Search results for: light-emitting diode assisted synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3055

Search results for: light-emitting diode assisted synthesis

2125 Synthesis, Structural and Vibrational Studies of a New Lacunar Apatite: LIPB2CA2(PO4)3

Authors: A. Chari, A. El Bouari, B. Orayech, A. Faik, J. M. Igartua

Abstract:

The phosphate is a natural resource of great importance in Morocco. In order to exploit this wealth, synthesis and studies of new a material based phosphate, were carried out. The apatite structure present o lot of characteristics, One of the main characteristics is to allow large and various substitutions for both cations and anions. Beside their biological importance in hard tissue (bone and teeth), apatites have been extensively studied for their potential use as fluorescent lamp phosphors or laser host materials.The apatite have interesting possible application fields such as in medicine as materials of bone filling, coating of dental implants, agro chemicals as artificial fertilizers. The LiPb2Ca2(PO4)3 was synthesized by the solid-state method, its crystal structure was investigated by Rietveld analysis using XRPD data. This material crystallizes with a structure of lacunar apatite anion deficit. The LiPb2Ca2(PO4)3 is hexagonal apatite at room temperature, adopting the space group P63/m (ITA No. 176), Rietveld refinements showed that the site 4f is shared by three cations Ca, Pb and Li. While the 6h is occupied by the Pb and Li cations. The structure can be described as built up from the PO4 tetrahedra and the sixfold coordination cavities, which delimit hexagonal tunnels along the c-axis direction. These tunnels are linked by the cations occupying the 4 f sites. Raman and Infrared spectroscopy analyses were carried out. The observed frequencies were assigned and discussed on the basis of unit-cell group analysis and by comparison to other apatite-type materials.

Keywords: apatite, Lacunar, crystal structure, Rietveldmethod, LiPb2Ca2(PO4)3, Phase transition

Procedia PDF Downloads 382
2124 The Effectiveness of Treating Anxiety with Reiki

Authors: Erika Humphreys

Abstract:

The effectiveness of treating anxiety with Reiki is explored within ten quantitative studies. The methodology utilized for a critical appraisal and systematic review of the literature is explained with inclusion and exclusion criteria. The theoretical framework for the project is grounded in the work of Hildegard Peplau, whose nursing theory based on the therapeutic use of self is foundational for Reiki implementation. A thorough critique of the literature is conducted for key components of robustness and believability. This critique is conducted using a structured guide addressing synthesized strengths and weaknesses of the body of literature. A synthesis of the literature explores the findings of the studies. This synthesis reports on Reiki’s effectiveness in treating anxiety within a variety of patient settings and populations, its effect on subscales of anxiety, physiological manifestations of anxiety, and pain associated with anxiety. Cultural considerations affecting Reiki’s potential effectiveness are discussed. Gaps in the literature are examined, including the studies’ narrow sample population, lack of participant exclusionary factors for controlled outcome data, and the lack of studies across time. Implications for future research are discussed with recommendations for expanded research that includes a broader variety of settings, age groups, and patient diagnoses, including anxiety disorders, for research data that is transferable. Implications for further practice for the advanced practice registered nurse (APRN) are explored, with the potential benefits for both providers and patients, including improved patient satisfaction and expansion of provider treatment modalities.

Keywords: Reiki, anxiety, complementary alternative medicine, pandemic

Procedia PDF Downloads 139
2123 Analysis of Alliin and Allicin Contents in Allium tuncelianum

Authors: M. Ipek, A. Cansev, A. Ipek, Y. Sahan

Abstract:

Allium tuncelianum is a close relative of cultivated garlic (A. sativum L.) and naturally grows only in eastern part of Turkey. This species has mild garlic odor and therefore, it is locally consumed as garlic by collecting from its natural flora. This over collection threatens the species to extinction. Although it has morphological resemblance to cultivated garlic, the nutritional value of the species has not been characterized very well. Alliin and allicin are two predominant organosulfur compounds found in cultivated garlic. Allicin derived from alliin precursor gives garlic characteristic odor and most of the garlic health benefits are attributed to this compound. The aims of this work were to determine alliin and allicin contents of A. tuncelianum and to compare them with those of cultivated garlic, onion (A. cepa L.) and leek (A. porrum L.). Alliin and allicin were extracted from 400 mg lyophilized samples and 10 µl extracts were measured with high-performance liquid chromatography attached with diode array detector. The alliin contents of A. tuncelianum genotypes ranged from 2.5 to 7.0 mg/g and the allicin contents changed from 0.5 to 1.5 mg/g, whereas alliin and allicin contents of garlic genotypes ranged from 20.0 to 30.0 mg/g and 3.0 to 6.0 mg/g, respectively. On the other hand, we did not detect any measurable alliin and allicin in onion or leek tissues. In conclusion, alliin and allicin contents of A. tuncelianum were characterized first time in this study, which are about 20% of alliin and allicin contents of cultivated garlic.

