Search results for: penalized logistic regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3430

Search results for: penalized logistic regression

2530 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 209
2529 Private and Public Health Sector Difference on Client Satisfaction: Results from Secondary Data Analysis in Sindh, Pakistan

Authors: Wajiha Javed, Arsalan Jabbar, Nelofer Mehboob, Muhammad Tafseer, Zahid Memon

Abstract:

Introduction: Researchers globally have strived to explore diverse factors that augment the continuation and uptake of family planning methods. Clients’ satisfaction is one of the core determinants facilitating continuation of family planning methods. There is a major debate yet scanty evidence to contrast public and private sectors with respect to client satisfaction. The objective of this study is to compare quality-of-care provided by public and private sectors of Pakistan through a client satisfaction lens. Methods: We used Pakistan Demographic Heath Survey 2012-13 dataset (Sindh province) on a total of 3133 Married Women of Reproductive Age (MWRA) aged 15-49 years. Source of family planning (public/private sector) was the main exposure variable. Outcome variable was client satisfaction judged by ten different dimensions of client satisfaction. Means and standard deviations were calculated for continuous variable while for categorical variable frequencies and percentages were computed. For univariate analysis, Chi-square/Fisher Exact test was used to find an association between clients’ satisfaction in public and private sectors. Ten different multivariate models were made. Variables were checked for multi-collinearity, confounding, and interaction, and then advanced logistic regression was used to explore the relationship between client satisfaction and dependent outcome after adjusting for all known confounding factors and results are presented as OR and AOR (95% CI). Results: Multivariate analyses showed that clients were less satisfied in contraceptive provision from private sector as compared to public sector (AOR 0.92,95% CI 0.63-1.68) even though the result was not statistically significant. Clients were more satisfied from private sector as compared to the public sector with respect to other determinants of quality-of-care (follow-up care (AOR 3.29, 95% CI 1.95-5.55), infection prevention (AOR 2.41, 95% CI 1.60-3.62), counseling services (AOR 2.01, 95% CI 1.27-3.18, timely treatment (AOR 3.37, 95% CI 2.20-5.15), attitude of staff (AOR 2.23, 95% CI 1.50-3.33), punctuality of staff (AOR 2.28, 95% CI 1.92-4.13), timely referring (AOR 2.34, 95% CI 1.63-3.35), staff cooperation (AOR 1.75, 95% CI 1.22-2.51) and complications handling (AOR 2.27, 95% CI 1.56-3.29).

Keywords: client satisfaction, family planning, public private partnership, quality of care

Procedia PDF Downloads 420
2528 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 525
2527 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia

Authors: Wondmnew Derebe

Abstract:

Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.

Keywords: impact, adoption, endogenous switching regression, income, improved

Procedia PDF Downloads 74
2526 Determinants of Repeated Abortion among Women of Reproductive Age Attending Health Facilities in Northern Ethiopia: A Case-Control Study

Authors: Henok Yebyo Henok, Araya Abrha Araya, Alemayehu Bayray Alemayehu, Gelila Goba Gelila

Abstract:

