Search results for: nox emission
529 A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery
Authors: Youngmok Yun, Bosung Kim, Sungho Lee, Kyeongsu Jeon, Hyunwook Hwangbo, Byounggun Choi
Abstract:
A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%.Keywords: betavoltaic, nuclear, battery, Ni-63, radio-isotope
Procedia PDF Downloads 256528 Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance
Authors: Ayman M. Ibrahim, Jinpeng Cai, Peilun Shen, Dianwen Liu
Abstract:
The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface.Keywords: sulfurization flotation, adsorption characteristics, malachite, hydrophobicity
Procedia PDF Downloads 66527 Walkability and Urban Centers: The Valuation of Public Open Spaces from a Sustainable Alternative
Authors: Ursula D'Almeida, Danielly Aliprandi
Abstract:
A car-based development is observed in our cities, what leads to social and environmental impacts, such as air pollution, excessive noises and the substitution of public open spaces for roads and parking lots. Concerning the efforts to promote a sustainable development, a key issue is the reduction of fossil fuels consumption. An alternative to the pollutant gases emission, especially from urban transportation, is the incentive for active transport. The promoting of non-motorized travels and locomotion ways that only depend on human propulsion meets the sustainable mobility notion. Walking is one of the healthiest, cleanest, most natural and economical means to move around. Also, it integrates part of public transportation travels. Since walking demands physical effort, it is sensitive to environmental conditions. In urban space, not always we come across pedestrian friendly road structures. Based on the theory of walkability, the present paper aims to discuss the walking conditions in city centers by analyzing the distribution of urban services and uses, and this also regarding sidewalks quality. The case study presented is the urban center in the medium-sized Brazilian city Campos dos Goytacazes, in Rio de Janeiro State. The study also brings contributions to the recovering of underused public open spaces, especially by encouraging their use and appropriation through valuing non-motorized travels conditions.Keywords: active transport, historical center, sustainable mobility, walking
Procedia PDF Downloads 313526 Nano-Structured Hydrophobic Silica Membrane for Gas Separation
Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe
Abstract:
Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method
Procedia PDF Downloads 121525 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency
Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena
Abstract:
Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications
Procedia PDF Downloads 181524 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water
Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard
Abstract:
Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment
Procedia PDF Downloads 119523 Different Goals and Strategies of Smart Cities: Comparative Study between European and Asian Countries
Authors: Yountaik Leem, Sang Ho Lee
Abstract:
In this paper, different goals and the ways to reach smart cities shown in many countries during planning and implementation processes will be discussed. Each country dealt with technologies which have been embedded into space as development of ICTs (information and communication technologies) for their own purposes and by their own ways. For example, European countries tried to adapt technologies to reduce greenhouse gas emission to overcome global warming while US-based global companies focused on the way of life using ICTs such as EasyLiving of Microsoft™ and CoolTown of Hewlett-Packard™ during last decade of 20th century. In the North-East Asian countries, urban space with ICTs were developed in large scale on the viewpoint of capitalism. Ubiquitous city, first introduced in Korea which named after Marc Weiser’s concept of ubiquitous computing pursued new urban development with advanced technologies and high-tech infrastructure including wired and wireless network. Japan has developed smart cities as comprehensive and technology intensive cities which will lead other industries of the nation in the future. Not only the goals and strategies but also new directions to which smart cities are oriented also suggested at the end of the paper. Like a Finnish smart community whose slogan is ‘one more hour a day for citizens,’ recent trend is forwarding everyday lives and cultures of human beings, not capital gains nor physical urban spaces.Keywords: smart cities, urban strategy, future direction, comparative study
Procedia PDF Downloads 261522 A Comparison of Air Quality in Arid and Temperate Climatic Conditions – a Case Study of Leeds and Makkah
Authors: Turki M. Habeebullah, Said Munir, Karl Ropkins, Essam A. Morsy, Atef M. F. Mohammed, Abdulaziz R. Seroji
