due to an increase in the oxidizer flow rate of both the thrusters. Upon further investigation, it is observed that the calibration of the feed line is done with ambient pressure downstream. But in actual flight conditions, the orifices will be subjected to operate with 10 to 11bar pressure downstream. Due to this higher downstream pressure, the flow through the orifices increases and thereby, the thrusters operate with higher chamber pressure values. Conclusion: As part of further investigatory tests, two numbers of fresh thrusters were realized. Orifice tuning of these thrusters was carried out in three different ways. In the first trial, the orifice tuning was done by simulating 1bar pressure downstream. The second trial was done with the injector assembled downstream. In the third trial, the downstream pressure equal to the flight injection pressure was simulated downstream. Using these calibrated orifices, hot tests were carried out in simulated vacuum conditions. Chamber pressure and flow rate values were exactly matching with the prediction for the second and third trials. But for the first trial, the chamber pressure values obtained in the hot test were more than the prediction. This clearly shows that the flow is detached in the 1st trial and attached for the 2nd & 3rd trials. Hence, the error in tuning the flow control orifices is pinpointed as the reason for this higher chamber pressure observed in flight.

Keywords: reaction control thruster, propellent, orifice, chamber pressure

Procedia PDF Downloads 199
1648 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar

Abstract:

The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.

Keywords: sowing, irrigation, yield, heat stress

Procedia PDF Downloads 95
1647 Producing Sustained Renewable Energy and Removing Organic Pollutants from Distillery Wastewater using Consortium of Sludge Microbes

Authors: Anubha Kaushik, Raman Preet

Abstract:

Distillery wastewater in the form of spent wash is a complex and strong industrial effluent, with high load of organic pollutants that may deplete dissolved oxygen on being discharged into aquatic systems and contaminate groundwater by leaching of pollutants, while untreated spent wash disposed on land acidifies the soil. Stringent legislative measures have therefore been framed in different countries for discharge standards of distillery effluent. Utilising the organic pollutants present in various types of wastes as food by mixed microbial populations is emerging as an eco-friendly approach in the recent years, in which complex organic matter is converted into simpler forms, and simultaneously useful gases are produced as renewable and clean energy sources. In the present study, wastewater from a rice bran based distillery has been used as the substrate in a dark fermenter, and native microbial consortium from the digester sludge has been used as the inoculum to treat the wastewater and produce hydrogen. After optimising the operational conditions in batch reactors, sequential batch mode and continuous flow stirred tank reactors were used to study the best operational conditions for enhanced and sustained hydrogen production and removal of pollutants. Since the rate of hydrogen production by the microbial consortium during dark fermentation is influenced by concentration of organic matter, pH and temperature, these operational conditions were optimised in batch mode studies. Maximum hydrogen production rate (347.87ml/L/d) was attained in 32h dark fermentation while a good proportion of COD also got removed from the wastewater. Slightly acidic initial pH seemed to favor biohydrogen production. In continuous stirred tank reactor, high H2 production from distillery wastewater was obtained from a relatively shorter substrate retention time (SRT) of 48h and a moderate organic loading rate (OLR) of 172 g/l/d COD.

Keywords: distillery wastewater, hydrogen, microbial consortium, organic pollution, sludge

Procedia PDF Downloads 276
1646 Cupric Oxide Thin Films for Optoelectronic Application

Authors: Sanjay Kumar, Dinesh Pathak, Sudhir Saralch

Abstract:

Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented.

Keywords: absorber material, cupric oxide, dip coating, thin film

Procedia PDF Downloads 308
1645 Adoption of Electronic Logistics Management Information System for Life-Saving Maternal, Neonatal and Child Health Medicines: A Bangladesh Perspective

Authors: Mohammad Julhas Sujan, Md. Ferdous Alam

Abstract:

Maternal, neonatal, and child health (MNCH) holds one of the prime focuses in Bangladesh’s national healthcare system. To save the lives of mothers and children, knowing the stock of MNCH medicines in different healthcare facilities and when to replenish them are essential. A robust information system not only facilitates efficient management of the essential MNCH medicines but also helps effective allocation of scarce resources. In Bangladesh, Supply chain management of the 25-essential life-saving medicines are currently tracked and monitored via an electronic logistics management information system (eLMIS). Our aim was to conduct a cross-sectional study with a year (2020) worth of data from 24 districts of Bangladesh to evaluate how eLMIS is helping the Government and other stakeholders in efficient supply chain management. Data were collected from 4711 healthcare facilities ranging from primary to secondary levels within a district. About 90% (4143) are community clinics which are considered primary health care facilities in Bangladesh. After eLMIS implementation, the average reporting rate across the districts has been increased (> 97%). The month of stock (MOS) of zinc is an average 6 months compared to Inj. Magnesium Sulphate which will take 2.5 years to consume according to the current average monthly consumption (AMC). Due to first approaching expiry, Tab. Misoprostol, 7.1% Chlorhexidine and Inj. Oxytocin may become unusable. Moreover, Inj. Oxytocin is temperature sensitive and may reduce its efficacy if it is stocked for a longer period. In contrast, Zinc should be sufficiently stocked to prevent sporadic stockouts. To understand how data are collected, transmitted, processed, and aggregated for MNCH medicines in a faster and timely manner, an electronic logistics management information system (eLMIS) is necessary. We recommend the use of such a system in developing countries like Bangladesh for efficient supply chain management of essential MNCH medicines.