Background: Every year, an estimated 19–20 million unsafe abortions take place, almost all in developing countries, leading to 68,000 deaths and millions more injured many permanently. Many women throughout the world, experience more than one abortion in their lifetimes. Repeat abortion is an indicator of the larger problem of unintended pregnancy. This study aimed to identify determinants of repeat abortion in Tigray Region, Ethiopia. Methods: Unmatched case-control study was conducted in hospitals in Tigray Region, Northern Ethiopia, from November 2014 to June 2015. The sample included 105 cases and 204 controls, recruited from among women seeking abortion care at public hospitals. Clients having two or more abortions (“repeat abortion”) were taken as cases, and those who had a total of one abortion were taken as controls (“single abortion”). Cases were selected consecutive based on proportional to size allocation while systematic sampling was employed for controls. Data were analyzed using SPSS version 20.0. Binary and multiple variable logistic regression analyses were calculated with 95% CI. Results: Mean age of cases was 24 years (±6.85) and 22 years (±6.25) for controls. 79.0% of cases had their sexual debut in less than 18 years of age compared to 57% of controls. 42.2% of controls and 23.8% of cases cited rape as the reason for having an abortion. Study participants who did not understand their fertility cycle and when they were most likely to conceive after menstruation (adjusted odds ratio [AOR]=2.0, 95% confidence interval [CI]: 1.1-3.7), having a previous abortion using medication(AOR=3.3, CI: 1.83, 6.11), having multiple sexual partners in the preceding 12 months (AOR=4.4, CI: 2.39,8.45), perceiving that the abortion procedure is not painful (AOR=2.3, CI: 1.31,4.26), initiating sexual intercourse before the age of 18 years (AOR=2.7, CI: 1.49, 5.23) and disclosure to a third-party about terminating the pregnancy (AOR=2.1, CI: 1.2,3.83) were independent predictors of repeat abortion. Conclusion: This study identified several factors correlated with women having repeat abortions. It may be helpful for the Government of Ethiopia to encourage women to delay sexual debut and decrease their number of sexual partners, including by promoting discussion within families about sexuality, to decrease the occurrence of repeated abortion.

Keywords: abortion, Ethiopia, repeated abortion, single abortion

Procedia PDF Downloads 289
2525 Assessment of Utilization of Provider Initiated HIV Testing and Counseling and Associated Factors among Adult out Patient Department Patients in Wonchi Woreda, South West Shoa Zone, Central Ethiopia

Authors: Dinka Fikadu, Mulugeta Shegaze

Abstract:

Background: Currently in health facility, provider-initiated human immunodeficiency virus testing is the key entry point to prevention, care, treatment and support services, but most people remains unaware of their HIV status due to various reasons. In many high-prevalence countries, fewer than one in ten people with HIV are aware of their HIV status. HIV, the virus that causes AIDS, “acquired immunodeficiency syndrome, "has become one of the world’s most serious health and development challenges. Reaching individuals with HIV who do not know their serostatus is a global public health priority. Objective: To assess utilization of provider initiated HIV testing and counseling and associated factors among adult outpatient department patients. Methods: Health facility based cross sectional study was conducted among 392 adult outpatient department patients in Wonchi woreda from February 24 to March 24 /2013. The study participant was recruited patients from all adult outpatient department patients of all four public health facilities of wonchi woreda using systematic sampling. A structured interviewer administered questionnaire was used to elicit all important variables from the study participants and multiple logistic regression analysis was used. Result: A total of 371 adult outpatient department patients aged between 15 to 64 years were actively participated in the study and 291(78.4%) of them utilized provider initiated HIV testing and counseling and 80(21.6%) of them refused. Knowledge on HIV is low in the study population; majority of the participants didn’t have comprehensive knowledge (64.7%) and (35.3%) fail to reject misconception about means of HIV transmission and prevention. Utilization of provider-initiated HIV testing and counseling were associated with divorced/widowed marital status[AOR (95%CI) = 0.32(0.15, 0.69)], being male sex [AOR (95%CI) =1.81(1.01, 3.24)], having comprehensive knowledge on HIV [AOR (95%CI) =0.408(0.220,0.759)],having awareness about provider initiated HIV testing and counseling [AOR(95%CI) =2.89(1.48,5.66)] and receiving test on HIV before[AOR (95%CI)=4.15(2.30, 7.47)]. Conclusion: Utilization of provider initiated HIV testing and counseling among adult outpatient departments in wonchi woreda public health facility was [(78.4%)].Strengthening health information through mass media and peer education on HIV to address barrier to testing in the community such as low awareness on PITC, to increase up take of PITC among adult OPD patients.