Abstract:
In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from year 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and supress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions.Keywords: air pollution, climatic conditions, particulate matter, Makkah, Leeds
Procedia PDF Downloads 468521 Comparison of Physicochemical Properties of DNA-Ionic Liquids Complexes
Authors: Ewelina Nowak, Anna Wisla-Swider, Gohar Khachatryan, Krzysztof Danel
Abstract:
Complexes of ionic liquids with different heterocyclic-rings were synthesized by ion exchange reactions with pure salmon DNA. Ionic liquids (ILs) like 1-hexyl-3-methylimidazolium chloride, 1-butyl-4-methylpyridinium chloride and 1-ethyl-1-methylpyrrolidinium bromide were used. The ILs were built into helical state and confirmed by IR spectrometric techniques. Patterns of UV-Vis, photoluminescence, IR, and CD spectra indicated inclusion of small molecules into DNA structure. Molecular weight and radii of gyrations values of ILs-DNA complexes chains were established by HPSEC–MALLS–RI method. Modification DNA with 1-ethyl-1-methylpyrrolidinium bromide gives more uniform material and leads to elimination of high molecular weight chains. Thus, the incorporation DNA double helical structure with both 1-hexyl-3-methylimidazolium chloride and 1-butyl-4-methylpyridinium chloride exhibited higher molecular weight values. Scanning electron microscopy images indicate formation of nanofibre structures in all DNA complexes. Fluorescence depends strongly on the environment in which the chromophores are inserted and simultaneously on the molecular interactions with the biopolymer matrix. The most intensive emission was observed for DNA-imidazole ring complex. Decrease in intensity UV-Vis peak absorption is a consequence of a reduction in the spatial order of polynucleotide strands and provides different π–π stacking structure. Changes in optical properties confirmed by spectroscopy methods make DNA-ILs complexes potential biosensor applications.Keywords: biopolymers, biosensors, cationic surfactant, DNA, DNA-gels
Procedia PDF Downloads 182520 Multi-Objective Optimization in Carbon Abatement Technology Cycles (CAT) and Related Areas: Survey, Developments and Prospects
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele
Abstract:
An infinitesimal increase in performance can have immense reduction in operating and capital expenses in a power generation system. Therefore, constant studies are being carried out to improve both conventional and novel power cycles. Globally, power producers are constantly researching on ways to minimize emission and to collectively downsize the total cost rate of power plants. A substantial spurt of developmental technologies of low carbon cycles have been suggested and studied, however they all have their limitations and financial implication. In the area of carbon abatement in power plants, three major objectives conflict: The cost rate of the plant, Power output and Environmental impact. Since, an increase in one of this parameter directly affects the other. This poses a multi-objective problem. It is paramount to be able to discern the point where improving one objective affects the other. Hence, the need for a Pareto-based optimization algorithm. Pareto-based optimization algorithm helps to find those points where improving one objective influences another objective negatively and stops there. The application of Pareto-based optimization algorithm helps the user/operator/designer make an informed decision. This paper sheds more light on areas that multi-objective optimization has been applied in carbon abatement technologies in the last five years, developments and prospects.Keywords: gas turbine, low carbon technology, pareto optimal, multi-objective optimization
Procedia PDF Downloads 790519 System-Wide Impact of Energy Efficiency in the Industry Sector: A Comparative Study between Canada and Denmark
Authors: M. Baldini, H. K. Jacobsen, M. Jaccard
Abstract:
In light of the international efforts to comply with the Paris agreement and emission targets for future energy systems, Denmark and Canada are among the front-runner countries dealing with climate change. The experiences in the energy sector have seen both countries coping with trade-offs between investments in renewable energy technologies and energy efficiency, thus tackling the climate issue from the supply and demand side respectively. On the demand side, the industrial sector is going through a remarkable transformation, with implementation of energy efficiency measures, change of input fuel for end-use processes and forecasted electrification as main features under the spotlight. By looking at Canada and Denmark's experiences as pathfinders on the demand and supply approach to climate change, it is possible to obtain valuable experience that may be applied to other countries aiming at the same goal. This paper presents a comparative study on industrial energy efficiency between Canada and Denmark. The study focuses on technologies and system options, policy design and implementation and modelling methodologies when implementing industrial energy savings in optimization models in comparison to simulation models. The study identifies gaps and junctures in the approach towards climate change actions and, learning from each other, lessen the differences to further foster the adoption of energy efficiency measurements in the industrial sector, aiming at reducing energy consumption and, consequently, CO₂ emissions.Keywords: industrial energy efficiency, comparative study, CO₂ reduction, energy system modelling