Keywords: allicin, alliin, Allium tuncelianum, garlic

Procedia PDF Downloads 346
2122 Effect of Synthesis Parameters on Crystal Size and Perfection of Mordenite and Analcime

Authors: Zehui Du, Chaiwat Prapainainar, Paisan Kongkachuichay, Paweena Prapainainar

Abstract:

The aim of this work was to obtain small crystalline size and high crystallinity of mordenites and analcimes, by modifying the aging time, agitation, water content, crystallization temperature and crystallization time. Two different hydrothermal methods were studied. Both methods used Na2SiO3 as the silica source, NaAlO2 as the aluminum source, and NaOH as the alkali source. The first method used HMI as the template while the second method did not use the template. Mordenite crystals with spherical shape and bimodal in size of about 1 and 5 µm were obtained from the first method using conditions of 24 hr aging time, 170°C and 24 hr crystallization. Modernites with high crystallinity were formed using agitation system in the crystallization process. It was also found that the aging time of 2 hr and 24 hr did not much affect the formation of mordenite crystals. Analcime crystals were formed in spherical shape and facet on surface with the size between 13-15 µm by the second method using the conditions of 30 minutes aging time, 170°C and 24 hr crystallization without calcination. By increasing water content, the crystallization process was slowed down and resulted in smaller analcime crystals. Larger size of analcime crystals were observed when the samples were calcined at 300°C and 580°C. Higher calcination temperature led to higher crystal growth and resulted in larger crystal size. Finally, mordenite and analcime was used as fillers in zeolite/Nafion composite membrane to solve the fuel cross over problem in direct alcohol fuel cell.

Keywords: analcime, hydrothermal synthesis, mordenite, zeolite

Procedia PDF Downloads 245
2121 A Comparison of Generation Dependent Brain Targeting Potential of(Poly Propylene Mine) Dendrimers

Authors: Nitin Dwivedi, Jigna Shah

Abstract:

Aim and objective of study: This article indicates a comparison among various generations of dendrimers, a dendrimer is a bioactive material has repetitively branched molecule and used for delivery of various therapeutic active agents. This debut report compares the effect various generations of PPI dendrimers for brain targeting and management of neurodegenerative disorders potential on single platform. This report involves the study of the various mechanism of synthesis ligand anchored various generations PPI dendrimers deliver the drug directly to the CNS, prove their effectiveness in the management of the various neurodegenerative disease. Material and Methods: The Memantine an anti-Alzheimer drug loaded in different generations (3.0G, 4.0G, and 5.0G) of PPI dendrimers which were synthesized were synthesized. The various studies investigate the effect of PPI dendrimers generation on different characteristic parameters i.e. synthesis procedure, drug loading, release behavior, hemolysis profile at different concentration, MRI study for determine the route drug from olfactory transfer, animal model study in vitro, as well as in vivo performance. The outcomes of the investigation indicate drug delivery benefit as well as superior biocompatibility of 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer, respectively. Results and Conclusion: The above study indicate the superiority of in drug delivery system with maximum drug utilization and minimize the drug dose for neurodegenerative disorder over 5.0G PPI dendrimers. So, 4.0G PPI dendrimers are the safe formulations for the symptomatic treatment of the neurodegenerative disorder. The fifth-generation poly(propyleneimine) (PPI) dendrimers, inherent toxicity due to the presence of many peripheral cationic groups is the major issue that limits their applicability.

Keywords: Alzheimer disease, generation, memantine, PPI

Procedia PDF Downloads 648
2120 Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation

Authors: Ravindra P. Singh, Drupad Ram, Dinesh K. Gupta

Abstract:

Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates.