Keywords: utilization, human immune deficiency, testing, provider, initiate

Procedia PDF Downloads 304
2524 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 110
2523 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 28
2522 Perceived Stigma, Perception of Burden and Psychological Distress among Parents of Intellectually Disable Children: Role of Perceived Social Support

Authors: Saima Shafiq, Najma Iqbal Malik

Abstract:

This study was aimed to explore the relationship of perceived stigma, perception of burden and psychological distress among parents of intellectually disabled children. The study also aimed to explore the moderating role of perceived social support on all the variables of the study. The sample of the study comprised of (N = 250) parents of intellectually disabled children. The present study utilized the co-relational research design. It consists of two phases. Phase-I consisted of two steps which contained the translation of two scales that were used in the present study and tried out on the sample of parents (N = 70). The Affiliated Stigma Scale and Care Giver Burden Inventory were translated into Urdu for the present study. Phase-1 revealed that translated scaled entailed satisfactory psychometric properties. Phase -II of the study was carried out in order to test the hypothesis. Correlation, linear regression analysis, and t-test were computed for hypothesis testing. Hierarchical regression analysis was applied to study the moderating effect of perceived social support. Findings revealed that there was a positive relationship between perceived stigma and psychological distress, perception of burden and psychological distress. Linear regression analysis showed that perceived stigma and perception of burden were positive predictors of psychological distress. The study did not show the moderating role of perceived social support among variables of the present study. The major limitation of the study is the sample size and the major implication is awareness regarding problems of parents of intellectually disabled children.

Keywords: perceived stigma, perception of burden, psychological distress, perceived social support

Procedia PDF Downloads 213
2521 A Study on the Conspicuous Consumption, Involvement and Physical and Mental Health of Pet Owners

Authors: Chi-Yueh Hsu, Hsuan-Liang Hsu, Hsiu-Hui Chiang

Abstract:

This study is to explore the relationship between the conspicuous consumption, leisure involvement and physical and mental health, and to understand the prediction of conspicuous consumption and leisure involvement to physical and mental health. The data was collected and analysed by purposive sampling, and the research objects were the dog walkers in Taiwan area. A total of 300 questionnaires were issued and after shaving the invalid questionnaire, a total of 246 valid samples were collected, and the effective rate was 82%.. The data were analyzed by correlation analysis and multiple stepwise regression analysis. The results showed that there was a significant correlation between conspicuous consumption and leisure involvement, and the conspicuous consumption and leisure involvement of dog walkers have a significant impact on physical and mental health, especially in self-expression, attractiveness and centrality of leisure involvement have a significant impact on physical and mental health.

Keywords: walking dog, attractiveness, self-expression, multiple stepwise regression analysis

Procedia PDF Downloads 262
2520 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages

Authors: Ya-Li Tsai

Abstract:

Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.

Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization

Procedia PDF Downloads 85
2519 Assessment of Oral and Dental Health Status of Pregnant Women in Malaga, Spain

Authors: Nepton Kiani

Abstract:

Dental decay is one of the most common chronic diseases worldwide and imposes significant costs annually on people and healthcare systems. Addressing this issue is among the important programs of the World Health Organization in the field of oral and dental disease prevention and health promotion. In this context, oral and dental health in vulnerable groups, especially pregnant women, is of greater importance due to the health maintenance of the mother and fetus. The aim of this study is to investigate the DMFT index and various factors affecting it in order to identify different factors influencing the process of dental decay and to take an effective step in reducing the progression of this disease, control, and prevention. In this cross-sectional descriptive study, 120 pregnant women attending Nepton Policlinica clinic in Malaga, Spain, were evaluated for the DMFT index and oral and dental hygiene. In this regard, interviews, precise observations, and data collection were used. Subsequently, data analysis was performed using SPSS software and employing correlation tests, Kruskal-Wallis, and Mann-Whitney tests. The DMFT index for pregnant women in three age groups 22-26, 27- 31, and 32-36 years was respectively 2.8, 4.5, and 5.6. The results of logistic regression analysis showed that demographic variables (age, education, job, economic status) and the frequency of brushing and flossing lead to preventive behavior up to 49.58 percent (P<0.05). Generally, the results indicated that oral and dental care during pregnancy is poor. Only a small number of pregnant women regularly used toothbrush and dental floss or visited the dentist regularly. On the other hand, poor performance in adopting oral and dental care was more observed in pregnant women with lower economic and educational status. The present study showed that raising the level of awareness and education on oral and dental health in pregnant women is essential. In this field, it is necessary to focus on conducting educational-care courses at the level of healthcare centers for midwives, healthcare personnel, and at the community level for families, to prevent and perform dental treatments before the pregnancy period