Procedia PDF Downloads 171518 Rainfall Analysis in the Contest of Climate Change for Jeddah Area, Western Saudi Arabia
Authors: Ali M. Subyani
Abstract:
The increase in the greenhouse gas emission has had a severe impact on global climate change and is bound to affect the weather patterns worldwide. This climate change impacts are among the future significant effects on any society. Rainfall levels are drastically increasing with flash floods in some places and long periods of droughts in others, especially in arid regions. These extreme events are causes of interactions concerning environmental, socio-economic and cultural life and their implementation. This paper presents the detailed features of dry and wet spell durations and rainfall intensity series available (1971-2012) on daily basis for the Jeddah area, Western, Saudi Arabia. It also presents significant articles for combating the climate change impacts on this area. Results show trend changes in dry and wet spell durations and rainfall amount on daily, monthly and annual time series. Three rain seasons were proposed in this investigation: high rain, low rain, and dry seasons. It shows that the overall average dry spell durations is about 80 continuous days while the average wet spell durations is 1.39 days with an average rainfall intensity of 8.2 mm/day. Annual and seasonal autorun analyses confirm that the rainy seasons are tending to have more intense rainfall while the seasons are becoming drier. This study would help decision makers in future for water resources management and flood risk analysis.Keywords: climate change, daily rainfall, dry and wet spill, Jeddah, Saudi Arabia
Procedia PDF Downloads 338517 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections
Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor
Abstract:
Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.Keywords: climate change, ecosystem modeling, marine protected areas, management
Procedia PDF Downloads 100516 Oxyhydrogen Gas (HHO) as Replacement to Gasoline Fuel
Authors: Rishabh Pandey, Umang Kumar Yadav
Abstract:
In today’s era of technological advancement, we come across incalculable innovations, almost every day. No doubt that the society has developed a lot in learning and technology, but we should also take into account the problems and inflictions that are occurring. Focusing on the petroleum sector a trending global concern is toward lowering fuel consumption and emissions. It is well known that gasoline is non-renewable source of energy and its burning produces harmful emissions which are adversely affecting the environment, such issues are motivating us to seek alternative solutions that would not require much modification in engine design and help us come out with an outcome. Keeping in mind the importance of environment and human race, we present a factious idea of use of oxyhydrogen gas or HHO gas in place of gasoline in the vehicles and petroleum industry. This technology is prospering, highly efficient, could be used economically and safe, and it will be responsible for changing the future of oil and gas sector in accordance with protection to the environment. In the coming future, we will check the compatibility of HHO generator with fuel engine for production of oxyhydrogen gas with use of water and effect of introducing HHO gas to the combustion on both thermal efficiency and specific fuel consumption. We will also work on the comparison of HHO gas and commercially available gasoline fuel in support of their chemical structures; ignition rate; octane rating; knocking properties; storage; transportation and cost effectiveness and it is trusted that use of HHO gas will be ecofriendly as no harmful emissions are produced, rather the only emission is water. Additionally, this paper will include the use of HHO cell in fuel engines and challenges faced in installing it in the current period and provide effective solutions for the same.Keywords: fuel, gas, generator, water
Procedia PDF Downloads 326515 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage
Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A. F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee
Abstract:
Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy
Procedia PDF Downloads 48514 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications
Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R
Abstract:
Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays
Procedia PDF Downloads 77513 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction
Authors: Isaac Mugume
Abstract:
Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.Keywords: bias correction, climatic projections, numerical models, representative concentration pathways
Procedia PDF Downloads 117512 Quinazoline Analogue as a Pet Tracer for Imaging PDE10A: Radiosynthesis and Biological Evaluation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The family of phosphodiesterases (PDEs) plays a critical role in control of the level, localization, and duration of intracellular 3’-5’-cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic guanosine monophosphate (cGMP) signals by specifically hydrolyzing these cyclic nucleotides. As the involvement of cyclic nucleotide second messengers in cell signaling and homeostasis is established, the regulation of these pathways in the brain by various PDE isoforms is an area of considerable interest, as they are involved in nearly all brain functions and in the etiology of neuropsychiatric diseases. The PDE10A isoform, isolated from different species and characterized regarding structure and function, has received much attention in recent years, particularly in the context of schizophrenia and Huntington’s disease, which are both related to a role of PDE10A in the regulation of striatal dopaminergic neurotransmission. Quinazoline analogue 1-(4-methoxyphenyl)-6,7-dimethoxyquinazoline, was evaluated as specific PET marker for phosphodiesterase (PDE) 10A. Here, we report the radiosynthesis of [11C]2 and the in vitro and in vivo evaluation of [11C]2 as a potential positron emission tomography (PET) radiotracer for imaging PDE10A in the central nervous system (CNS). The radiosynthesis of [11C]2 was achieved by O-methylation of the corresponding des-methyl precursor with [11C]methyl iodide. [11C]2 was obtained with ∼50% radiochemical yield. PET imaging studies in rat brain displayed initial specific uptake with very rapid clearance of [11C]2 from brain. Though [11C]2 is not an ideal radioligand for clinical imaging of PDE10A in the CNS. Modified analogue of quinazoline having a higher potency for inhibiting PDE10A and improved pharmacokinetic properties will be necessary for imaging this enzyme with PET.Keywords: PDE10A, PET, radiotracer, quinazoline
Procedia PDF Downloads 185511 Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations
Authors: Y. Ghiassi-Farrokhfal
Abstract:
The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time.Keywords: solar energy, battery storage, electric vehicle, charging stations
Procedia PDF Downloads 217510 Design and Modeling of a Green Building Energy Efficient System
Authors: Berhane Gebreslassie
Abstract:
Conventional commericial buildings are among the highest unwisely consumes enormous amount of energy and as consequence produce significant amount Carbon Dioxide (CO2). Traditional/conventional buildings have been built for years without consideration being given to their impact on the global warming issues as well as their CO2 contributions. Since 1973, simulation of Green Building (GB) for Energy Efficiency started and many countries in particular the US showed a positive response to minimize the usage of energy in respect to reducing the CO2 emission. As a consequence many software companies developed their own unique building energy efficiency simulation software, interfacing interoperability with Building Information Modeling (BIM). The last decade has witnessed very rapid growing number of researches on GB energy efficiency system. However, the study also indicates that the results of current GB simulation are not yet satisfactory to meet the objectives of GB. In addition most of these previous studies are unlikely excluded the studies of ultimate building energy efficiencies simulation. The aim of this project is to meet the objectives of GB by design, modeling and simulation of building ultimate energy efficiencies system. This research project presents multi-level, L-shape office building in which every particular part of the building materials has been tested for energy efficiency. An overall of 78.62% energy is saved, approaching to NetZero energy saving. Furthermore, the building is implements with distributed energy resources like renewable energies and integrating with Smart Building Automation System (SBAS) for controlling and monitoring energy usage.Keywords: ultimate energy saving, optimum energy saving, green building, sustainable materials and renewable energy
Procedia PDF Downloads 273509 Spatial and Seasonal Distribution of Persistent Organic Pollutant (Polychlorinated Biphenyl) Along the Course of Buffalo River, Eastern Cape Province, South Africa