Keywords: nanophosphors, Y2O3:Eu+3, Y2O3:Tb+3, sol-gel, hydrothermal method, TEM, XRD

Procedia PDF Downloads 384
2119 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 474
2118 The Impacts of Land Use Change and Extreme Precipitation Events on Ecosystem Services

Authors: Szu-Hua Wang

Abstract:

Urban areas contain abundant potential biochemical storages and renewable and non-renewable flows. Urban natural environments for breeding natural assets and urban economic development for maintaining urban functions can be analyzed form the concept of ecological economic system. Land use change and ecosystem services change are resulting from the interactions between human activities and environments factually. Land use change due to human activities is the major cause of climate change, leading to serious impacts on urban ecosystem services, including provisioning services, regulating services, cultural services and supporting services. However, it lacks discussion on the interactions among urban land use change, ecosystem services change, and extreme precipitation events. Energy synthesis can use the same measure standard unit, solar energy, for different energy resources (e.g. sunlight, water, fossil fuels, minerals, etc.) and analyze contributions of various natural environmental resources on human economic systems. Therefore, this research adopts the concept of ecological, economic systems and energy synthesis for analyzing dynamic spatial impacts of land use change on ecosystem services, using the Taipei area as a case study. The analysis results show that changes in land use in the Taipei area, especially the conversion of natural lands and agricultural lands to urban lands, affect the ecosystem services negatively. These negative effects become more significant during the extreme precipitation events.

Keywords: urban ecological economic system, extreme precipitation events, ecosystem services, energy

Procedia PDF Downloads 171
2117 Adsorption and Selective Determination Ametryne in Food Sample Using of Magnetically Separable Molecular Imprinted Polymers

Authors: Sajjad Hussain, Sabir Khan, Maria Del Pilar Taboada Sotomayor

Abstract:

This work demonstrates the synthesis of magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo first order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32, and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 472
2116 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites

Authors: Qasar Saleem

Abstract:

The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.

Keywords: condensation, nanocomposites, oligomers, polylactic

Procedia PDF Downloads 191
2115 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes

Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo

Abstract:

Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.

Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic

Procedia PDF Downloads 145
2114 A Machine Learning-Assisted Crime and Threat Intelligence Hunter

Authors: Mohammad Shameel, Peter K. K. Loh, James H. Ng

Abstract:

Cybercrime is a new category of crime which poses a different challenge for crime investigators and incident responders. Attackers can mask their identities using a suite of tools and with the help of the deep web, which makes them difficult to track down. Scouring the deep web manually takes time and is inefficient. There is a growing need for a tool to scour the deep web to obtain useful evidence or intel automatically. In this paper, we will explain the background and motivation behind the research, present a survey of existing research on related tools, describe the design of our own crime/threat intelligence hunting tool prototype, demonstrate its capability with some test cases and lastly, conclude with proposals for future enhancements.

Keywords: cybercrime, deep web, threat intelligence, web crawler

Procedia PDF Downloads 149
2113 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.

Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme

Procedia PDF Downloads 403
2112 Carbon Aerogel Spheres from Resorcinol/Phenol and Formaldehyde for CO₂ Adsorption

Authors: Jessica Carolina Hernandez Galeano, Juan Carlos Moreno Pirajan, Liliana Giraldo

Abstract:

Carbon gels are materials whose structure and porous texture can be designed and controlled on a nanoscale. Among their characteristics it is found their low density, large surface area and high degree of porosity. These materials are produced by a sol-gel polymerization of organic monomers using basic or acid catalysts, followed by drying and controlled carbonization. In this work, the synthesis and characterization of carbon aerogels from resorcinol, phenol and formaldehyde in ethanol is described. The aim of this study is obtaining different carbonaceous materials in the form of spheres using the Stöber method to perform a further evaluation of CO₂ adsorption of each material. In general, the synthesis consisted of a sol-gel polymerization process that generates a cluster (cross-linked organic monomers) from the precursors in the presence of NH₃ as a catalyst. This cluster was subjected to specific conditions of gelling and curing (30°C for 24 hours and 100°C for 24 hours, respectively) and CO₂ supercritical drying. Finally, the dry material was subjected to a process of carbonization or pyrolysis, in N₂ atmosphere at 350°C (1° C / min) for 2 h and 600°C (1°C / min) for 4 hours, to obtain porous solids that retain the structure initially desired. For this work, both the concentrations of the precursors and the proportion of ammonia in the medium where modify to describe the effect of the use of phenol and the amount of catalyst in the resulting material. Carbon aerogels were characterized by Scanning Electron Microscope (SEM), N₂ isotherms, infrared spectroscopy (IR) and X-ray Powder Diffraction (XRD) showing the obtention of carbon spheres in the nanometric scale with BET areas around 500 m2g-1.