Keywords: Malaga, oral and dental health, pregnant women, Spain

Procedia PDF Downloads 59
2518 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 134
2517 Impact of Interest and Foreign Exchange Rates Liberalization on Investment Decision in Nigeria

Authors: Kemi Olalekan Oduntan

Abstract:

This paper was carried out in order to empirical, and descriptively analysis how interest rate and foreign exchange rate liberalization influence investment decision in Nigeria. The study spanned through the period of 1985 – 2014, secondary data were restricted to relevant variables such as investment (Proxy by Gross Fixed Capital Formation) saving rate, interest rate and foreign exchange rate. Theories and empirical literature from various scholars were reviews in the paper. Ordinary Least Square regression method was used for the analysis of data collection. The result of the regression was critically interpreted and discussed. It was discovered for empirical finding that tax investment decision in Nigeria is highly at sensitive rate. Hence, all the alternative hypotheses were accepted while the respective null hypotheses were rejected as a result of interest rate and foreign exchange has significant effect on investment in Nigeria. Therefore, impact of interest rate and foreign exchange rate on the state of investment in the economy cannot be over emphasized.

Keywords: interest rate, foreign exchange liberalization, investment decision, economic growth

Procedia PDF Downloads 366
2516 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: ganoderma, oil palm, regression model, yield loss, economic loss

Procedia PDF Downloads 391
2515 Women’s Empowerment on Modern Contraceptive Use in Poor-Rich Segment of Population: Evidence From South Asian Countries

Authors: Muhammad Asim, Mehvish Amjad

Abstract:

Background: Less than half of women in South Asia (SA) use any modern contraceptive method which leads to a huge burden of unintended pregnancies, unsafe abortions, maternal deaths, and socioeconomic loss. Women empowerment plays a pivotal role in improving various health seeking behaviours, including contraceptive use. The objective of this study to explore the association between women's empowerment and modern contraceptive, among rich and poor segment of population in SA. Methods: We used the most recent, large-scale, demographic health survey data of five South Asian countries, namely Afghanistan, Pakistan, Bangladesh, India, and Nepal. The outcome variable was the current use of modern contraceptive methods. The main exposure variable was a combination (interaction) of socio-economic status (SES) and women’s level of empowerment (low, medium, and high), where SES was bifurcated into poor and rich; and women empowerment was divided into three categories: decision making, attitude to violence and social independence. Moreover, overall women empowerment indicator was also created by using three dimensions of women empowerment. We applied both descriptive statistics and multivariable logistic regression techniques for data analyses. Results: Most of the women possessed ‘medium’ level of empowerment across South Asian Countries. The lowest attitude to violence empowerment was found in Afghanistan, and the lowest social independence empowerment was observed in Bangladesh across SA. However, Pakistani women have the lowest decision-making empowerment in the region. The lowest modern contraceptive use (22.1%) was found in Afghanistan and the highest (53.2%) in Bangladesh. The multivariate results depict that the overall measure of women empowerment does not affect modern contraceptive use among poor and rich women in most of South Asian countries. However, the decision-making empowerment plays a significant role among both poor and rich women to use modern contraceptive methods across South Asian countries. Conclusions: The effect of women’s empowerment on modern contraceptive use is not consistent across countries, and among poor and rich segment of population. Of the three dimensions of women’s empowerment, the autonomy of decision making in household affairs emerged as a stronger determinant of mCPR as compared with social independence and attitude towards violence against women.