Authors: Abdulrazaq Yahaya, Omobola Okoh, Anthony Okoh
Abstract:
Polychlorinated biphenyls (PCBs) are generated from short emission or leakage from capacitors and electrical transformers, industrial chemicals wastewater discharge and careless disposal of wastes. They are toxic, semi-volatile compounds which can persist in the environment, hence classified as persistent organic pollutants. Their presence in the environmental matrices has become a global concern. In this study, we assessed the concentrations and distribution patterns of 19 polychlorinated biphenyls congeners (PCB 1, 5, 18, 31, 44, 52, 66, 87, 101, 110, 138, 141, 151, 153, 170, 180, 183, 187, and 206) at six sampling points in water along the course of Buffalo River, Eastern Cape, South Africa. Solvent extraction followed by sulphuric acid, potassium permanganate and silica gel cleanup were used in this study. The analysis was done with gas chromatography electron capture detector (GC-ECD). The results of the analysis of all the 19 PCBs congeners ranged from not detectable to 0.52 ppb and 2.5 ppb during summer and autumn periods respectively. These values are generally higher than the World Health Organization (WHO) maximum permissible limit. Their presence in the waterbody suggests an increase in anthropogenic activities over the seasons. In view of their volatility, the compounds are transportable over long distances by air currents away from their point of origin putting the health of the communities at risk, thus suggesting the need for strict regulations on the use as well as save disposal of this group of compounds in the communities.Keywords: organic pollutants, polychlorinated biphenyls, pollution, solvent extraction
Procedia PDF Downloads 316508 Chiral Carbon Quantum Dots for Paper-Based Photoluminescent Sensing Platforms
Authors: Erhan Zor, Funda Copur, Asli I. Dogan, Haluk Bingol
Abstract:
Current trends in the wide-scale sensing technologies rely on the development of miniaturized, rapid and easy-to-use sensing platforms. Quantum dots (QDs) with strong and easily tunable luminescence and high emission quantum yields have become a well-established photoluminescent nanomaterials for sensor applications. Although the majority of the reports focused on the cadmium-based QDs which have toxic effect on biological systems and eventually would cause serious environmental problems, carbon-based quantum dots (CQDs) that do not contain any toxic class elements have attracted substantial research interest in recent years. CQDs are small carbon nanostructures (less than 10 nm in size) with various unique properties and are widely-used in different fields during the last few years. In this respect, chiral nanostructures have become a promising class of materials in various areas such as pharmacology, catalysis, bioanalysis and (bio)sensor technology due to the vital importance of chirality in living systems. We herein report the synthesis of chiral CQDs with D- or L-tartaric acid as precursor materials. The optimum experimental conditions were examined and the purification procedure was performed using ethanol/water by column chromatography. The purified chiral CQDs were characterized by UV-Vis, FT-IR, XPS, PL and TEM techniques. The resultants display different photoluminescent characteristics due to the size and conformational difference. Considering the results, it can be concluded that chiral CQDs is expected to be used as optical chiral sensor in different platforms.Keywords: carbon quantum dots, chirality, sensor, tartaric acid
Procedia PDF Downloads 239507 Biohydrogen Production Derived from Banana Pseudo Stem of Agricultural Residues by Dark Fermentation
Authors: Kholik
Abstract:
Nowadays, the demand of renewable energy in general is increasing due to the crisis of fossil fuels. Biohydrogen is an alternative fuel with zero emission derived from renewable resources such as banana pseudo stem of agricultural residues. Banana plant can be easily found in tropical and subtropical areas, so the resource is abundant and readily available as a biohydrogen substrate. Banana pseudo stem has not been utilised as a resource or substrate of biohydrogen production and it mainly contains 45-65% cellulose (α-cellulose), 5-15% hemicellulose and 20-30% Lignin, which indicates that banana pseudo stem will be renewable, sustainable and promising resource as lignocellulosic biomass. In this research, biohydrogen is derived from banana pseudo stem by dark fermentation. Dark fermentation is the most suitable approach for practical biohydrogen production from organic solid wastes. The process has several advantages including a fast reaction rate, no need of light, and a smaller footprint. 321 million metric tonnes banana pseudo stem of 428 million metric tonnes banana plantation residues in worldwide for 2013 and 22.5 million metric tonnes banana pseudo stem of 30 million metric tonnes banana plantation residues in Indonesia for 2015 will be able to generate 810.60 million tonne mol H2 and 56.819 million tonne mol H2, respectively. In this paper, we will show that the banana pseudo stem is the renewable, sustainable and promising resource to be utilised and to produce biohydrogen as energy generation with high yield and high contain of cellulose in comparison with the other substrates.Keywords: banana pseudo stem, biohydrogen, dark fermentation, lignocellulosic