Keywords: carbon aerogels, carbon spheres, CO₂ adsorption, Stöber method

Procedia PDF Downloads 121
2111 Synthesis, Crystal Structure Characterization, Hirshfeld Surface Analysis and Biological Activities of Two Schiff Base Polymorphs Derived From 2-Aminobenzonitrile

Authors: Nesrine Benarous, Hassiba Bougueria, Nabila Moussa Slimane, Aouatef Cherouana

Abstract:

Crystal polymorphism is important for the synthesis of more potent and bioactive pharmaceutical compounds, including their different properties, such as packing arrangement and conformation. In fact, polymorphism plays a vital role in drug development. Different parameters affect the crystallization and give their degree of freedom. Severalproperties affected polymorphism, like kinetics, thermodynamics, spectroscopy, and mechanical property. Various techniques are used for characterizing polymorphs, are crystallography, morphology, phase transitions, molecular motion, and chemical environment. In this work, crystal structures of two polymorphs (I and II) of the Schiff base (SB) title compound were prepared by condensation reaction. The crystal structures of both polymorphs were determined by single X-ray analysis. The two polymorphs crystallize in two different space groups: P21/c for I and Pbca for II. The dihedral angles between the two phenyl rings are 4.81º for I and 82.27º for II. Both crystal structures are built on the basis of moderate and weak hydrogen bonds, 𝜋-stacking, and halogen⋯halogeninteractions. On the other hand, Hirshfeld surface (HS) analysis indicates that the most important contributions to the crystal packing for the two polymorphs are from Cl⋯H/H⋯Cl, H⋯H, and N⋯H/H⋯N contacts. These are followed by C⋯H/H⋯C for compound I and C⋯C and by C⋯H/H⋯C contacts for compound II. Afterwards, the in vitro antibacterial activity revealed that the SB have been found effective against G- bacteria Klebsiella pneumonia andG+ bacteria Staphylococcus aureuswith MIC value of14.37μg/mL. Moreover, the SBexhibited moderate toxicity against Brine Shrimp with LC50 value of 44.19μg/mL.

Keywords: polymorph, crystal structure, hirshfeld surface analysis, in vitro antibacterial activity, toxicity

Procedia PDF Downloads 85
2110 Ecotoxicological Test-Battery for Efficiency Assessment of TiO2 Assisted Photodegradation of Emerging Micropolluants

Authors: Ildiko Fekete-Kertesz, Jade Chaker, Sylvain Berthelot, Viktoria Feigl, Monika Molnar, Lidia Favier

Abstract:

There has been growing concern about emerging micropollutants in recent years, because of the possible environmental and health risk posed by these substances, which are released into the environment as a consequence of anthropogenic activities. Among them pharmaceuticals are currently not considered under water quality regulations; however, their potential effect on the environment have become more frequent in recent years. Due to the fact that these compounds can be detected in natural water matrices, it can be concluded, that the currently applied water treatment processes are not efficient enough for their effective elimination. To date, advanced oxidation processes (AOPs) are considered as highly competitive water treatment technologies for the removal of those organic micropollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. AOPs such as (photo)chemical oxidation and heterogeneous photocatalysis have proven their potential in degrading harmful organic compounds from aqueous matrices. However, some of these technologies generate reaction by-products, which can even be more toxic to aquatic organisms than the parent compounds. Thus, target compound removal does not necessarily result in the removal of toxicity. Therefore, to evaluate process efficiency the determination of the toxicity and ecotoxicity of the reaction intermediates is crucial to estimate the environmental risk of such techniques. In this context, the present study investigates the effectiveness of TiO2 assisted photodegradation for the removal of emerging water contaminants. Two drugs named losartan (used in high blood pressure medication) and levetiracetam (used to treat epilepsy) were considered in this work. The photocatalytic reactions were carried out with a commercial catalyst usually employed in photocatalysis. Moreover, the toxicity of the by-products generated during the process was assessed with various ecotoxicological methods applying aquatic test organisms from different trophic levels. A series of experiments were performed to evaluate the toxicity of untreated and treated solutions applying the Aliivibrio fischeri bioluminescence inhibition test, the Tetrahymena pyriformis proliferation inhibition test, the Daphnia magna lethality and immobilization tests and the Lemna minor growth inhibition test. The applied ecotoxicological methodology indicated sensitively the toxic effects of the treated and untreated water samples, hence the applied test battery is suitable for the ecotoxicological characterization of TiO2 based photocatalytic water treatment technologies and the indication of the formation of toxic by-products from the parent chemical compounds. Obtained results clearly showed that the TiO2 assisted photodegradation was more efficient in the elimination of losartan than levetiracetam. It was also observed that the treated levetiracetam solutions had more severe effect on the applied test organisms. A possible explanation would be the production of levetiracetam by-products, which are more toxic than the parent compound. The increased toxicity and the risk of formation of toxic metabolites represent one possible limitation to the implementation of photocatalytic treatment using TiO2 for the removal of losartan and levetiracetam. Our results proved that, the battery of ecotoxicity tests used in this work can be a promising investigation tool for the environmental risk assessment of photocatalytic processes.

