Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 333

Search results for: aquatic micropollutants

333 Ecotoxicological Test-Battery for Efficiency Assessment of TiO2 Assisted Photodegradation of Emerging Micropolluants

Authors: Ildiko Fekete-Kertesz, Jade Chaker, Sylvain Berthelot, Viktoria Feigl, Monika Molnar, Lidia Favier

Abstract:

There has been growing concern about emerging micropollutants in recent years, because of the possible environmental and health risk posed by these substances, which are released into the environment as a consequence of anthropogenic activities. Among them pharmaceuticals are currently not considered under water quality regulations; however, their potential effect on the environment have become more frequent in recent years. Due to the fact that these compounds can be detected in natural water matrices, it can be concluded, that the currently applied water treatment processes are not efficient enough for their effective elimination. To date, advanced oxidation processes (AOPs) are considered as highly competitive water treatment technologies for the removal of those organic micropollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. AOPs such as (photo)chemical oxidation and heterogeneous photocatalysis have proven their potential in degrading harmful organic compounds from aqueous matrices. However, some of these technologies generate reaction by-products, which can even be more toxic to aquatic organisms than the parent compounds. Thus, target compound removal does not necessarily result in the removal of toxicity. Therefore, to evaluate process efficiency the determination of the toxicity and ecotoxicity of the reaction intermediates is crucial to estimate the environmental risk of such techniques. In this context, the present study investigates the effectiveness of TiO2 assisted photodegradation for the removal of emerging water contaminants. Two drugs named losartan (used in high blood pressure medication) and levetiracetam (used to treat epilepsy) were considered in this work. The photocatalytic reactions were carried out with a commercial catalyst usually employed in photocatalysis. Moreover, the toxicity of the by-products generated during the process was assessed with various ecotoxicological methods applying aquatic test organisms from different trophic levels. A series of experiments were performed to evaluate the toxicity of untreated and treated solutions applying the Aliivibrio fischeri bioluminescence inhibition test, the Tetrahymena pyriformis proliferation inhibition test, the Daphnia magna lethality and immobilization tests and the Lemna minor growth inhibition test. The applied ecotoxicological methodology indicated sensitively the toxic effects of the treated and untreated water samples, hence the applied test battery is suitable for the ecotoxicological characterization of TiO2 based photocatalytic water treatment technologies and the indication of the formation of toxic by-products from the parent chemical compounds. Obtained results clearly showed that the TiO2 assisted photodegradation was more efficient in the elimination of losartan than levetiracetam. It was also observed that the treated levetiracetam solutions had more severe effect on the applied test organisms. A possible explanation would be the production of levetiracetam by-products, which are more toxic than the parent compound. The increased toxicity and the risk of formation of toxic metabolites represent one possible limitation to the implementation of photocatalytic treatment using TiO2 for the removal of losartan and levetiracetam. Our results proved that, the battery of ecotoxicity tests used in this work can be a promising investigation tool for the environmental risk assessment of photocatalytic processes.

Keywords: aquatic micropollutants, ecotoxicology, nano titanium dioxide, photocatalysis, water treatment

Procedia PDF Downloads 110
332 Study of Eatable Aquatic Invertebrates in the River Dhansiri, Dimapur, Nagaland, India

Authors: Dilip Nath

Abstract:

A study has been conducted on the available aquatic invertebrates in the river Dhansiri at Dimapur site. The study confirmed that the river body composed of aquatic macroinvertebrate community under two phyla viz., Arthropods and Molluscs. Total 10 species have been identified from there as the source of alternative protein food for the common people. Not only the protein source, they are also the component of aquatic food chain and indicators of aquatic ecosystem. Proper management and strategies to promote the edible invertebrates can be considered as the alternative protein and alternative income source for the common people for sustainable livelihood improvement.

Keywords: Dhansiri, Dimapur, invertebrates, livelihood improvement, protein

Procedia PDF Downloads 75
331 Aquatic Intervention Research for Children with Autism Spectrum Disorders

Authors: Mehmet Yanardag, Ilker Yilmaz

Abstract:

Children with autism spectrum disorders (ASD) enjoy and success the aquatic-based exercise and play skills in a pool instead of land-based exercise in a gym. Some authors also observed that many children with ASD experience more success in attaining movement skills in aquatic environment. Properties of the water and hydrodynamic principles cause buoyancy of the water and decrease effects of gravity and it leads to allow a child to practice important aquatic skills with limited motor skills. Also, some authors experience that parents liked the effects of the aquatic intervention program on children with ASD such as improving motor performance, movement capacity and learning basic swimming skills. The purpose of this study was to investigate the effects of aquatic exercise training on water orientation and underwater working capacity were measured in the pool. This study included in four male children between 5 and 7 years old with ASD and 6.25±0.5 years old. Aquatic exercise skills were applied by using one of the error less teaching which is called the 'most to least prompt' procedure during 12-week, three times a week and 60 minutes a day. The findings of this study indicated that there were improvements test results both water orientation skill and underwater working capacity of children with ASD after 12-weeks exercise training. It was seen that the aquatic exercise intervention would be affected to improve working capacity and orientation skills with the special education approaches applying children with ASD in multidisciplinary team-works.

Keywords: aquatic, autism, orientation, ASD, children

Procedia PDF Downloads 349
330 Reducing Metabolism Residues in Maintenance Goldfish (Carrasius auratus auratus) by Phytoremediation Plant

Authors: Anna Nurkhasanah, Hamzah Muhammad Ihsan, Nurul Wulandari

Abstract:

Water quality affects the body condition of aquatic organisms. One of the methods to manage water quality, usually called phytoremediation, involves using aquatic plants. The purpose of this study is to find out the best aquatic plants to reducing metabolism residues from aquatic organism. 5 aquariums (40x30x30 cm) containing 100 grams from each 4 different plants such as water hyacinth (Eichhornia crassipes), salvinia (Salvinia molesta), cabomba (Cabomba caroliniana), and hydrilla (Hydrilla verticillata), thirteen goldfis (Carrasius auratus auratus) are maintained. The maintenance is conducted through a week and water quality measurements are performed three times. The results show that pH value tends to range between 7,22-8,72. The temperature varies between 25-26 °C. DO values varies between 5,2-10,5 mg/L. Amoniac value is between 0,005–5,2 mg/L. Nitrite value is between 0,005 mg/L-2,356 mg/L. Nitrate value is between 0,791 mg/L-1,737 mg/L. CO2 value is between 2,2 mg/L-6,1 mg/L. The result of survival rate of goldfish for all treatments is 100%. Based on this study, the best aquatic plant to reduce metabolism residues is hydrilla.

