Search results for: random routing optimization technique
10326 Mapping of Arenga Pinnata Tree Using Remote Sensing
Authors: Zulkiflee Abd Latif, Sitinor Atikah Nordin, Alawi Sulaiman
Abstract:
Different tree species possess different and various benefits. Arenga Pinnata tree species own several potential uses that is valuable for the economy and the country. Mapping vegetation using remote sensing technique involves various process, techniques and consideration. Using satellite imagery, this method enables the access of inaccessible area and with the availability of near infra-red band; it is useful in vegetation analysis, especially in identifying tree species. Pixel-based and object-based classification technique is used as a method in this study. Pixel-based classification technique used in this study divided into unsupervised and supervised classification. Object based classification technique becomes more popular another alternative method in classification process. Using spectral, texture, color and other information, to classify the target make object-based classification is a promising technique for classification. Classification of Arenga Pinnata trees is overlaid with elevation, slope and aspect, soil and river data and several other data to give information regarding the tree character and living environment. This paper will present the utilization of remote sensing technique in order to map Arenga Pinnata tree speciesKeywords: Arenga Pinnata, pixel-based classification, object-based classification, remote sensing
Procedia PDF Downloads 38010325 Integrating Process Planning, WMS Dispatching, and WPPW Weighted Due Date Assignment Using a Genetic Algorithm
Authors: Halil Ibrahim Demir, Tarık Cakar, Ibrahim Cil, Muharrem Dugenci, Caner Erden
Abstract:
Conventionally, process planning, scheduling, and due-date assignment functions are performed separately and sequentially. The interdependence of these functions requires integration. Although integrated process planning and scheduling, and scheduling with due date assignment problems are popular research topics, only a few works address the integration of these three functions. This work focuses on the integration of process planning, WMS scheduling, and WPPW due date assignment. Another novelty of this work is the use of a weighted due date assignment. In the literature, due dates are generally assigned without considering the importance of customers. However, in this study, more important customers get closer due dates. Typically, only tardiness is punished, but the JIT philosophy punishes both earliness and tardiness. In this study, all weighted earliness, tardiness, and due date related costs are penalized. As no customer desires distant due dates, such distant due dates should be penalized. In this study, various levels of integration of these three functions are tested and genetic search and random search are compared both with each other and with ordinary solutions. Higher integration levels are superior, while search is always useful. Genetic searches outperformed random searches.Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic algorithm, random search
Procedia PDF Downloads 39410324 Fusion Models for Cyber Threat Defense: Integrating Clustering, Random Forests, and Support Vector Machines to Against Windows Malware
Authors: Azita Ramezani, Atousa Ramezani
Abstract:
In the ever-escalating landscape of windows malware the necessity for pioneering defense strategies turns into undeniable this study introduces an avant-garde approach fusing the capabilities of clustering random forests and support vector machines SVM to combat the intricate web of cyber threats our fusion model triumphs with a staggering accuracy of 98.67 and an equally formidable f1 score of 98.68 a testament to its effectiveness in the realm of windows malware defense by deciphering the intricate patterns within malicious code our model not only raises the bar for detection precision but also redefines the paradigm of cybersecurity preparedness this breakthrough underscores the potential embedded in the fusion of diverse analytical methodologies and signals a paradigm shift in fortifying against the relentless evolution of windows malicious threats as we traverse through the dynamic cybersecurity terrain this research serves as a beacon illuminating the path toward a resilient future where innovative fusion models stand at the forefront of cyber threat defense.Keywords: fusion models, cyber threat defense, windows malware, clustering, random forests, support vector machines (SVM), accuracy, f1-score, cybersecurity, malicious code detection
Procedia PDF Downloads 7110323 A User Identification Technique to Access Big Data Using Cloud Services
Authors: A. R. Manu, V. K. Agrawal, K. N. Balasubramanya Murthy
Abstract:
Authentication is required in stored database systems so that only authorized users can access the data and related cloud infrastructures. This paper proposes an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. The proposed technique is likely to be more robust as the probability of breaking the password is extremely low. This framework uses a multi-modal biometric approach and SMS to enforce additional security measures with the conventional Login/password system. The robustness of the technique is demonstrated mathematically using a statistical analysis. This work presents the authentication system along with the user authentication architecture diagram, activity diagrams, data flow diagrams, sequence diagrams, and algorithms.Keywords: design, implementation algorithms, performance, biometric approach