Keywords: aquatic micropollutants, ecotoxicology, nano titanium dioxide, photocatalysis, water treatment

Procedia PDF Downloads 171
2109 An Efficient Aptamer-Based Biosensor Developed via Irreversible Pi-Pi Functionalisation of Graphene/Zinc Oxide Nanocomposite

Authors: Sze Shin Low, Michelle T. T. Tan, Poi Sim Khiew, Hwei-San Loh

Abstract:

An efficient graphene/zinc oxide (PSE-G/ZnO) platform based on pi-pi stacking, non-covalent interactions for the development of aptamer-based biosensor was presented in this study. As a proof of concept, the DNA recognition capability of the as-developed PSE-G/ZnO enhanced aptamer-based biosensor was evaluated using Coconut Cadang-cadang viroid disease (CCCVd). The G/ZnO nanocomposite was synthesised via a simple, green and efficient approach. The pristine graphene was produced through a single step exfoliation of graphite in sonochemical alcohol-water treatment while the zinc nitrate hexahydrate was mixed with the graphene and subjected to low temperature hydrothermal growth. The developed facile, environmental friendly method provided safer synthesis procedure by eliminating the need of harsh reducing chemicals and high temperature. The as-prepared nanocomposite was characterised by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate its crystallinity, morphology and purity. Electrochemical impedance spectroscopy (EIS) was employed for the detection of CCCVd sequence with the use of potassium ferricyanide (K3[Fe(CN)6]). Recognition of the RNA analytes was achieved via the significant increase in resistivity for the double stranded DNA, as compared to single-stranded DNA. The PSE-G/ZnO enhanced aptamer-based biosensor exhibited higher sensitivity than the bare biosensor, attributing to the synergistic effect of high electrical conductivity of graphene and good electroactive property of ZnO.

Keywords: aptamer-based biosensor, graphene/zinc oxide nanocomposite, green synthesis, screen printed carbon electrode

Procedia PDF Downloads 343
2108 CO₂ Conversion by Low-Temperature Fischer-Tropsch

Authors: Pauline Bredy, Yves Schuurman, David Farrusseng

Abstract:

To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.

Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process

Procedia PDF Downloads 40
2107 Structural Insights into the Bypass of the Major Deaminated Purines by Translesion Synthesis DNA Polymerase

Authors: Hunmin Jung, Michael Hawkins, Seongmin Lee

Abstract:

The exocyclic amines of nucleobases can undergo deamination by various DNA damaging agents such as reactive oxygen species, nitric oxide, and water. The deamination of guanine and adenine generates the promutagenic xanthine and hypoxanthine, respectively. The exocyclic amines of bases in DNA are hydrogen bond donors, while the carbonyl moiety generated by the base deamination acts as hydrogen bond acceptors, which can alter base pairing properties of the purines. Xanthine is known to base pair with both cytosine and thymine, while hypoxanthine predominantly pairs with cytosine to promote A to G mutations. Despite the known promutagenicity of the major deaminated purines, structures of DNA polymerase bypassing these lesions have not been reported. To gain insights into the deaminated-induced mutagenesis, we solved crystal structures of human DNA polymerase η (polη) catalyzing across xanthine and hypoxanthine. In the catalytic site of polη, the deaminated guanine (i.e., xanthine) forms three Watson-Crick-like hydrogen bonds with an incoming dCTP, indicating the O2-enol tautomer of xanthine involves in the base pairing. The formation of the enol tautomer appears to be promoted by the minor groove contact by Gln38 of polη. When hypoxanthine is at the templating position, the deaminated adenine uses its O6-keto tautomer to form two Watson-Crick hydrogen bonds with an incoming dCTP, providing the structural basis for the high promutagenicity of hypoxanthine.