Keywords: phytoremediation, goldfish, aquatic plants, water quality

Procedia PDF Downloads 426
329 Influence of Physicochemical Water Quality Parameters on Abundance of Aquatic Insects in Rivers of Perak, Malaysia

Authors: Nur Atirah Hasmi, Nadia Nisha Musa, Hasnun Nita Ismail, Zulfadli Mahfodz

Abstract:

The effect of water quality parameters on the abundance of aquatic insects has been studied in Batu Berangkai, Dipang, Kuala Woh and Lata Kinjang Rivers, Perak, northern peninsular Malaysia. The focuses are to compare the abundance of aquatic insects in each sampling areas and to investigate the physical and chemical factors (water temperature, depth of water, canopy, water velocity, pH value, and dissolved oxygen) on the abundance of aquatic insects. The samples and data were collected by using aquatic net and multi-probe parameter. Physical parameters; water velocity, water temperature, depth, canopy cover, and two chemical parameters; pH value and dissolved oxygen have been measured in situ and recorded. A total of 631 individuals classified into 6 orders and 18 families of aquatic insects were identified from four sampling sites. The largest percentage of samples collected is from order Plecoptera 35.8%, followed by Ephemeroptera 32.6%, Trichoptera 17.0%, Hemiptera 8.1%, Coleoptera 4.8%, and the least is Odonata 1.7%. The aquatic insects collected from Dipang River have the highest abundance of 273 individuals from 6 orders and 13 families and the least insects trapped at Lata Kinjang which only have 64 individuals from 5 orders and 6 families. There is significant association between different sampling areas and abundance of aquatic insects (p<0.05). High abundance of aquatic insects was found in higher water temperature, low water velocity, deeper water, low pH, high amount of dissolved oxygen, and the area that is not covered by canopy.

Keywords: aquatic insect, physicochemical parameter, river, water quality

Procedia PDF Downloads 147
328 Changes in Inorganic Element Contents in Potamogeton Natans Exposed to Cement Factory Pollution

Authors: Yavuz Demir, Mucip Genisel, Hulya Turk, Turgay Sisman, Serkan Erdal

Abstract:

In this study, the changes in contents of inorganic elements in the aquatic plant (Potamogeton natans) as a reflection of the impact of chemical nature pollution in a cement factory region (CFR) was evaluated. For this purpose, P, S, K, Ca, Fe, Cl, Mn, Cu, Zn, Mo, Ni, Si, Al, and Cd concentrations were measured in the aquatic plant (Potamogeton natans) taken from a CFR. As a control, aquatic plant was collected at a distance of 2000 m from the outer zone of the cement factory. Inorganic element compositions were measured by energy dispersive X-ray fluorescence spectrometry (EDXRF). Three aquatic plant exhibited similar changes in contents of microelements and macroelements in their leaves. P, S, K, Cl, Ca, and Mo contents in plant grown in the CFR were reduced significantly compared to control plant, whereas their contents of Al, Mn, Fe, Ni, Cu, Zn and Cd were very high. According to these findings, it is possible that aquatic plant (Potamogeton natans) inhabiting in the vicinity of cement factory sustains the deficiency of important essential elements like P, S, K, Ca, and Mo and greatly accumulate heavy metals like Al, Mn, Fe, Ni, Cu, Zn, and Cd. In addition, results of water analysis showed that heavy metal content such as Cu, Pb, Zn, Co, and Al of water taken from CFR was remarkably high than that of outer zone of CFR. These findings with relation to changes in inorganic composition can contribute to be elucidated of effect mechanism on growth and development of aquatic plant (Potamogeton natans) of pollution resulted from cement factories.

Keywords: aquatic plant, cement factory, heavy metal pollution, inorganic element, Potamogeton natans

Procedia PDF Downloads 195
327 The Aquatic Plants Community in the Owena-Idanre Section of the Owena River of Ondo State

Authors: Rafiu O. Sanni, Abayomi O. Olajuyigbe, Nelson R. Osungbemiro, Rotimi F. Olaniyan

Abstract:

The Owena River lies within the drainage basins of the Oni, Siluko, and Ogbesse rivers. The river’s immediate surroundings are covered by dense forests, interspersed by plantations of cocoa, oil palm, kolanut, bananas, and other crops. The objectives were to identify the aquatic plants community, comprising the algae and aquatic macrophytes, observe their population dynamics in relation to the two seasons and identify their economic importance, especially to the neighbouring community. The study sites were determined using a stratified sampling method. Three strata were marked out for sampling namely strata I (upstream)–5 stations, strata II (reservoir) –2 stations, and strata III (outflow) 2 stations. These nine stations were tagged st1, st2, st3…st9. The aquatic macrophytes were collected using standard methods and identified at the University of Ibadan herbarium while the algal samples were collected using standard methods for microalgae. The periphytonic species were scraped from surfaces of rocks (perilithic), sucked with large syringe from mud (epipellic), scraped from suspended logs, washed from roots of aquatic angiosperms (epiphytic), as well as shaken from other particles such as suspended plant parts. Some were collected physically by scooping floating thallus of non-microscopic multicellular forms. The specimens were taken to the laboratory and observed under a microscope with mounted digital camera for photomicrography. Identification was done using Prescott.

Keywords: aquatic plants, aquatic macrophytes, algae, Owena river

Procedia PDF Downloads 479
326 Chronic Exposure of Mercury on Amino Acid Level in Freshwater Fish Clarias batrachus (Linn.)