Keywords: adaption, eLMIS, MNCH, live-saving medicines

Procedia PDF Downloads 160
1644 The Short-Term Stress Indicators in Home and Experimental Dogs

Authors: Madara Nikolajenko, Jevgenija Kondratjeva

Abstract:

Stress is a response of the body to physical or psychological environmental stressors. Cortisol level in blood serum is determined as the main indicator of stress, but the blood collection, the animal preparation and other activities can cause unpleasant conditions and induce increase of these hormones. Therefore, less invasive methods are searched to determine stress hormone levels, for example, by measuring the cortisol level saliva. The aim of the study is to find out the changes of stress hormones in blood and saliva in home and experimental dogs in simulated short-term stress conditions. The study included clinically healthy experimental beagle dogs (n=6) and clinically healthy home American Staffordshire terriers (n=6). The animals were let into a fenced area to adapt. Loud drum sounds (in cooperation with 'Andžeja Grauda drum school') were used as a stressor. Blood serum samples were taken for sodium, potassium, glucose and cortisol level determination and saliva samples for cortisol determination only. Control parameters were taken immediately before the start of the stressor, and next samples were taken immediately after the stress. The last measurements were taken two hours after the stress. Electrolyte levels in blood serum were determined using direction selective electrode method (ILab Aries analyzer) and cortisol in blood serum and saliva using electrochemical luminescence method (Roche Diagnostics). Blood glucose level was measured with glucometer (ACCU-CHECK Active test strips). Cortisol level in the blood increased immediately after the stress in all home dogs (P < 0,05), but only in 33% (P < 0,05) of the experimental dogs. After two hours the measurement decreased in 83% (P < 0,05) of home dogs (in 50% returning to the control point) and in 83% (P < 0,05) of the experimental dogs. Cortisol in saliva immediately after the stress increased in 50% (P > 0,05) of home dogs and in 33% (P > 0,05) of the experimental dogs. After two hours in 83% (P > 0,05) of the home animals, the measurements decreased, only in 17% of the experimental dogs it decreased as well, while in 49% measurement was undetectable due to the lack of material. Blood sodium, potassium, and glucose measurements did not show any significant changes. The combination of short-term stress indicators, when, after the stressor, all indicators should immediately increase and decrease after two hours, confirmed in none of the animals. Therefore the authors can conclude that each animal responds to a stressful situation with different physiological mechanisms and hormonal activity. Cortisol level in saliva and blood is released with the different speed and is not an objective indicator of acute stress.

Keywords: animal behaivor, cortisol, short-term stress, stress indicators

Procedia PDF Downloads 268
1643 A New Co(II) Metal Complex Template with 4-dimethylaminopyridine Organic Cation: Structural, Hirshfeld Surface, Phase Transition, Electrical Study and Dielectric Behavior

Authors: Mohamed dammak

Abstract:

Great attention has been paid to the design and synthesis of novel organic-inorganic compounds in recent decades because of their structural variety and the large diversity of atomic arrangements. In this work, the structure for the novel dimethyl aminopyridine tetrachlorocobaltate (C₇H₁₁N₂)₂CoCl₄ prepared by the slow evaporation method at room temperature has been successfully discussed. The X-ray diffraction results indicate that the hybrid material has a triclinic structure with a P space group and features a 0D structure containing isolated distorted [CoCl₄]2- tetrahedra interposed between [C7H11N²⁻]+ cations forming planes perpendicular to the c axis at z = 0 and z = ½. The effect of the synthesis conditions and the reactants used, the interactions between the cationic planes, and the isolated [CoCl4]2- tetrahedra are employing N-H...Cl and C-H…Cl hydrogen bonding contacts. The inspection of the Hirshfeld surface analysis helps to discuss the strength of hydrogen bonds and to quantify the inter-contacts. A phase transition was discovered by thermal analysis at 390 K, and comprehensive dielectric research was reported, showing a good agreement with thermal data. Impedance spectroscopy measurements were used to study the electrical and dielectric characteristics over a wide range of frequencies and temperatures, 40 Hz–10 MHz and 313–483 K, respectively. The Nyquist plot (Z" versus Z') from the complex impedance spectrum revealed semicircular arcs described by a Cole-Cole model. An electrical circuit consisting of a link of grain and grain boundary elements is employed. The real and imaginary parts of dielectric permittivity, as well as tg(δ) of (C₇H₁₁N₂)₂CoCl₄ at different frequencies, reveal a distribution of relaxation times. The presence of grain and grain boundaries is confirmed by the modulus investigations. Electric and dielectric analyses highlight the good protonic conduction of this material.