Procedia PDF Downloads 350506 Systems Approach on Thermal Analysis of an Automatic Transmission
Authors: Sinsze Koo, Benjin Luo, Matthew Henry
Abstract:
In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.Keywords: thermal management, automatic transmission, hybrid, and systematic approach
Procedia PDF Downloads 375505 Awareness regarding Radiation Protection among the Technicians Practicing in Bharatpur, Chitwan, Nepal
Authors: Jayanti Gyawali, Deepak Adhikari, Mukesh Mallik, Sanjay Sah
Abstract:
Radiation is defined as an emission or transmission of energy in form of waves or particles through space or material medium. The major imaging tools used in diagnostic radiology is based on the use of ionizing radiation. A cross-sectional study was carried out during July- August, 2015 among technicians in 15 different hospitals of Bharatpur, Chitwan, Nepal to assess awareness regarding radiation protection and their current practice. The researcher was directly engaged for data collection using self-administered semi-structured questionnaire. The findings of the study are presented in socio-demographic characteristics of respondents, current practice of respondents and knowledge regarding radiation protection. The result of this study demonstrated that despite the importance of radiation and its consequent hazards, the level of knowledge among technicians is only 60.23% and their current practice is 76.84%. The difference in the mean score of knowledge and practice might have resulted due to technicians’s regular work and lack of updates. The study also revealed that there is no significant (p>0.05) difference in knowledge level of technicians practicing in different hospitals. But the mean difference in practice scores of different hospital is significant (p<0.05) i.e. i.e. the cancer hospital with large volumes of regular radiological cases and radiation therapies for cancer treatment has better practice in comparison to other hospitals. The deficiency in knowledge of technicians might alter the expected benefits, compared to the risk involved, and can cause erroneous medical diagnosis and radiation hazard. Therefore, this study emphasizes the need for all technicians to update themselves with the appropriate knowledge and current practice about ionizing and non-ionizing radiation.Keywords: technicians, knowledge, Nepal, radiation
Procedia PDF Downloads 329504 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher
Abstract:
This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.Keywords: physicochemical characterization of MFI, ceramic hollow fibre, CO2, ion-exchange
Procedia PDF Downloads 350503 Structural and Magnetic Properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method and Annealing Effect
Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jaromir Havlica, Zuzana Kozakova, Jiri Masilko, Lukas Kalina, Miroslava Hajdúchová, Vojtěch Enev, Jaromir Wasserbauer
Abstract:
In this work, we investigated the structural and magnetic properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) doped CoFe2O4 spinel ferrite nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed the effect of annealing temperature on size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles and particles were in the range of 10-100 nm. The magnetic properties of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with annealing temperature/ particle size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles was observed. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).Keywords: starch, sol-gel combustion method, rare-earth ions, spinel ferrite nanoparticles, magnetic properties
Procedia PDF Downloads 357502 Analysis of the Development of Communicative Skills After Participating in the Equine-Assisted-Therapy Program Step-By-Step in Communication
Authors: Leticia Souza Guirra, Márcia Eduarda Vieira Ramos, Edlaine Souza Pereira, Leticia Correa Celeste
Abstract:
Introduction: Studies indicate that equine-assisted therapy enables improvements in several areas of functioning that are impaired in children with autism spectrum disorder (ASD), such as social interaction and communication. Objective: The study proposes to analyze the development of dialogic skills of a verbal child with ASD after participating in the equine-assisted therapy Step By Step in Communication. Method: This is quantitative and qualitative research through a case study. It refers to a 6 years old child diagnosed with ASD belonging to a group of practitioners of the Brazilian National Equine-Assited-Therapy Association. The Behavioral Observation Protocol (PROC) was used to evaluate communicative skills before and after the intervention, which consisted of 24 sessions once a week. Results: All conversational skills increased their frequency, with participation in dialogue and initiation of interaction. The child also increases the habit of waiting for his turn and answering the interlocutor. The emission of topics not related to conversation and echolalia showed a significant decrease after the intervention. Conclusion: The studied child showed improvement in communicative skills after participating in the equine-assisted therapy Step By Step in Communication. Contributions: This study contributes to a greater understanding of the impact of equine-assisted therapy on the communicative abilities of children with ASD.Keywords: equine-assisted-therapy, autism spectrum disorder, language, communication, language and hearing sciences
Procedia PDF Downloads 79501 Synthesis of Amine Functionalized MOF-74 for Carbon Dioxide Capture
Authors: Ghulam Murshid, Samil Ullah
Abstract:
Scientific studies suggested that the incremented greenhouse gas concentration in the atmosphere, particularly of carbon dioxide (CO2) is one of the major factors in global warming. The concentration of CO2 in our climate has crossed the milestone level of 400 parts per million (ppm) hence breaking the record of human history. A report by 49 researchers from 10 countries said, 'Global CO2 emissions from burning fossil fuels will rise to a record 36 billion metric tons (39.683 billion tons) this year.' Main contributors of CO2 in to the atmosphere are usage of fossil fuel, transportation sector and power generation plants. Among all available technologies, which include; absorption via chemicals, membrane separation, cryogenic and adsorption are in practice around the globe. Adsorption of CO2 using metal organic frameworks (MOF) is getting interest of researcher around the globe. In the current work, MOF-74 as well as modified MOF-74 with a sterically hindered amine (AMP) was synthesized and characterized. The modification was carried out using a sterically hindered amine in order to study the effect on its adsorption capacity. Resulting samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analyser (TGA) and Brunauer-Emmett-Teller (BET). The FTIR results clearly confirmed the formation of MOF-74 structure and the presence of AMP. FESEM and TEM revealed the topography and morphology of the both MOF-74 and amine modified MOF. BET isotherm result shows that due to the addition of AMP in to the structure, significant enhancement of CO2 adsorption was observed.Keywords: adsorbents, amine, CO2, global warming
Procedia PDF Downloads 419500 Electrochemical Sensor Based on Poly(Pyrogallol) for the Simultaneous Detection of Phenolic Compounds and Nitrite in Wastewater
Authors: Majid Farsadrooh, Najmeh Sabbaghi, Seyed Mohammad Mostashari, Abolhasan Moradi
Abstract:
Phenolic compounds are chief environmental contaminants on account of their hazardous and toxic nature on human health. The preparation of sensitive and potent chemosensors to monitor emerging pollution in water and effluent samples has received great consideration. A novel and versatile nanocomposite sensor based on poly pyrogallol is presented for the first time in this study, and its electrochemical behavior for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS) in the presence of nitrite is evaluated. The physicochemical characteristics of the fabricated nanocomposite were investigated by emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The electrochemical response of the proposed sensor to the detection of HQ, CT, RS, and nitrite is studied using cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The kinetic characterization of the prepared sensor showed that both adsorption and diffusion processes can control reactions at the electrode. In the optimized conditions, the new chemosensor provides a wide linear range of 0.5-236.3, 0.8-236.3, 0.9-236.3, and 1.2-236.3 μM with a low limit of detection of 21.1, 51.4, 98.9, and 110.8 nM (S/N = 3) for HQ, CT and RS, and nitrite, respectively. Remarkably, the electrochemical sensor has outstanding selectivity, repeatability, and stability and is successfully employed for the detection of RS, CT, HQ, and nitrite in real water samples with the recovery of 96.2%–102.4%, 97.8%-102.6%, 98.0%–102.4% and 98.4%–103.2% for RS, CT, HQ, and nitrite, respectively. These outcomes illustrate that poly pyrogallol is a promising candidate for effective electrochemical detection of dihydroxybenzene isomers in the presence of nitrite.Keywords: electrochemical sensor, poly pyrogallol, phenolic compounds, simultaneous determination
Procedia PDF Downloads 66