Authors: Mary Josephine Rani

Abstract:

Virtually all metals are toxic to aquatic organisms because of the devastating effect of these metals on humans; heavy metals are one of the most toxic forms of aquatic pollution. Metal concentrations in aquatic organisms appear to be of several magnitudes higher than concentrations present in the ecosystem. Mercury is one of the most toxic heavy metals in the environment. The principal sources of contamination in wastewater are chloralkali plants, battery factories, mercury switches, and medical wastes. Elevated levels of mercury in aquatic organisms specially fish represent both an ecological and human concern. Amino acid levels were estimated in five tissues (gills, liver, kidney, brain and muscle) of Clariasbatrachus after 28 days of chronic exposure to mercury. Free amino acids serve as precursor for energy production under stress and for the synthesis of required proteins to face the metal challenge.

Keywords: amino acids, fish, mercury, toxicity

Procedia PDF Downloads 283
325 Combined Effect of Global Warming and Water Structures on Rivers’ Water Quality and Aquatic Life: Case Study of Esna Barrage on the Nile River in Egypt

Authors: Sherine A. El Baradei

Abstract:

Global warming and climatic change are very important topics that are being studied and investigated nowadays as they have lots of diverse impacts on mankind, water quality, aquatic life, wildlife,…etc. Also, many water and hydraulics structures like dams and barrages are being built every day to satisfy water consumption needs, irrigation purposes and power generating purposes. Each of global warming and water structures alone has diversity of impacts on water quality and aquatic life in rivers. This research is investigating the dual combined effect of both water structures and global warming on the water quality and aquatic life through mathematical modeling. A case study of the Esna Barrage on the Nile River in Egypt is being studied. This research study is taking into account the effects of both seasons; namely, winter and summer and their effects on air and hence water temperature of the Nile reach under study. To do so, the study is conducted on the last 23 years to investigate the effect of global warming and climatic change on the studied river water. The mathematical model is then combining the dual effect of the Esna barrage and the global warming on the water quality; as well as, on aquatic life of the Nile reach under study. From the results of the mathematical model, it could be concluded that the dual effect of water structures and global warming is very negative on the water quality and the aquatic life in rivers upstream those structures.

Keywords: aquatic life, barrages, climatic change, dissolved oxygen, global warming, river, water quality, water structures

Procedia PDF Downloads 269
324 The Role of Biosecurity in Sustainable Aquaculture

Authors: Barbara Montwill

Abstract:

The last three decades of continuing increase in the farming of aquatic animals worldwide placed a biosecurity in a different perspective. An introduction of new countries, technologies, species to aquaculture, increased movement of animals are a few factors the might be associated with biosecurity risks. Most farms depend on trade for various inputs such as broodstock, post-larvae/fingerlings and feed. These inputs represent potential pathways by which pathogens can enter farming operations and create conditions for emergence of new or reoccurrence of diseases and production loses. Farm biosecurity should be considered an essential component of a national aquatic animal biosecurity program and together with adequate import and export controls can lead to the development of successful aquaculture industry as a reliable source of safe seafood product. This presentation would describe some biosecurity management approaches to minimize the negative impact of aquatic diseases on production and preserve the power of antibiotics.

Keywords: aquaculture, biosecurity, antibiotics, antibiotics residues

Procedia PDF Downloads 190
323 Diversity and Ecology of the Aquatic Avifauna of the Wetland of Sebkhet Bazer Sakhra, South of Setif, Algeria

Authors: Gouga Hadjer, Djerdali Sofia, Benssaci Ettayeb

Abstract:

In order to estimate the evolution of the numbers of the aquatic avifauna and their seasonal variations in Sebkhet of Bazer-Sakhra (Site of the eco-complex wetlands of Setif) a monitoring realized during the period from September 2012 to August 2013 allowed to inventory 54 species are spread over 08 orders, 15 families, 34 genres. To follow the global dynamics and the seasonal distribution of species inventoried at Sebkhet Bazer, an analysis of the variation of the total workforce has been established by ecological indices. The autumn season includes the largest number of birds, it totals 3639 individuals. Accidental species are well represented at the autumn and spring seasons denote the interest of the site with respect to migration passages of aquatic birds. During the fall and spring, the Flamingo and the Belon Shelduck are the most abundant with respectively (500, 883) and (560, 1296) individuals. The ecological analysis of this stand showed us that the highest species richness is recorded in spring, (45 species) and the lowest value is obtained in summer it is 20 species.

Keywords: Sebkhet of BazerSakra, ecology, aquatic avifauna, biodiversity, seasonal evolution, wetland

Procedia PDF Downloads 187
322 The Role of Phycoremediation in the Sustainable Management of Aquatic Pollution

Authors: Raymond Ezenweani, Jeffrey Ogbebor

Abstract:

The menace of aquatic pollution has become increasingly of great concern and the effects of this pollution as a result of anthropogenic activities cannot be over emphasized. Phycoremediation is the application of algal remediation technology in the removal of harmful products from the environment. Harmful products also known as pollutants are usually introduced into the environment through variety of processes such as industrial discharge, agricultural runoff, flooding, and acid rain. This work has to do with the capability of algae in the efficient removal of different pollutants, ranging from hydrocarbons, eutrophication, agricultural chemicals and wastes, heavy metals, foul smell from septic tanks or dumps through different processes such as bioconversion, biosorption, bioabsorption and biodecomposition. Algae are capable of bioconversion of environmentally persistent compounds to degradable compounds and also capable of putting harmful bacteria growth into check in waste water remediation. Numerous algal organisms such as Nannochloropsis spp, Chlorella spp, Tetraselmis spp, Shpaerocystics spp, cyanobacteria and different macroalgae have been tested by different researchers in laboratory scale and shown to have 100% efficiency in environmental remediation. Algae as a result of their photosynthetic capacity are also efficient in air cleansing and management of global warming by sequestering carbon iv oxide in air and converting it into organic carbon, thereby making food available for the other organisms in the higher trophic level of the aquatic food chain. Algae play major role in the sustenance of the aquatic ecosystem by their virtue of being photosynthetic. They are the primary producers and their role in environmental sustainability is remarkable.