Keywords: DNA damage, DNA polymerase, deamination, mutagenesis, tautomerization, translesion synthesis

Procedia PDF Downloads 109
2106 Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction

Authors: Mukul R. Gupta, Rajkumar Gandhi, Rajitha Sachan, Naveen K. Khare

Abstract:

The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis.

Keywords: KDN, stereoselective glycosylation, dual-catalytic functionalization, Wittig reaction

Procedia PDF Downloads 175
2105 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation

Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa

Abstract:

Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.

Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol

Procedia PDF Downloads 164
2104 Robot-Assisted Therapy for Autism Spectrum Disorder: Evaluating the Impact of NAO Robot on Social and Language Skills

Authors: M. Aguilar, D. L. Araujo, A. L. Avendaño, D. C. Flores, I. Lascurain, R. A. Molina, M. Romero

Abstract:

This work presents an application of social robotics, specifically the use of a NAO Robot as a tool for therapists in the treatment of Autism Spectrum Disorder (ASD). According to this, therapies approved by specialist psychologists have been developed and implemented, focusing on creating a triangulation between the robot, the child, and the therapist, aiming to improve their social and language skills, as well as communication skills and joint attention. In addition, quantitative and qualitative analysis tools have been developed and applied to prove the acceptance and the impact of the robot in the treatment of ASD.

Keywords: autism spectrum disorder, NAO robot, social and language skills, therapy

Procedia PDF Downloads 99
2103 A Study of Issues and Mitigations on Distributed Denial of Service and Medical Internet of Things Devices

Authors: Robin Singh, Jing-Chiou Liou

Abstract:

The Internet of Things (IoT) devices are being used heavily as part of our everyday routines. Through improved communication and automated procedures, its popularity has assisted users in raising the quality of work. These devices are used in healthcare in order to better collect the patient’s data for their treatment. They are generally considered safe and secure. However, there is some possibility that some loopholes do exist which manufacturers do need to identify before some hacker takes advantage of them. For this study, we focused on two medical IoT devices which are pacemakers and hearing aids. The aim of this paper is to identify if there is any likelihood of these medical devices being hijacked and used as a botnet in Distributed Denial-Of Service attacks. Moreover, some mitigation strategies are being proposed to better secure

Keywords: cybersecurity, DDoS, IoT, medical devices

Procedia PDF Downloads 64
2102 WSN System Warns Atta Cephalotes Climbing in Mango Fruit Trees

Authors: Federico Hahn Schlam, Fermín Martínez Solís

Abstract:

Leaf-cutting ants (Atta cephalotes) forage from mango tree leaves and flowers to feed their colony. Farmers find it difficult to control ants due to the great quantity of trees grown in commercial orchards. In this article, IoT can support farmers for ant detection in real time, as production losses can be considered of 324 US per tree.A wireless sensor network, WSN, was developed to warn the farmer from ant presence in trees during a night. Mango trees were gathered into groups of 9 trees, where the central tree holds the master microcontroller, and the other eight trees presented slave microcontrollers (nodes). At each node, anemitter diode-photodiode unitdetects ants climbing up. A capacitor is chargedand discharged after being sampled every ten minutes. The system usesBLE (Bluetooth Low Energy) to communicate between the master microcontroller by BLE.When ants were detected the number of the tree was transmitted via LoRa from the masterto the producer smartphone to warn him. In this paper, BLE, LoRa, and energy consumption were studied under variable vegetation in the orchard. During 2018, 19 trees were attacked by ants, and ants fed 26.3% of flowers and 73.7% of leaves.