Keywords: women empowerment, modern contraceptive use, South Asia, socio economic status

Procedia PDF Downloads 81
2514 Locus of Control, Metacognitive Knowledge, Metacognitive Regulation, and Student Performance in an Introductory Economics Course

Authors: Ahmad A. Kader

Abstract:

In the principles of Microeconomics course taught during the Fall Semester 2019, 158out of 179 students participated in the completion of two questionnaires and a survey describing their demographic and academic profiles. The two questionnaires include the 29 items of the Rotter Locus of Control Scale and the 52 items of the Schraw andDennisonMetacognitive Awareness Scale. The 52 items consist of 17 items describing knowledge of cognition and 37 items describing the regulation of cognition. The paper is intended to show the combined influence of locus of control, metacognitive knowledge, and metacognitive regulation on student performance. The survey covers variables that have been tested and recognized in economic education literature, which include GPA, gender, age, course level, race, student classification, whether the course was required or elective, employments, whether a high school economic course was taken, and attendance. Regression results show that of the economic education variables, GPA, classification, whether the course was required or elective, and attendance are the only significant variables in their influence on student grade. Of the educational psychology variables, the regression results show that the locus of control variable has a negative and significant effect, while the metacognitive knowledge variable has a positive and significant effect on student grade. Also, the adjusted R square value increased markedly with the addition of the locus of control, metacognitive knowledge, and metacognitive regulation variables to the regression equation. The t test results also show that students who are internally oriented and are high on the metacognitive knowledge scale significantly outperform students who are externally oriented and are low on the metacognitive knowledge scale. The implication of these results for educators is discussed in the paper.

Keywords: locus of control, metacognitive knowledge, metacognitive regulation, student performance, economic education

Procedia PDF Downloads 125
2513 Examining the Level of Anxiety and Stress in Dental Students

Authors: Vusale Aliyev, Khalil Aryanfar

Abstract:

Background and purpose: Dentistry is a stressful profession, and dental students are exposed to educational and clinical stress. The present study was conducted to investigate the level of stress and its factors in dental students of Nakhjavan University of Medical Sciences in 2023. Methodology: This was a descriptive cross-sectional study conducted on dental students in Nakhjavan. The data collection tool was the standard DASS-21 questionnaire (Depression-anxiety-stress scale-21) and the demographic information questionnaire. After collecting the data in SPSS statistical software, using Linear regression analysis, test regression and t-tests were subjected to statistical analysis. Results: 32.6% of students had moderate stress, and 4.3% had severe stress, and no significant statistical difference was observed between the two genders living; there was a significant difference with others (P=0.047). There was no significant relationship between the stress factor and the academic year (P=0.037). 66% of people were related to university issues. Conclusion: According to the results of this research, the level of stress is relatively high, and it seems necessary to pay attention to this issue.

Keywords: stress, dental students, Nakhichevan State University, anxiety

Procedia PDF Downloads 5
2512 Profitability Analysis of Investment in Oil Palm Value Chain in Osun State, Nigeria

Authors: Moyosooore A. Babalola, Ayodeji S. Ogunleye

Abstract:

The main focus of the study was to determine the profitability of investment in the Oil Palm value chain of Osun State, Nigeria in 2015. The specific objectives were to describe the socio-economic characteristics of Oil Palm investors (producers, processors and marketers), to determine the profitability of the investment to investors in the Oil Palm value chain, and to determine the factors affecting the profitability of the investment of the oil palm investors in Osun state. A sample of 100 respondents was selected in this cross-sectional survey. Multiple stage sampling procedure was used for data collection of producers and processors while purposive sampling was used for marketers. Data collected was analyzed using the following analytical tools: descriptive statistics, budgetary analysis and regression analysis. The results of the gross margin showed that the producers and processors were more profitable than the marketers in the oil palm value chain with their benefit-cost ratios as 1.93, 1.82 and 1.11 respectively. The multiple regression analysis showed that education and years of experience were significant among marketers and producers while age and years of experience had significant influence on the gross margin of processors. Based on these findings, improvement on the level of education of oil palm investors is recommended in order to address the relatively low access to post-primary education among the oil palm investors in Osun State. In addition to this, it is important that training be made available to oil palm investors. This will improve the quality of their years of experience, ensuring that it has a positive influence on their gross margin. Low access to credit among processors and producer could be corrected by making extension services available to them. Marketers would also greatly benefit from subsidized prices on oil palm products to increase their gross margin, as the huge percentage of their total cost comes from acquiring palm oil.