Keywords: Algae , Pollutant, ., Phycoremediation, Aquatic, Sustainability

Procedia PDF Downloads 39
321 Avifaunal Diversity in the Mallathahalli Lake of Bangalore Urban District, Karnataka, India

Authors: Vidya Padmakumar, N. C. Tharavathy

Abstract:

The study was conducted from July 2015 to July 2017 to determine and understand the occurrence, frequency and diversity of avifauna in the Mallathahalli Lake of Bangalore Urban district. During the study period, 46 species of both terrestrial, as well as, aquatic birds belonging to 30 families were identified out of which 9 families were aquatic birds and 21 families were terrestrial birds. There were 4 species of migratory birds out of 46, showing diurnal migration. There was a significant reduce in the number of bird species both terrestrial and aquatic during the summer season and also varied greatly during winters and monsoon. Of the total 24 species of aquatic birds, Fulica atra and Tachybaptus ruficolis were the most common with 100% frequency and the least frequent species with 3.02% frequency was identified as Threskiornis melanocephalus. Among the 22 species of terrestrial birds, Acridotheres tristis had a frequency of 89% and the least frequent was Pycnonotus cafer (4.45%). The most commonly encountered bird species were from the families- Anatidae, Podicipedidae, Ardeidae, Phalacrocoracidae, Rallidae, Accipitridae, Scolopacidae, Charadridae, Laridae, Meropidae, Hirudinidae. All the birds surviving around the area are dependent on the wetland and crop vegetation surrounding the lake, which are deteriorating due to anthropogenic interventions and urbanization which are rising to its peak gradually causing the decline in the avifaunal diversity.

Keywords: Avifaunal diversity, Mallathahalli lake, seasonal migration, urbanization

Procedia PDF Downloads 111
320 The Hepatoprotective Effects of Aquatic Extract of Levesticum Officinale against Paraquat Toxicity of Hepatocytes

Authors: Hasan Afarnegan, Ali Shahraki, Jafar Shahraki

Abstract:

Paraquat is widely used as a strong nitrogen-based herbicide for controlling of weeds in agriculture. This poison is extremely toxic for humans which induces several – organ failure by accumulation in cells and many instances of death occurred due to its poisoning. Paraquat metabolized primarily in the liver. The purpose of this study was to assess the effects of aquatic extract of levisticum officinale on oxidative status and biochemical factors in hepatocytes exposed to paraquat. Our results determined that hepatocytes destruction induced by paraquat is mediated by reactive oxygen species (ROS) production, lipid peroxidation and decrease of mitochondrial membrane potential were significantly (P<0.05) prevented by aquatic extract of Levisicum officinale (100, 200 and 300 µg/ml). These effects of paraquat also prevented via antioxidants and ROS scavengers (α-tocopherol, DMSO, manitol), mitochondrial permeability transition (MPT) pore sealing compound (carnitine).MPT pore sealing compound inhibited the hepatotoxicity, indicating that paraquat induced cell death via mithochondrial pathway. Pretreatment of hepatocytes with aquatic extracts of Levisticum officinale, antioxidants and ROS scavengers also blocked hepatic cell death caused by paraquat, suggesting that oxidative stress may be directly induced decline of mithochondrial membrane potential. In conclusion, paraquat hepatotoxicity can be attributed to oxidative stress and continued by mithochondrial membrane potential disruption. Levisticum officinale aquatic extract, presumably due to its strong antoxidant properties, could protect the destructive effects of paraquat on rat hepatocytes.

Keywords: hepatocyte protection, levisticum officinale, oxidative stress, paraquat

Procedia PDF Downloads 145
319 Effect of Aquatic and Land Plyometric Training on Selected Physical Fitness Variables in Intercollegiate Male Handball Players

Authors: Nisith K. Datta, Rakesh Bharti

Abstract:

The purpose of the study was to find out the effects of Aquatic and Land plyometric training on selected physical variables in intercollegiate male handball players. To achieve this purpose of the study, forty five handball players of Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat were selected as players at random and their age ranged between 18 to 21 years. The selected players were divided into three equal groups of fifteen players each. Group I underwent Aquatic plyometric training, Group II underwent Land plyometric training and Group III Control group for three days per week for twelve weeks. Control Group did not participate in any special training programme apart from their regular activities as per their curriculum. The following physical fitness variables namely speed; leg explosive power and agility were selected as dependent variables. All the players of three groups were tested on selected dependent variables prior to and immediately after the training programme. The analysis of covariance was used to analyze the significant difference, if any among the groups. Since, three groups were compared, whenever the obtained ‘F’ ratio for adjusted post test was found to be significant, the Scheffe’s test to find out the paired mean differences, if any. The 0.05 level of confidence was fixed as the level of significance to test the ‘F’ ratio obtained by the analysis of covariance, which was considered as an appropriate. The result of the study indicates due to Aquatic and Land plyometric training on speed, explosive power, and agility has been improved significantly.

Keywords: aquatic training, explosive power, plyometric training, speed

Procedia PDF Downloads 316
318 Characterization of Fateh Sagar Wetland and Its Catchment Area at Udaipur City, (Raj.) India, Using High Resolution Data

Authors: Parul Bhalla, Sarvesh Palria

Abstract:

Wetlands are areas of land that are either temporarily or permanently covered by water. Wetlands exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry, dominant plants and soil or sediment characteristics. The spatial and temporal characteristics of wetland in terms of turbidity and aquatic vegetation could serve as guiding tool, in conservation prioritization of wetlands. The aquatic vegetation in the wetland is an indicator of the trophic status of the wetland which has a bearing on the water quality, the turbidity level in any wetland is indicative of the quality of the water in it. To conserve and manage wetland resources, it is important to have inventory of wetland and its catchment. Fateh Sagar wetland in Udaipur city is the one of the important wetland for tourism industry and other economic activities in the region. Realizing the importance of the wetland, the present study has been taken up with the specific objective of delineation and characterization of Fateh Sagar wetland in terms of turbidity and aquatic vegetation, using high resolution satellite data such as Cartosat and LISS IV multi-temporal data, which will efficiently bring out the changes in water spread and quality parameters. The catchment of wetland has been also characterized for various features. The study leads in to takes necessary steps to conserve the wetland and its resources.

