Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation

Authors : Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa

Abstract : Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂, 2.7% N₂, and 0.6%O₂. This mixed CO₂ product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.

Keywords : carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol **Conference Title :** ICCDUR 2022 : International Conference on Carbon Dioxide Utilization and Reduction

Conference Location : Bangkok, Thailand **Conference Dates :** March 03-04, 2022

1