Procedia PDF Downloads 47610322 Secure E-Pay System Using Steganography and Visual Cryptography
Authors: K. Suganya Devi, P. Srinivasan, M. P. Vaishnave, G. Arutperumjothi
Abstract:
Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.Keywords: image security, random LSB, steganography, visual cryptography
Procedia PDF Downloads 33010321 Application of Container Technique to High-Risk Children: Its Effect on Their Levels of Stress, Anxiety and Depression
Authors: Nguyen Thi Loan, Phan Ngoc Thanh Tra
Abstract:
Container is one of the techniques used in Eye Movement Desensitization and Reprocessing (EDMR) Therapy. This paper presents the positive results of applying Container technique to “high risk children”. The sample for this research is composed of 60 “high risk children” whose ages range from 11 to 18 years old, housed in Ho Chi Minh City Youth Center. They have been under the program of the Worldwide Orphans Foundation since August 2015 for various reasons such as, loss of parents, anti-social behaviors, homelessness, child labor among others. These “high risk children” are under high levels of stress, anxiety and depression. The subjects were divided into two groups: the control and the experimental with 30 members each. The experimental group was applied Container Technique and the instruments used to measure their levels of stress, anxiety, and depression are DASS-42 and ASEBA. Results show that after applying the Container Technique to the experimental group, there are significant differences between the two groups’ levels of stress, anxiety and depression. The experimental group’s levels of stress, anxiety and depression decreased significantly. The results serve as a basis for the researchers to make an appeal to psychologists to apply Container Technique in doing psychological treatment in a suitable context.Keywords: anxiety, depression, container technique, EMDR
Procedia PDF Downloads 29710320 Review on Crew Scheduling of Bus Transit: A Case Study in Kolkata
Authors: Sapan Tiwari, Namrata Ghosh
Abstract:
In urban mass transit, crew scheduling always plays a significant role. It deals with the formulation of work timetables for its staff so that an organization can meet the demand for its products or services. The efficient schedules of a specified timetable have an enormous impact on staff demand. It implies that an urban mass transit company's financial outcomes are strongly associated with planning operations in the region. The research aims to demonstrate the state of the crew scheduling studies and its practical implementation in mass transit businesses in metropolitan areas. First, there is a short overview of past studies in the field. Subsequently, the restrictions and problems with crew scheduling and some models, which have been developed to solve the related issues with their mathematical formulation, are defined. The comments are completed by a description of the solution opportunities provided by computer-aided scheduling program systems for operational use and exposures from urban mass transit organizations. Furthermore, Bus scheduling is performed using the Hungarian technique of problem-solving tasks and mathematical modeling. Afterward, the crew scheduling problem, which consists of developing duties using predefined tasks with set start and end times and places, is resolved. Each duty has to comply with a set line of work. The objective is to minimize a mixture of fixed expenses (number of duties) and varying costs. After the optimization of cost, the outcome of the research is that the same frequency can be provided with fewer buses and less workforce.Keywords: crew scheduling, duty, optimization of cost, urban mass transit
Procedia PDF Downloads 15010319 Portfolio Optimization under a Hybrid Stochastic Volatility and Constant Elasticity of Variance Model
Authors: Jai Heui Kim, Sotheara Veng
Abstract:
This paper studies the portfolio optimization problem for a pension fund under a hybrid model of stochastic volatility and constant elasticity of variance (CEV) using asymptotic analysis method. When the volatility component is fast mean-reverting, it is able to derive asymptotic approximations for the value function and the optimal strategy for general utility functions. Explicit solutions are given for the exponential and hyperbolic absolute risk aversion (HARA) utility functions. The study also shows that using the leading order optimal strategy results in the value function, not only up to the leading order, but also up to first order correction term. A practical strategy that does not depend on the unobservable volatility level is suggested. The result is an extension of the Merton's solution when stochastic volatility and elasticity of variance are considered simultaneously.Keywords: asymptotic analysis, constant elasticity of variance, portfolio optimization, stochastic optimal control, stochastic volatility
Procedia PDF Downloads 29910318 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 10010317 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification
Procedia PDF Downloads 30910316 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems
Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi
Abstract:
The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm
Procedia PDF Downloads 17810315 The Clustering of Multiple Sclerosis Subgroups through L2 Norm Multifractal Denoising Technique
Authors: Yeliz Karaca, Rana Karabudak
Abstract:
Multifractal Denoising techniques are used in the identification of significant attributes by removing the noise of the dataset. Magnetic resonance (MR) image technique is the most sensitive method so as to identify chronic disorders of the nervous system such as Multiple Sclerosis. MRI and Expanded Disability Status Scale (EDSS) data belonging to 120 individuals who have one of the subgroups of MS (Relapsing Remitting MS (RRMS), Secondary Progressive MS (SPMS), Primary Progressive MS (PPMS)) as well as 19 healthy individuals in the control group have been used in this study. The study is comprised of the following stages: (i) L2 Norm Multifractal Denoising technique, one of the multifractal technique, has been used with the application on the MS data (MRI and EDSS). In this way, the new dataset has been obtained. (ii) The new MS dataset obtained from the MS dataset and L2 Multifractal Denoising technique has been applied to the K-Means and Fuzzy C Means clustering algorithms which are among the unsupervised methods. Thus, the clustering performances have been compared. (iii) In the identification of significant attributes in the MS dataset through the Multifractal denoising (L2 Norm) technique using K-Means and FCM algorithms on the MS subgroups and control group of healthy individuals, excellent performance outcome has been yielded. According to the clustering results based on the MS subgroups obtained in the study, successful clustering results have been obtained in the K-Means and FCM algorithms by applying the L2 norm of multifractal denoising technique for the MS dataset. Clustering performance has been more successful with the MS Dataset (L2_Norm MS Data Set) K-Means and FCM in which significant attributes are obtained by applying L2 Norm Denoising technique.Keywords: clinical decision support, clustering algorithms, multiple sclerosis, multifractal techniques
Procedia PDF Downloads 16910314 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 14710313 Feature Evaluation Based on Random Subspace and Multiple-K Ensemble
Authors: Jaehong Yu, Seoung Bum Kim
Abstract:
Clustering analysis can facilitate the extraction of intrinsic patterns in a dataset and reveal its natural groupings without requiring class information. For effective clustering analysis in high dimensional datasets, unsupervised dimensionality reduction is an important task. Unsupervised dimensionality reduction can generally be achieved by feature extraction or feature selection. In many situations, feature selection methods are more appropriate than feature extraction methods because of their clear interpretation with respect to the original features. The unsupervised feature selection can be categorized as feature subset selection and feature ranking method, and we focused on unsupervised feature ranking methods which evaluate the features based on their importance scores. Recently, several unsupervised feature ranking methods were developed based on ensemble approaches to achieve their higher accuracy and stability. However, most of the ensemble-based feature ranking methods require the true number of clusters. Furthermore, these algorithms evaluate the feature importance depending on the ensemble clustering solution, and they produce undesirable evaluation results if the clustering solutions are inaccurate. To address these limitations, we proposed an ensemble-based feature ranking method with random subspace and multiple-k ensemble (FRRM). The proposed FRRM algorithm evaluates the importance of each feature with the random subspace ensemble, and all evaluation results are combined with the ensemble importance scores. Moreover, FRRM does not require the determination of the true number of clusters in advance through the use of the multiple-k ensemble idea. Experiments on various benchmark datasets were conducted to examine the properties of the proposed FRRM algorithm and to compare its performance with that of existing feature ranking methods. The experimental results demonstrated that the proposed FRRM outperformed the competitors.Keywords: clustering analysis, multiple-k ensemble, random subspace-based feature evaluation, unsupervised feature ranking
Procedia PDF Downloads 33910312 A New Tactical Optimization Model for Bioenergy Supply Chain
Authors: Birome Holo Ba, Christian Prins, Caroline Prodhon
Abstract:
Optimization is an important aspect of logistics management. It can reduce significantly logistics costs and also be a good tool for decision support. In this paper, we address a planning problem specific to biomass supply chain. We propose a new mixed integer linear programming (MILP) model dealing with different feed stock production operations such as harvesting, packing, storage, pre-processing and transportation, with the objective of minimizing the total logistic cost of the system on a regional basis. It determines the optimal number of harvesting machine, the fleet size of trucks for transportation and the amount of each type of biomass harvested, stored and pre-processed in each period to satisfy demands of refineries in each period. We illustrate the effectiveness of the proposal model with a numerical example, a case study in Aube (France department), which gives preliminary and interesting, results on a small test case.Keywords: biomass logistics, supply chain, modelling, optimization, bioenergy, biofuels
Procedia PDF Downloads 51410311 Doubled Haploid Production in Wheat Using Imperata cylindrica Mediated Chromosome Elimination Technique
Authors: Madhu Patial, Dharam Pal, Jagdish Kumar, H. K. Chaudhary
Abstract:
Doubled haploid breeding serves as a useful technique in wheat improvement by providing instant and complete homozygosity. Of the various techniques employed for haploid production chromosome elimination has a large scale practical application in wheat improvement. Barclay (1975) initiated the technique in wheat by crossing wheat variety Chinese spring with Hordeum bulbosum, but due to presence of the dominant crossability inhibitor genes Kr7 and Kr2 in many wheat varieties, the technique was however genotypic specific. The discovery of wheat X maize system of haploid production being genotype non-specific is quite successful but still maize needs to be grown in greenhouse to coincide flowering with wheat crop. Recently, wheat X Imperate cylindrica has been identified as a new chromosome mediated DH approach for efficient haploid induction. An experiment to use this technique in wheat was set up by crossing six F1s and two three way F1s with Imperata cylindrica. The data was recorded for the three component traits of haploid induction viz., seed formation, embryo formation and regeneration frequency. Variation among wheat F1s was observed and higher frequency for all the traits were recorded in cross HD 2997/2*FL-8/DONSK-POLL and KLE/BER/2*FL-8/DONSK-POLL.Keywords: wheat, haploid, imperata cylindrica, chromosome elimination technique
Procedia PDF Downloads 42410310 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force
Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh
Abstract:
This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection
Procedia PDF Downloads 38910309 Patterns Obtained by Using Knitting Technique in Textile Crafts
Authors: Özlem Erzurumlu, Nazan Oskay, Ece Melek
Abstract:
Knitting which is one of the textile manufacturing techniques is manufactured by using the system of single yarn. Knitting wares consisting of loops structurally have flexible structures. Knitting can be shaped and given volume easily due to increasing or decreasing the number of loops, being manufactured in circular form and its flexible structure. While the knitting wares are basically being manufactured to meet the requirements, it takes its place in the art field overflowing outside of industrial production later. Textile artist ensures his ideas to convert into artistic product by using textiles and non-textiles with aesthetic concerns and creative impulses. When textile crafts are observed at the present time we see that knitting technique has an extensive area of use such as sculpture, panel, installation art and performing art. It is examined how the knitting technique is used in textile crafts observing patterns obtained by this technique in textile crafts in this study.Keywords: art, textile, knitting art, textile crafts
Procedia PDF Downloads 70710308 Portfolio Risk Management Using Quantum Annealing
Authors: Thomas Doutre, Emmanuel De Meric De Bellefon
Abstract:
This paper describes the application of local-search metaheuristic quantum annealing to portfolio opti- mization. Heuristic technics are particularly handy when Markowitz’ classical Mean-Variance problem is enriched with additional realistic constraints. Once tailored to the problem, computational experiments on real collected data have shown the superiority of quantum annealing over simulated annealing for this constrained optimization problem, taking advantages of quantum effects such as tunnelling.Keywords: optimization, portfolio risk management, quantum annealing, metaheuristic
Procedia PDF Downloads 38310307 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)
Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor
Abstract:
There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms
Procedia PDF Downloads 30210306 Application of Fuzzy Logic to Design and Coordinate Parallel Behaviors for a Humanoid Mobile Robot
Authors: Nguyen Chan Hung, Mai Ngoc Anh, Nguyen Xuan Ha, Tran Xuan Duc, Dang Bao Lam, Nguyen Hoang Viet
Abstract:
This paper presents a design and implementation of a navigation controller for a humanoid mobile robot platform to operate in indoor office environments. In order to fulfil the requirement of recognizing and approaching human to provide service while avoiding random obstacles, a behavior-based fuzzy logic controller was designed to simultaneously coordinate multiple behaviors. Experiments in real office environment showed that the fuzzy controller deals well with complex scenarios without colliding with random objects and human.Keywords: behavior control, fuzzy logic, humanoid robot, mobile robot