Keywords: organic-inorganic, phase transitions, complex impedance, protonic conduction, dielectric analysis

Procedia PDF Downloads 84
1642 Economic and Environmental Assessment of Heat Recovery in Beer and Spirit Production

Authors: Isabel Schestak, Jan Spriet, David Styles, Prysor Williams

Abstract:

Breweries and distilleries are well-known for their high water usage. The water consumption in a UK brewery to produce one litre of beer reportedly ranges from 3-9 L and in a distillery from 7-45 L to produce a litre of spirit. This includes product water such as mashing water, but also water for wort and distillate cooling and for cleaning of tanks, casks, and kegs. When cooling towers are used, cooling water can be the dominating water consumption in a brewery or distillery. Interlinked to the high water use is a substantial heating requirement for mashing, wort boiling, or distillation, typically met by fossil fuel combustion such as gasoil. Many water and waste water streams are leaving the processes hot, such as the returning cooling water or the pot ales. Therefore, several options exist to optimise water and energy efficiency of spirit production through heat recovery. Although these options are known in the sector, they are often not applied in practice due to planning efforts or financial obstacles. In this study, different possibilities and design options for heat recovery systems are explored in four breweries/distilleries in the UK and assessed from an economic but also environmental point of view. The eco-efficiency methodology, according to ISO 14045, is applied to combine both assessment criteria to determine the optimum solution for heat recovery application in practice. The economic evaluation is based on the total value added (TVA) while the Life Cycle Assessment (LCA) methodology is applied to account for the environmental impacts through the installations required for heat recovery. The four case study businesses differ in a) production scale with mashing volumes ranging from 2500 to 40,000 L, in b) terms of heating and cooling technology used, and in c) the extent to which heat recovery is/is not applied. This enables the evaluation of different cases for heat recovery based on empirical data. The analysis provides guidelines for practitioners in the brewing and distilling sector in and outside the UK for the realisation of heat recovery measures. Financial and environmental payback times are showcased for heat recovery systems in the four distilleries which are operating at different production scales. The results are expected to encourage the application of heat recovery where environmentally and economically beneficial and ultimately contribute to a reduction of the water and energy footprint in brewing and distilling businesses.

Keywords: brewery, distillery, eco-efficiency, heat recovery from process and waste water, life cycle assessment

Procedia PDF Downloads 117
1641 Inhibition of Echis ocellatus Venom Metalloprotease by Flavonoid-Rich Ethyl Acetate Sub-fraction of Moringa oleifera Leaves (Lam.): in vitro and in silico Approaches

Authors: Adeyi Akindele Oluwatosin, Mustapha Kaosarat Keji, Ajisebiola Babafemi Siji, Adeyi Olubisi Esther, Damilohun Samuel Metibemu, Raphael Emuebie Okonji

Abstract:

Envenoming by Echis ocellatus is potentially life-threatening due to severe hemorrhage, renal failure, and capillary leakage. These effects are attributed to snake venom metalloproteinases (SVMPs). Due to drawbacks in the use of antivenom, natural inhibitors from plants are of interest in studies of new antivenom treatment. Antagonizing effects of bioactive compounds of Moringa oleifera, a known antisnake plant, are yet to be tested against SVMPs of E. ocellatus (SVMP-EO). Ethanol crude extract of M. oleifera was partitioned using n-hexane and ethyl acetate. Each partition was fractionated using column chromatography and tested against SVMP-EO purified through ion-exchange chromatography with EchiTab-PLUS polyvalent anti-venom as control. Phytoconstituents of ethyl acetate fraction were screened against the catalytic site of crystal of BaP1-SVMP, while drug-likeness and ADMET toxicity of compound were equally determined. The molecular weight of isolated SVMP-EO was 43.28 kDa, with a specific activity of 245 U/ml, a percentage yield of 62.83 %, and a purification fold of 0.920. The Vmax and Km values are 2 mg/ml and 38.095 μmol/ml/min, respectively, while the optimal pH and temperature are 6.0 and 40°C, respectively. Polyvalent anti-venom, crude extract, and ethyl acetate fraction of M. oleifera exhibited a complete inhibitory effect against SVMP-EO activity. The inhibitions of the P-1 and P-II metalloprotease’s enzymes by the ethyl acetate fraction are largely due to methanol, 6, 8, 9-trimethyl-4-(2-phenylethyl)-3-oxabicyclo[3.3.1]non-6-en-1-yl)- and paroxypropione, respectively. Both compounds are potential drug candidates with little or no concern of toxicity, as revealed from the in-silico predictions. The inhibitory effects suggest that this compound might be a therapeutic candidate for further exploration for treatment of Ocellatus’ envenoming.

Keywords: Echis ocellatus, Moringa oleifera, anti-venom, metalloproteases, snakebite, molecular docking

Procedia PDF Downloads 149