Keywords: aquatic vegetation, catchment, turbidity status, wetland

Procedia PDF Downloads 321
317 Performance of Phytogreen Zone for BOD5 and SS Removal for Refurbishment Conventional Oxidation Pond in an Integrated Phytogreen System

Authors: A. R. Abdul Syukor, A. W. Zularisam, Z. Ideris, M. S. Mohd Ismid, H. M. Nakmal, S. Sulaiman, A. H. Hasmanie, M. R. Siti Norsita, M. Nasrullah

Abstract:

In this study, the effectiveness of integrated aquatic plants in phytogreen zone was studied and statistical analysis for the promotional integrated phytogreen system approached was discussed. It was found that the effectiveness of using aquatic plant such as Typha angustifolia sp., Lepironia articulata sp., Limnocharis flava sp., Monochoria vaginalis sp., Pistia stratiotes sp., and Eichhornia crassipes sp. in the conventional oxidation pond process in order to comply the standard A according to Malaysia Environmental Quality Act 1974 (Act 127); Environmental Quality (Sewage) Regulation 2009 for effluent discharge into inland water near the residential area was successfully shown. It was concluded that the integrated phytogreen system developed in this study has great potential for refurbishment wastewater in conventional oxidation pond.

Keywords: phytoremediation, integrated phytogreen system, sewage treatment plant, oxidation pond, aquatic plants

Procedia PDF Downloads 286
316 Expression of Metallothionein Gen and Protein on Hepatopancreas, Gill and Muscle of Perna viridis Caused by Biotoxicity Hg, Pb and Cd

Authors: Yulia Irnidayanti , J. J. Josua, A. Sugianto

Abstract:

Jakarta Bay with 13 rivers that flow into, the environment has deteriorated and is the most polluted bays in Asia. The entry of waste into the waters of the Bay of Jakarta has caused pollution. Heavy metal contamination has led to pollution levels and may cause toxicity to organisms that live in the sea, down to the cellular level and may affect the ecological balance. Various ways have been conducted to measure the impact of environmental degradation, such as by measuring the levels of contaminants in the environment, including measuring the accumulation of toxic compounds in the tissues of organisms. Biological responses or biomarkers known as a sensitive indicator but need relevant predictions. In heavy metal pollution monitoring, analysis of aquatic biota is very important from the analysis of the water itself. The content of metals in aquatic biota will usually always be increased from time to time due to the nature of metal bioaccumulation, so the aquatic biota is best used as an indicator of metal pollution in aquatic environments. The results of the content analysis results of sea water in coastal estuaries Angke, Kaliadem and Panimbang detected heavy metals cadmium, mercury, lead, but did not find zinc metal. Based on the results of protein electrophoresis methallotionein found heavy metals in the tissues hepatopancreas, gills and muscles, and also the mRNA expression of has detected.

Keywords: gills, heavy metal, hepatopancreas, metallothionein, muscle

Procedia PDF Downloads 327
315 Spatio-Temporal Variability in Reciprocal Resource Subsidies across Adjacent Terrestrial and Aquatic Eastern Cape Ecosystems

Authors: Tiyisani L. Chavalala, Nicole B. Richoux, Martin H. Villet

Abstract:

Rivers and their adjacent ecosystems are linked by reciprocal ecological subsidies. Rivers receive nutrients and energy from land, and these transfers can represent important food subsidies, a phenomenon known as allochthony. Emergence of adult aquatic invertebrates can also provide important food sources to terrestrial consumers. Reciprocal subsidies are influenced by factors such as canopy cover, river flow rate and channel width, which can be highly variable through space and time. The aim of this study is to identify and quantify the main trophic links between adjacent ecosystems (terrestrial and freshwater systems) in several Eastern Cape Rivers with different catchment sizes and flow rates and to develop an understanding of the factors that affect the strength of these links and their spatial dynamics. Food sources and consumers were sampled during four seasons (August 2016, November 2016, February 2017 and May 2017), and stable isotope ratios will serve as tracers to estimate the food web structures. Emergence traps are being used to quantify the rates of emergence of adult aquatic insects, and infall-pan traps are being used to quantify the terrestrial insects falling into rivers as potential food subsidies.

Keywords: emerging aquatic insects, in-falling terrestrial insects, reciprocal resource subsidies, stable isotopes

Procedia PDF Downloads 125
314 Aquatic and Marshy Flora from Fresh Water Wetlands on Quartz Sands in Pinar Del Río, Cuba

Authors: Vidal Pérez Hernández, Enrique González Pendás

Abstract:

The most of the aquatic and marshy flora in Cuba, is located on quartzitic sands ecosystems and they are represented by a wide variety of freshwater wetlands, which are spread in the whole south and south-western plain of Pinar del Río. The survey carried out in these ecosystems offers an updated inventory of these species, showing up their biological type, habit, distribution, and the threat grade to which are subjected, taking into account categories granted by UICN. A remarkable decrease is evidenced, in the total of these species respect to this area; due to deposit processes and deforestation, which are taken place by the human activity and the climatic change. It is linked to others threats like, limitless use of their water reserves for irrigating groves, the cattle raising and intensive fishing. Added to it, its sand with 99% pure crystal quartz, are used for the mining. The combination of all factors has a negative influence on a flora that stores more than 250 species, most of them herbaceous and hydrophytes. In these particular ecosystems were found a 40% endemism from total flora, and more than 80%, are evaluated inside the most sensitive threat categories, and already some of them have been declared as extinct.

Keywords: aquatic flora, marshy flora, quartzitic sands, wetlands

Procedia PDF Downloads 143
313 Roles of Aquatic Plants on Erosion Relief of Stream Bed

Authors: Jin-Hong Kim

Abstract:

Roles of the vegetation to mitigate the erosion of the stream bed or to facilitate the deposition of the fine sediments by the species of the aquatic plants were presented. Field investigation on the estimation of the change of the bed level and the estimation of the flow characteristics were performed. The results showed that Phragmites japonica has the mitigation function of 0.3m-0.4m of the erosion in the range of higher than 1.0m/s of flow velocity at the vegetated region. Phragmites communis has the mitigation function of 0.2m-0.3m of the erosion in the range of higher than 0.7m/s of flow velocity at the vegetated region. Salix gracilistyla has greater role than Phragmites japonica and Phragmites communis to sustain the stable channel. It has the mitigation function of 0.4m-0.5m of the erosion in the range of higher than 1.4m/s of flow velocity. Miscanthus sacchariflorus has a weak role compared with that of Phragmites japonica and Salix gracilistyla, but it has still function for sustaining the stable bed. From these results, the vegetation has effective roles to mitigate the erosion or to facilitate the deposition of the stream bed.