Procedia PDF Downloads 42010305 Improving Search Engine Performance by Removing Indexes to Malicious URLs
Authors: Durga Toshniwal, Lokesh Agrawal
Abstract:
As the web continues to play an increasing role in information exchange, and conducting daily activities, computer users have become the target of miscreants which infects hosts with malware or adware for financial gains. Unfortunately, even a single visit to compromised web site enables the attacker to detect vulnerabilities in the user’s applications and force the downloading of multitude of malware binaries. We provide an approach to effectively scan the so-called drive-by downloads on the Internet. Drive-by downloads are result of URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. To scan the web for malicious pages, the first step is to use a crawler to collect URLs that live on the Internet, and then to apply fast prefiltering techniques to reduce the amount of pages that are needed to be examined by precise, but slower, analysis tools (such as honey clients or antivirus programs). Although the technique is effective, it requires a substantial amount of resources. A main reason is that the crawler encounters many pages on the web that are legitimate and needs to be filtered. In this paper, to characterize the nature of this rising threat, we present implementation of a web crawler on Python, an approach to search the web more efficiently for pages that are likely to be malicious, filtering benign pages and passing remaining pages to antivirus program for detection of malwares. Our approaches starts from an initial seed of known, malicious web pages. Using these seeds, our system generates search engines queries to identify other malicious pages that are similar to the ones in the initial seed. By doing so, it leverages the crawling infrastructure of search engines to retrieve URLs that are much more likely to be malicious than a random page on the web. The results shows that this guided approach is able to identify malicious web pages more efficiently when compared to random crawling-based approaches.Keywords: web crawler, malwares, seeds, drive-by-downloads, security
Procedia PDF Downloads 22910304 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company
Authors: Lokendra Kumar Devangan, Ajay Mishra
Abstract:
This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.Keywords: production planning, mixed integer optimization, network model, network optimization
Procedia PDF Downloads 6710303 Conjugal Relationship and Reproductive Decision-Making among Couples in Southwest Nigeria
Authors: Peter Olasupo Ogunjuyigbe, Sarafa Shittu
Abstract:
This paper emphasizes the relevance of conjugal relationship and spousal communication towards enhancing men’s involvement in contraceptive use among the Yorubas of South Western Nigeria. An understanding of males influence and the role they play in reproductive decision making can throw better light on mechanisms through which egalitarianness of husband/wife decision making influences contraceptive use. The objective of this study was to investigate how close conjugal relationships can be a good indicator of joint decision making among couples using data derived from a survey conducted in three states of South Western Nigeria. The study sample consisted of five hundred and twenty one (521) male respondents aged 15-59 years and five hundred and forty seven (547) female respondents aged 15-49 years. The study used both quantitative and qualitative approached to elicit information from the respondents. In order that the study would be truly representative of the towns, each of the study locations in the capital cities was divided into four strata: The traditional area, the migrant area, the mixed area (i.e. traditional and migrant), and the elite area. In the rural areas, selection of the respondents was by simple random sampling technique. However, the random selection was made in such a way that all the different parts of the locations were represented. Generally, the data collected were analysed at univariate, bivariate, and multivariate levels. Logistic regression models were employed to examine the interrelationships between male reproductive behaviour, conjugal relationship and contraceptive use. The study indicates that current use of contraceptive is high among this major ethnic group in Nigeria because of the improved level of communication among couples. The problem, however, is that men still have lower exposure rate when it comes to question of family planning information, education and counseling. This has serious implications on fertility regulation in Nigeria.Keywords: behavior, conjugal, communication, counseling, spouse
Procedia PDF Downloads 13710302 Solving the Quadratic Programming Problem Using a Recurrent Neural Network
Authors: A. A. Behroozpoor, M. M. Mazarei
Abstract:
In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed.Keywords: REFERENCES [1] Xia, Y, A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7(6), 1996, pp.1544–1548. [2] Xia, Y., & Wang, J, A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 2005, pp. 379–386. [3] Xia, Y., H, Leung, & J, Wang, A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I, 49(4), 2002, pp.447–458.B. [4] Q. Liu, Z. Guo, J. Wang, A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 2012, pp. 99-109.