Keywords: oil palm, profitability analysis, regression analysis, value chain

Procedia PDF Downloads 363
2511 Prediction of Compressive Strength Using Artificial Neural Network

Authors: Vijay Pal Singh, Yogesh Chandra Kotiyal

Abstract:

Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques.

Keywords: rebound, ultra-sonic pulse, penetration, ANN, NDT, regression

Procedia PDF Downloads 428
2510 Regression for Doubly Inflated Multivariate Poisson Distributions

Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta

Abstract:

Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.

Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios

Procedia PDF Downloads 156
2509 Count Regression Modelling on Number of Migrants in Households

Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu

Abstract:

The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.

Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones

Procedia PDF Downloads 284
2508 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.

Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN

Procedia PDF Downloads 446
2507 The Comparative Study of Attitudes toward Entrepreneurial Intention between ASEAN and Europe: An Analysis Using GEM Data

Authors: Suchart Tripopsakul

Abstract:

This paper uses data from the Global Entrepreneurship Monitor (GEM) to investigate the difference of attitudes towards entrepreneurial intention (EI). EI is generally assumed to be the single most relevant predictor of entrepreneurial behavior. The aim of this paper is to examine a range of attitudes effect on individual’s intent to start a new venture. A cross-cultural comparison between Asia and Europe is used to further investigate the possible differences between potential entrepreneurs from these distinct national contexts. The empirical analysis includes a GEM data set of 10 countries (n = 10,306) which was collected in 2013. Logistic regression is used to investigate the effect of individual’s attitudes on EI. Independent variables include individual’s perceived capabilities, the ability to recognize business opportunities, entrepreneurial network, risk perceptions as well as a range of socio-cultural attitudes. Moreover, a cross-cultural comparison of the model is conducted including six ASEAN (Malaysia, Indonesia, Philippines, Singapore, Vietnam and Thailand) and four European nations (Spain, Sweden, Germany, and the United Kingdom). The findings support the relationship between individual’s attitudes and their entrepreneurial intention. Individual’s capability, opportunity recognition, networks and a range of socio-cultural perceptions all influence EI significantly. The impact of media attention on entrepreneurship and was found to influence EI in ASEAN, but not in Europe. On the one hand, Fear of failure was found to influence EI in Europe, but not in ASEAN. The paper develops and empirically tests attitudes toward Entrepreneurial Intention between ASEAN and Europe. Interestingly, fear of failure was found to have no significant effect in ASEAN, and the impact of media attention on entrepreneurship and was found to influence EI in ASEAN. Moreover, the resistance of ASEAN entrepreneurs to the otherwise high rates of fear of failure and high impact of media attention are proposed as independent variables to explain the relatively high rates of entrepreneurial activity in ASEAN as reported by GEM. The paper utilizes a representative sample of 10,306 individuals in 10 countries. A range of attitudes was found to significantly influence entrepreneurial intention. Many of these perceptions, such as the impact of media attention on entrepreneurship can be manipulated by government policy. The paper also suggests strategies by which Asian economy in particular can benefit from their apparent high impact of media attention on entrepreneurship.

Keywords: an entrepreneurial intention, attitude, GEM, ASEAN and Europe

Procedia PDF Downloads 314
2506 A Case-Control Study on Dietary Heme/Nonheme Iron and Colorectal Cancer Risk

Authors: Alvaro L. Ronco

Abstract:

Background and purpose: Although our country is a developing one, it has a typical Western meat-rich dietary style. Based on estimates of heme and nonheme iron contents in representative foods, we carried out the present epidemiologic study, with the aim of accurately analyzing dietary iron and its role on CRC risk. Subjects/methods: Patients (611 CRC incident cases and 2394 controls, all belonging to public hospitals of our capital city) were interviewed through a questionnaire including socio-demographic, reproductive and lifestyle variables, and a food frequency questionnaire of 64 items, which asked about food intake 5 years before the interview. The sample included 1937 men and 1068 women. Controls were matched by sex and age (± 5 years) to cases. Food-derived nutrients were calculated from available databases. Total dietary iron was calculated and classified by heme or nonheme source, following data of specific Dutch and Canadian studies, and additionally adjusted by energy. Odds Ratios (OR) and 95% confidence intervals were calculated through unconditional logistic regression, adjusting for relevant potential confounders (education, body mass index, family history of cancer, energy, infusions, and others). A heme/nonheme (H/NH) ratio was created and the interest variables were categorized into tertiles, for analysis purposes. Results: The following risk estimations correspond to the highest tertiles. Total iron intake showed no association with CRC risk neither among men (OR=0.83, ptrend =.18) nor among women (OR=1.48, ptrend =.09). Heme iron was positively associated among men (OR=1.88, ptrend < .001) and for the overall sample (OR=1.44, ptrend =.002), however, it was not associated among women (OR=0.91, ptrend =.83). Nonheme iron showed an inverse association among men (OR=0.53, ptrend < .001) and the overall sample (OR=0.78, ptrend =.04), but was not associated among women (OR=1.46, ptrend =.14). Regarding H/NH ratio, risks increased only among men (OR=2.12, ptrend < .001) but lacked of association among women (OR=0.81, ptrend =.29). Conclusions. We have observed different types of associations between CRC risk and high dietary heme, nonheme and H/NH iron ratio. Therefore, the source of the available iron might be of importance as a link to colorectal carcinogenesis, perhaps pointing to reconsider the animal/plant proportions of this vital mineral within diet. Nevertheless, the different associations observed for each sex, demand further studies in order to clarify these points.

Keywords: chelation, colorectal cancer, heme, iron, nonheme

Procedia PDF Downloads 171
2505 Adapting to Rural Demographic Change: Impacts, Challenges and Opportunities for Ageing Farmers in Prachin Buri Province, Thailand

Authors: Para Jansuwan, Kerstin K. Zander

Abstract:

Most people in rural Thailand still depend on agriculture. The rural areas are undergoing changes in their demographic structures with an increasing older population, out migration of younger people and a shift away from work in the agricultural sector towards manufacturing and service provisioning. These changes may lead to a decline in agricultural productivity and food insecurity. Our research aims to examine perceptions of older farmers on how rural demographic change affects them, to investigate how farmers may change their agricultural practices to cope with their ageing and to explore the factors affecting these changes, including the opportunities and challenges arising from them. The data were collected through a household survey with 368 farmers in the Prachin Buri province in central Thailand, the main area for agricultural production. A series of binomial logistic regression models were applied to analyse the data. We found that most farmers suffered from age-related diseases, which compromised their working capacity. Most farmers attempted to reduce labour intense work, by either stopping farming through transferring farmland to their children (41%), stopping farming by giving the land to the others (e.g., selling, leasing out) (28%) and continuing farming with making some changes (e.g., changing crops, employing additional workers) (24%). Farmers’ health and having a potential farm successor were positively associated with the probability of stopping farming by transferring the land to the children. Farmers with a successor were also less likely to stop farming by giving the land to the others. Farmers’ age was negatively associated with the likelihood of continuing farming by making some changes. The results show that most farmers base their decisions on the hope that their children will take over the farms, and that without successor, farmers lease out or sell the land. Without successor, they also no longer invest in expansion and improvement of their farm production, especially adoption of innovative technologies that could help them to maintain their farm productivity. To improve farmers’ quality of life and sustain their farm productivity, policies are needed to support the viability of farms, the access to a pension system and the smooth and successful transfer of the land to a successor of farmers.