Keywords: BLE, atta cephalotes, LoRa, WSN-smartphone, energy consumption

Procedia PDF Downloads 136
2101 Hyaluronan and Hyaluronan-Associated Genes in Human CD8 T Cells

Authors: Emily Schlebes, Christian Hundhausen, Jens W. Fischer

Abstract:

The glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix, typically produced by fibroblasts of the connective tissue but also by immune cells. Here, we investigated the capacity of human peripheral blood CD8 T cells from healthy donors to produce HA and to express HA receptors as well as HA degrading enzymes. Further, we evaluated the effect of pharmacological HA inhibition on CD8 T cell function. Using immunocytochemistry together with quantitative PCR analysis, we found that HA synthesis is rapidly induced upon antibody-induced T cell receptor (TCR) activation and almost exclusively mediated by HA synthase 3 (HAS3). TCR activation also resulted in the upregulation of HA receptors CD44, hyaluronan-mediated motility receptor (HMMR), and layilin (LAYN), although kinetics and strength of expression varied greatly between subjects. The HA-degrading enzymes HYAL1 and HYAL2 were detected at low levels and induced by cell activation in some individuals. Interestingly, expression of HAS3, HA receptors, and hyaluronidases were modulated by the proinflammatory cytokines IL-6 and IL-1bβ in most subjects. To assess the functional role of HA in CD8 T cells, we performed carboxyfluorescein succinimidyl ester (CFSE) based proliferation assays and cytokine analysis in the presence of the HA inhibitor 4- Methylumbelliferone (4-MU). Despite significant inter-individual variation with regard to the effective dose, 4-MU resulted in the inhibition of CD8 T cell proliferation and reduced release of TNF-α and IFN-γ. Collectively, these data demonstrate that human CD8 T cells respond to TCR stimulation with a synthesis of HA and expression of HA-related genes. They further suggest that HA inhibition may be helpful in interfering with pathogenic T cell activation in human disease.

Keywords: CD8 T cells, extracellular matrix, hyaluronan, hyaluronan synthase 3

Procedia PDF Downloads 78
2100 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 54
2099 A Theoretical Framework of Patient Autonomy in a High-Tech Care Context

Authors: Catharina Lindberg, Cecilia Fagerstrom, Ania Willman

Abstract:

Patients in high-tech care environments are usually dependent on both formal/informal caregivers and technology, highlighting their vulnerability and challenging their autonomy. Autonomy presumes that a person has education, experience, self-discipline and decision-making capacity. Reference to autonomy in relation to patients in high-tech care environments could, therefore, be considered paradoxical, as in most cases these persons have impaired physical and/or metacognitive capacity. Therefore, to understand the prerequisites for patients to experience autonomy in high-tech care environments and to support them, there is a need to enhance knowledge and understanding of the concept of patient autonomy in this care context. The development of concepts and theories in a practice discipline such as nursing helps to improve both nursing care and nursing education. Theoretical development is important when clarifying a discipline, hence, a theoretical framework could be of use to nurses in high-tech care environments to support and defend the patient’s autonomy. A meta-synthesis was performed with the intention to be interpretative and not aggregative in nature. An amalgamation was made of the results from three previous studies, carried out by members of the same research group, focusing on the phenomenon of patient autonomy from a patient perspective within a caring context. Three basic approaches to theory development: derivation, synthesis, and analysis provided an operational structure that permitted the researchers to move back and forth between these approaches during their work in developing a theoretical framework. The results from the synthesis delineated that patient autonomy in a high-tech care context is: To be in control though trust, co-determination, and transition in everyday life. The theoretical framework contains several components creating the prerequisites for patient autonomy. Assumptions and propositional statements that guide theory development was also outlined, as were guiding principles for use in day-to-day nursing care. Four strategies used by patients to remain or obtain patient autonomy in high-tech care environments were revealed: the strategy of control, the strategy of partnership, the strategy of trust, and the strategy of transition. This study suggests an extended knowledge base founded on theoretical reasoning about patient autonomy, providing an understanding of the strategies used by patients to achieve autonomy in the role of patient, in high-tech care environments. When possessing knowledge about the patient perspective of autonomy, the nurse/carer can avoid adopting a paternalistic or maternalistic approach. Instead, the patient can be considered to be a partner in care, allowing care to be provided that supports him/her in remaining/becoming an autonomous person in the role of patient.