Keywords: aquatic plants, Phragmites japonica, Phragmites communis, Salix gracilistyla

Procedia PDF Downloads 316
312 Aquatic Therapy Improving Balance Function of Individuals with Stroke: A Systematic Review with Meta-Analysis

Authors: Wei-Po Wu, Wen-Yu Liu, Wei−Ting Lin, Hen-Yu Lien

Abstract:

Introduction: Improving balance function for individuals after stroke is a crucial target in physiotherapy. Aquatic therapy which challenges individual’s postural control in an unstable fluid environment may be beneficial in enhancing balance functions. The purposes of the systematic review with meta-analyses were to validate the effects of aquatic therapy in improving balance functions for individuals with strokes in contrast to conventional physiotherapy. Method: Available studies were explored from three electronic databases: PubMed, Scopus, and Web of Science. During literature search, the published date of studies was not limited. The study design of the included studies should be randomized controlled trials (RCTs) and the studies should contain at least one outcome measurement of balance function. The PEDro scale was adopted to assess the quality of included studies, while the 'Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence' was used to evaluate the level of evidence. After the data extraction, studies with same outcome measures were pooled together for meta-analysis. Result: Ten studies with 282 participants were included in analyses. The research qualities of the studies were ranged from fair to good (4 to 8 points). Levels of evidence of the included studies were graded as level 2 and 3. Finally, scores of Berg Balance Scale (BBS), Eye closed force plate center of pressure velocity (anterior-posterior, medial-lateral axis) and Timed up and Go test were pooled and analyzed separately. The pooled results shown improvement in balance function (BBS mean difference (MD): 1.39 points; 95% confidence interval (CI): 0.05-2.29; p=0.002) (Eye closed force plate center of pressure velocity (anterior-posterior axis) MD: 1.39 mm/s; 95% confidence interval (CI): 0.93-1.86; p<0.001) (Eye closed force plate center of pressure velocity (medial-lateral) MD: 1.48 mm/s; 95% confidence interval (CI): 0.15-2.82; p=0.03) and mobility (MD: 0.9 seconds; 95% CI: 0.07-1.73; p=0.03) of stroke individuals after aquatic therapy compared to conventional therapy. Although there were significant differences between two treatment groups, the differences in improvement were relatively small. Conclusion: The aquatic therapy improved general balance function and mobility in the individuals with stroke better than conventional physiotherapy.

Keywords: aquatic therapy, balance function, meta-analysis, stroke, systematic review

Procedia PDF Downloads 121
311 Impact of Water Courses Lining on Water Quality and Distribution of Aquatic Vegetations in Two Egyptian Governorates

Authors: Nahed M. M. Ismail, Bayoumy B. Mostafa, Ahmed Abdel-Kader, Khalil M. El-Said, Asmaa Abdel-Motleb, Hoda M. Abu Taleb

Abstract:

This study was carried out in lined and unlined watercourses in Beheira and Giza governorates to investigate the effect of water canals lining on water quality and aquatic vegetations. Samples of water and aquatic plants were collected from the examining sites during four seasons in two successive years. The main ecological parameters were recorded and water quality was measured. Results showed that the mean value of water conductivity and total dissolved salts in lined sites was significantly lower than those of unlined ones (p < 0.01, p < 0.05). In Beheira, the dissolved oxygen concentrations during autumn and winter were higher in lined sites (3.93±1.3 and 9.6±1.1 ppm, respectively) than those of unlined ones (the same values of 1.2±0.6 ppm). However, it represented by lower values of 5.77±6.05 and 4.9±1.8 ppm in lined watercourses in spring and summer, respectively, comparing with those in unlined ones (14.05±5.59 and 5.83±0.8 ppm, respectively). Generally, Zn, Pb, Fe, Cd were higher in both lined and unlined sites during summer than the other seasons. However, Zn and Fe were higher in lined sites (0.78±0.37 and 17.4±4.3 ppb, respectively) during summer than that of unlined ones (0.4±0.1 and 10.95±1.93 ppb, respectively). Cu was absent during summer in lined and unlined sites and only in unlined ones during spring. Regarding to Giza sites, Cu and Pb were absent in both lined and unlined sites during summer and only in unlined ones during spring. Whereas, Fe recorded higher values in autumn in both lined (8.8±20.1 ppb) and unlined sites (15.16±3 ppb) than the other seasons. Present survey study revealed that 13 species of aquatic plants were collected from lined and unlined sites in Beheira and Giza governorates. Eichhornia crassipes, Ceratophyllum demersum, and Potamogeton sp. were the only plant species infested the examined sites during autumn and winter in Beheira. In autumn C. demersum was the only plant found in lined sites represented by highly lower significant percentage (12.5% of the all examined sites) compared to the unlined sites (50%). E. crassipes was completely absent in the lined sites during the two seasons. In spring, there is only 3 plant species in lined sites compared to 6 ones in unlined. Also, in summer, there is only 2 species in lined sites comparing with 5 in unlined. The percentage of occurrence and density of these plants was highly significant (p < 0.01, p < 0.001) higher in unlined sites compared to the lined ones during all seasons. A diversity of plant species, E. crassipes, C. demersum, Jussias repens, Lemma giba, and Polygonum serr were the most abundant in many examined sites during all seasons in Giza. In summer, the percentage of sites containing the two plants E. crassipes (83.3%) and C. demersum (50%) was highly significant (p < 0.001) higher in unlined sites compared to the lined ones (50% and 0.0%, respectively). It concluded from the results that watercourses lining may play a significant role in preserving water with a good quality and reduces the distribution of aquatic vegetation which rendered the current of water.