Procedia PDF Downloads 64410301 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment
Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati
Abstract:
In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment
Procedia PDF Downloads 13610300 Effect of Different Local Anesthetic Agents on Physiological Parameters and Vital Signs during Extraction in Children
Authors: Rasha F. Sharaf
Abstract:
Administration of local anesthesia for a child is considered a painful procedure, which affects his vital signs, physiological parameters, and his further attitude in the dental clinic. During the extraction of mandibular molars, the nerve block technique is the most commonly used for the administration of local anesthesia; however, this technique requires deep penetration of the needle, which causes pain and discomfort for the child. Therefore, the inferior alveolar nerve block technique can be substituted with an infiltration technique which is not painful if a potent anesthetic solutions will be used. In the current study, the effect of Articaine 4% will be compared to Mepivacaine 2%, and their influence on the vital signs of the child, as well as their ability to control pain during extraction, will be assessed.Keywords: anesthesia, articaine, pain control, extraction
Procedia PDF Downloads 12210299 Hyperchaos-Based Video Encryption for Device-To-Device Communications
Authors: Samir Benzegane, Said Sadoudi, Mustapha Djeddou
Abstract:
In this paper, we present a software development of video streaming encryption for Device-to-Device (D2D) communications by using Hyperchaos-based Random Number Generator (HRNG) implemented in C#. The software implements and uses the proposed HRNG to generate key stream for encrypting and decrypting real-time video data. The used HRNG consists of Hyperchaos Lorenz system which produces four signal outputs taken as encryption keys. The generated keys are characterized by high quality randomness which is confirmed by passing standard NIST statistical tests. Security analysis of the proposed encryption scheme confirms its robustness against different attacks.Keywords: hyperchaos Lorenz system, hyperchaos-based random number generator, D2D communications, C#
Procedia PDF Downloads 37110298 Dynamic Response Analysis of Structure with Random Parameters
Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire
Abstract:
In this paper, we propose a method for the dynamic response of multi-storey structures with uncertain-but-bounded parameters. The effectiveness of the proposed method is demonstrated by a numerical example of three-storey structures. This equation is integrated numerically using Newmark’s method. The numerical results are obtained by the proposed method. The simulation accounting the interval analysis method results are compared with a probabilistic approach results. The interval analysis method provides a mean curve that is between an upper and lower bound obtained from the probabilistic approach.Keywords: multi-storey structure, dynamic response, interval analysis method, random parameters
Procedia PDF Downloads 19010297 Preliminary Study of Standardization and Validation of Micronuclei Technique to Assess the DNA Damages Cause for the X-Rays
Authors: L. J. Díaz, M. A. Hernández, A. K. Molina, A. Bermúdez, C. Crane, V. M. Pabón
Abstract:
One of the most important biological indicators that show the exposure to the radiation is the micronuclei (MN). This technique is using to determinate the radiation effects in blood cultures as a biological control and a complement to the physics dosimetry. In Colombia the necessity to apply this analysis has emerged due to the current biological indicator most used is the chromosomal aberrations (CA), that is why it is essential the MN technique’s standardization and validation to have enough tools to improve the radioprotection topic in the country. Besides, this technique will be applied on the construction of a dose-response curve, that allow measure an approximately dose to irradiated people according to MN frequency found. Inside the steps that carried out to accomplish the standardization and validation is the statistic analysis from the lectures of “in vitro” peripheral blood cultures with different analysts, also it was determinate the best culture medium and conditions for the MN can be detected easily.Keywords: micronuclei, radioprotection, standardization, validation
Procedia PDF Downloads 493