Keywords: autonomy, caring, concept development, high-tech care, theory development

Procedia PDF Downloads 191
2098 Preparation of Nanocrystalline Mesoporous ThO2 Via Surfactant Assisted Sol-gel Procedure

Authors: N. Mohseni, S. Janitabar, S.J. Ahmadi, M. Roshanzamir, M. Thaghizadeh

Abstract:

There has been proposed a technique for getting thorium dioxide mesoporous nanocrystalline. In this paper thorium dioxide powder was synthesized through the sol-gel method using hydrated thorium nitrate and ammonium hydroxide as starting materials and Triton X100 as surfactant. ThO2 gel was characterized by thermogravimetric (TG), and prepared ThO2 powder was subjected to scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emett-Teller (BET) analyses studies. Detailed analyses show that prepared powder consisted of phase with the space group Fm3m of thoria and its crystalline size was 27 nm. The thoria possesses 16.7 m2/g surface area and the pore volume and size calculated to be 0.0423 cc/g and 1.947 nm, respectively.

Keywords: mesoporous, nanocrystalline, sol-gel, thoria

Procedia PDF Downloads 262
2097 From Synthesis to Application of Photovoltaic Perovskite Nanowires

Authors: László Forró

Abstract:

The organolead halide perovskite CH3NH3PbI3 and its derivatives are known to be very efficient light harvesters revolutionizing the field of solid-state solar cells. The major research area in this field is photovoltaic device engineering although other applications are being explored, as well. Recently, we have shown that nanowires of this photovoltaic perovskite can be synthesized which in association with carbon nanostructures (carbon nanotubes and graphene) make outstanding composites with rapid and strong photo-response. They can serve as conducting electrodes, or as central components of detectors. The performance of several miniature devices based on these composite structures will be demonstrated. Our latest findings on the guided growth of perovskite nanowires by solvatomorph graphoepitaxy will be presented. This method turned out to be a fairly simple approach to overcome the spatially random surface nucleation. The process allows the synthesis of extremely long (centimeters) and thin (a few nanometers) nanowires with a morphology defined by the shape of nanostructured open fluidic channels. This low-temperature solution-growth method could open up an entirely new spectrum of architectural designs of organometallic-halide-perovskite-based heterojunctions and tandem solar cells, LEDs and other optoelectronic devices. Acknowledgment: This work is done in collaboration with Endre Horvath, Massimo Spina, Alla Arakcheeva, Balint Nafradi, Eric Bonvin1, Andrzej Sienkievicz, Zsolt Szekrenyes, Hajnalka Tohati, Katalin Kamaras, Eduard Tutis, Laszlo Mihaly and Karoly Holczer The research is supported by the ERC Advanced Grant (PICOPROP670918).

Keywords: photovoltaics, perovskite, nanowire, photodetector

Procedia PDF Downloads 336
2096 Synthesis and Characterization of Cellulose-Based Halloysite-Carbon Adsorbent

Authors: Laura Frydel, Piotr M. Slomkiewicz, Beata Szczepanik

Abstract:

Triclosan has been used as a disinfectant in many medical products, such as: hand disinfectant soaps, creams, mouthwashes, pastes and household cleaners. Due to its strong antimicrobial activity, triclosan is becoming more and more popular and the consumption of disinfectants with triclosan in it is increasing. As a result, this compound increasingly finds its way into waters and soils in an unchanged form, pollutes the environment and may have a negative effect on organisms. The aim of this study was to investigate the synthesis of cellulose-based halloysite-carbon adsorbent and perform its characterization. The template in the halloysite-carbon adsorbent was halloysite nanotubes and the carbon precursor was microcrystalline cellulose. Scanning electron microscope (SEM) images were obtained and the elementary composition (qualitative and quantitative) of the sample was determined by energy dispersion spectroscopy (EDS). The identification of the crystallographic composition of the halloysite nanotubes and the sample of the halloysite-carbon composite was carried out using the X-ray powder diffraction (XRPD) method. The FTIR spectra were acquired before and after the adsorption process in order to determine the functional groups on the adsorbent surface and confirm the interactions between adsorbent and adsorbate molecules. The parameters of the porous structure of the adsorbent, such as the specific surface area (Brunauer-Emmett-Teller method), the total pore volume and the volume of mesopores and micropores were determined. Total carbon and total organic carbon were also determined in the samples. A cellulose-based halloysite-carbon adsorbent was used to remove triclosan from water. The degree of removal of triclosan from water was approximately 90%. The results indicate that the halloysite-carbon composite can be successfully used as an effective adsorbent for removing triclosan from water.

Keywords: Adsorption, cellulose, halloysite, triclosan

Procedia PDF Downloads 110