Keywords: aquatic plants, lining of watercourses, physicochemical parameters, water quality

Procedia PDF Downloads 61
310 Structural and Morphological Characterization of the Biomass of Aquatics Macrophyte (Egeria densa) Submitted to Thermal Pretreatment

Authors: Joyce Cruz Ferraz Dutra, Marcele Fonseca Passos, Rubens Maciel Filho, Douglas Fernandes Barbin, Gustavo Mockaitis

Abstract:

The search for alternatives to control hunger in the world, generated a major environmental problem. Intensive systems of fish production can cause an imbalance in the aquatic environment, triggering the phenomenon of eutrophication. Currently, there are many forms of growth control aquatic plants, such as mechanical withdrawal, however some difficulties arise for their final destination. The Egeria densa is a species of submerged aquatic macrophyte-rich in cellulose and low concentrations of lignin. By applying the concept of second generation energy, which uses lignocellulose for energy production, the reuse of these aquatic macrophytes (Egeria densa) in the biofuels production can turn an interesting alternative. In order to make lignocellulose sugars available for effective fermentation, it is important to use pre-treatments in order to separate the components and modify the structure of the cellulose and thus facilitate the attack of the microorganisms responsible for the fermentation. Therefore, the objective of this research work was to evaluate the structural and morphological transformations occurring in the biomass of aquatic macrophytes (E.densa) submitted to a thermal pretreatment. The samples were collected in an intensive fish growing farm, in the low São Francisco dam, in the northeastern region of Brazil. After collection, the samples were dried in a 65 0C ventilation oven and milled in a 5mm micron knife mill. A duplicate assay was carried, comparing the in natural biomass with the pretreated biomass with heat (MT). The sample (MT) was submitted to an autoclave with a temperature of 1210C and a pressure of 1.1 atm, for 30 minutes. After this procedure, the biomass was characterized in terms of degree of crystallinity and morphology, using X-ray diffraction (XRD) techniques and scanning electron microscopy (SEM), respectively. The results showed that there was a decrease of 11% in the crystallinity index (% CI) of the pretreated biomass, leading to the structural modification in the cellulose and greater presence of amorphous structures. Increases in porosity and surface roughness of the samples were also observed. These results suggest that biomass may become more accessible to the hydrolytic enzymes of fermenting microorganisms. Therefore, the morphological transformations caused by the thermal pretreatment may be favorable for a subsequent fermentation and, consequently, a higher yield of biofuels. Thus, the use of thermally pretreated aquatic macrophytes (E.densa) can be an environmentally, financially and socially sustainable alternative. In addition, it represents a measure of control for the aquatic environment, which can generate income (biogas production) and maintenance of fish farming activities in local communities.

Keywords: aquatics macrophyte, biofuels, crystallinity, morphology, pretreatment thermal

Procedia PDF Downloads 227
309 Environmental Impacts and Ecological Utilization of Water Hyacinth (Eichhornia crassipes) in the Niger Delta Fresh Ecosystem

Authors: Seiyaboh E. I.

Abstract:

Water Hyacinth (Eichhornia crassipes) was introduced into many parts of the world, including Africa, as an ornamental garden pond plant because of its beauty. However, it is considered a dangerous pest today because when not controlled, water hyacinth will cover rivers, lakes and ponds entirely; this dramatically impacts water flow, blocks sunlight from reaching native aquatic plants, and starves the water of oxygen, often killing fish and other aquatic organisms. In the Niger Delta region, water hyacinth is considered a nuisance because of its very obvious devastating environmental impacts in the region. However, water hyacinth (Eichhornia crassipes) constitutes a very important part of an aquatic ecosystem. It possesses specialized growth habits, physiological characteristics and reproductive strategies that allow for rapid growth and spread in freshwater environments and this explains its very rapid spread in the Niger Delta freshwater ecosystem. This paper therefore focuses on the environmental consequences of the proliferation of water hyacinth (Eichhornia crassipes) in the Niger Delta freshwater ecosystem, extent of impact, and options available for its ecological utilization which will help mitigate proliferation, restore effective freshwater ecosystem utilization and balance. It concludes by recommending sustainable practices outlining the beneficial uses of water hyacinth (Eichhornia crassipes) rather than control.

Keywords: environmental impacts, ecological utilization, Niger Delta, water hyacinth, Eichhornia crassipes

Procedia PDF Downloads 203
308 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH₄⁺ -N), nitrite- nitrogen (NO₂⁻ -N), nitrate- nitrogen (NO₃⁻ -N), phosphate –phosphorus (PO₄³⁻ -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO₂⁻ -N, NO₃⁻ -N and 70% for NH₄⁺ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.

Keywords: aquaculture effluent, macrophytes, mathematical model, phytoremediation

Procedia PDF Downloads 149
307 Impact of Flood on Phytoplankton Biochemical Composition in Subtropical Reservoir, Lake Nasser

Authors: Shymaa S. Zaher, Howayda Abd El-Hady, Nehad Khalifa

Abstract:

Lake Nasser is vital to Egypt as it is the main Nile water reservoir. One of the major challenges in ecological flood is to establish how environmental enrichment in nutrients availability may affect both the biochemical composition of phytoplankton and the species communities. Samples were collected from twenty sites representing different lake sectors along the main channel of the lake during 2017. Generally, phytoplankton distribution during flood season in Lake Nasser indicates the predominance of Cyanophyceae at all lake sectors. Increases in NO₂ (9.31 µg/l) and PO₄ (7.11µg/l) at the Abu-Simble sector are associated with changes in community structure and biochemical composition of phytoplankton, where Cyanophyceae blooming occur associated with retardation in biopolymeric particulate organic carbon. The maximum total biochemical contents (91.29 mg/l) and biopolymeric particulate organic carbon (37.15 mg/l) was found at El-Madiq sector where there was optimum nutrients (NO₂ 0.479 µg/l and PO₄ 5.149µg/l), a highly positive correlation was found between Cyanophyceae and NO₂ in the lake (r = 0.956). A highly positive correlation was detected between carbohydrates and both transparency and pH in the lake (r = 0.974 and 0.787). Also carbohydrates had a positive relation with Bacillariophyceae (r = 0.610). Flood positively alter the water quality of the lake by increasing dissolved oxygen and nutrients enrichment to the aquatic ecosystem, affecting other aquatic organisms of higher trophic levels as economic fishes inhabiting the lake.

Keywords: aquatic microalgae, Aswan high dam lake, biochemical composition, fresh water

Procedia PDF Downloads 63
306 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration

Authors: P. Barreto, A. Guevara, V. Ibujes

Abstract:

In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.

Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions

Procedia PDF Downloads 55
305 Effect of Climate Changing Pattern on Aquatic Biodiversity of Bhimtal Lake at Kumaun Himalaya (India)

Authors: Davendra S. Malik

Abstract:

Bhimtal lake is located between 290 21’ N latitude and 790 24’ E longitude, at an elevation of 1332m above mean sea level in the Kumaun region of Uttarakhand of Indian subcontinent. The lake surface area is decreasing in water area, depth level in relation to ecological and biological characteristics due to climatic variations, invasive land use pattern, degraded forest zones and changed agriculture pattern in lake catchment basin. The present study is focused on long and short term effects of climate change on aquatic biodiversity and productivity of Bhimtal lake. The meteorological data of last fifteen years of Bhimtal lake catchment basin revealed that air temperature has been increased 1.5 to 2.1oC in summer, 0.2 to 0.8 C in winter, relative humidity increased 4 to 6% in summer and rainfall pattern changed erratically in rainy seasons. The surface water temperature of Bhimtal lake showed an increasing pattern as 0.8 to 2.6 C, pH value decreased 0.5 to 0.2 in winter and increased 0.4 to 0.6 in summer. Dissolved oxygen level in lake showed a decreasing trend as 0.7 to 0.4mg/l in winter months. The mesotrophic nature of Bhimtal lake is changing towards eutrophic conditions and contributed for decreasing biodiversity. The aquatic biodiversity of Bhimtal lake consisted mainly phytoplankton, zooplankton, benthos and fish species. In the present study, a total of 5 groups of phytoplankton, 3 groups of zooplankton, 11 groups of benthos and 15 fish species were recorded from Bhimtal lake. The comparative data of biodiversity of Bhimtal lake since January, 2000 indicated the changing pattern of phytoplankton biomass were decreasing as 1.99 and 1.08% of Chlorophyceae and Bacilleriophyceae families respectively. The biomass of Cynophyceae was increasing as 0.45% and contributing the algal blooms during summer season in lake. The biomass of zooplankton and benthos were found decreasing in winter season and increasing during summer season. The endemic fish species (18 no.) were found in year 2000-05, as while the fish species (15 no.) were recorded in present study. The relative fecundity of major fish species were observed decreasing trends during their breeding periods in lake. The natural and anthropogenic factors were identified as ecological threats for existing aquatic biodiversity of Bhimtal lake. The present research paper emphasized on the effect of changing pattern of different climatic variables on species composition, biomass of phytoplankton, zooplankton, benthos, and fishes in Bhimtal lake of Kumaun region. The present research data will be contributed significantly to assess the changing pattern of aquatic biodiversity and productivity of Bhimtal lake with different time scale.

Keywords: aquatic biodiversity, Bhimtal lake, climate change, lake ecology

Procedia PDF Downloads 128
304 UVA or UVC Activation of H₂O₂ and S₂O₈²⁻ for Estrogen Degradation towards an Application in Rural Wastewater Treatment Plant

Authors: Anaelle Gabet, Helene Metivier, Christine De Brauer, Gilles Mailhot, Marcello Brigante

Abstract:

The presence of micropollutants in surface waters has been widely reported around the world, particularly downstream from wastewater treatment plants (WWTPs). Rural WWTPs constitute more than 90 % of the total WWTPs in France. Like conventional ones, they are not able to fully remove micropollutants. Estrogens are excreted by human beings every day and several studies have highlighted their endocrine disruption properties on river wildlife. They are mainly estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). Rural WWTPs require cheap and robust tertiary processes. UVC activation of H₂O₂ for HO· generation, a very reactive molecule, has demonstrated its effectiveness. However, UVC rays are dangerous to manipulate and energy-consuming. This is why the ability of UVA rays was investigated in this study. Moreover, the use of S₂O₈²⁻ for SO₄·- generation as an alternative to HO· has emerged in the last few years. Such processes have been widely studied on a lab scale. However, pilot-scale works constitute fewer studies. This study was carried out on a 20-L pilot composed of a 1.12-L UV reactor equipped with a polychromatic UVA lamp or a monochromatic (254 nm) UVC lamp fed in recirculation. Degradation rates of a mixture of spiked E1, E2 and EE2 (5 µM each) were followed by HPLC-UV. Results are expressed in UV dose (mJ.cm-2) received by the compounds of interest to compare UVC and UVA. In every system, estrogen degradation rates followed pseudo-first-order rates. First, experiments were carried out in tap water. All estrogens underwent photolysis under UVC rays, although E1 photolysis is higher. However, only very weak photolysis was observed under UVA rays. Preliminary studies on both oxidants have shown that S₂O₈²⁻ photolysis constants are higher than H₂O₂ under both UVA and UVC rays. Therefore, estrogen degradation rates are about ten times higher in the presence of 1 mM of S₂O₈²⁻ than with one mM of H₂O₂ under both radiations. In the same conditions, the mixture of interest required about 40 times higher UV dose when using UVA rays compared to UVC. However, the UVA/S₂O₈²⁻ system only requires four times more UV dose than the conventional UVC/H₂O₂ system. Further studies were carried out in WWTP effluent with the UVC lamp. When comparing these results to the tap water ones, estrogen degradation rates were more inhibited in the S₂O₈²⁻ system than with H₂O₂. It seems that SO₄·- undergo higher quenching by a real effluent than HO·. Preliminary experiments have shown that natural organic matter is mainly responsible for the radical quenching and that HO and SO₄ both had similar second-order reaction rate constants with dissolved organic matter. However, E1, E2 and EE2 second-order reaction rate constants are about ten times lower with SO₄ than with HO. In conclusion, the UVA/S₂O₈²⁻ system showed encouraging results for the use of UVA rays but further studies in WWTP effluent have to be carried out to confirm this interest. The efficiency of other pollutants in the real matrix also needs to be investigated.

Keywords: AOPs, decontamination, estrogens, radicals, wastewater

Procedia PDF Downloads 115