Keywords: rural demographic change, older farmer, stopping farming, continuing farming, health and age, farm successor, Thailand

Procedia PDF Downloads 116
2504 A Cross-Sectional Study on Clinical Self-Efficacy of Final Year School of Nursing Students among Universities of Tigray Region, Northern Ethiopia

Authors: Awole Seid, Yosef Zenebe, Hadgu Gerensea, Kebede Haile Misgina

Abstract:

Background: Clinical competence is one of the ultimate goals of nursing education. Clinical skills are more than successfully performing tasks; it incorporates client assessment, identification of deficits and the ability to critically think to provide solutions. Assessment of clinical competence, particularly identifying gaps that need improvement and determining the educational needs of nursing students have great importance in nursing education. Thus this study aims determining clinical self-efficacy of final year school of nursing students in three universities of Tigray Region. Methods: A cross-sectional study was conducted on 224 final year school of nursing students from department of nursing, psychiatric nursing, and midwifery on three universities of Tigray region. Anonymous self-administered questionnaire was administered to generate data collected on June, 2017. The data were analyzed using SPSS version 20. The result is described using tables and charts as required. Logistic regression was employed to test associations. Result: The mean age of students was 22.94 + 1.44. Generally, 21% of students have been graduated in the department in which they are not interested. The study demonstrated 28.6% had poor and 71.4% had good perceived clinical self-efficacy. Beside this, 43.8% of psychiatric nursing and 32.6% of comprehensive nursing students have poor clinical self-efficacy. Among the four domains, 39.3% and 37.9% have poor clinical self- efficacy with regard to ‘Professional development’ and ‘Management of care’. Place of the institution [AOR=3.480 (1.333 - 9.088), p=0.011], interest during department selection [AOR=2.202 (1.045 - 4.642), p=.038], and theory-practice gap [AOR=0.224 (0.110 - 0.457), p=0.000] were significantly associated with perceived clinical self-efficacy. Conclusion: The magnitude of students with poor clinically self efficacy was high. Place of institution, theory-practice gap, students interest to the discipline were the significant predictors of clinical self-efficacy. Students from youngest universities have good clinical self-efficacy. During department selection, student’s interest should be respected. The universities and other stakeholders should improve the capacity of surrounding affiliate teaching hospitals to set and improve care standards in order to narrow the theory-practice gap. School faculties should provide trainings to hospital staffs and monitor standards of clinical procedures.

Keywords: clinical self-efficacy, nursing students, Tigray, northern Ethiopia

Procedia PDF Downloads 174
2503 Delays for Emergency Cesarean Sections and Neonatal Outcomes in Three Rural District Hospitals in Rwanda: A Retrospective Cross-Sectional Study

Authors: J. Niyitegeka, G. Nshimirimana, A. Silverstein, J. Odhiambo, Y. Lin, T. Nkurunziza, R. Riviello, S. Rulisa, P. Banguti, H. Magge, M. Macharia, J. P. Dushime, R. Habimana, B. Hedt-Gauthier

Abstract:

In low-resource settings, women needing an emergency cesarean section experiences various delays in both reaching and receiving care that is often linked to poor neonatal outcomes. In this study, we quantified different measures of delays and assessed the association between these delays and neonatal outcomes at three rural district hospitals in Rwanda. This retrospective study included 441 neonates and their mothers who underwent emergency cesarean sections in 2015 at Butaro, Kirehe and Rwinkwavu District Hospitals. Four possible delays were measured: Time from start of labor to district hospital admission, travel time from a health center to the district hospital, time from admission to surgical incision, and time from the decision for the emergency cesarean section to surgical incision. Neonatal outcomes were categorized as unfavorable (APGAR < 7 or death) and favorable (APGAR ≥ 7). We assessed the relationship between each type of delay and neonatal outcomes using multivariate logistic regression. In our study, 38.7% (108 out of 279) of neonates’ mothers labored for 12 to 24 hours before hospital admission and 44.7% (159 of 356) of mothers were transferred from health centers that required 30 to 60 minutes of travel time to reach the district hospital. 48.1% (178 of 370) of caesarean sections started within five hours after admission and 85.2% (288 of 338) started more than thirty minutes after the decision for the emergency cesarean section was made. Neonatal outcomes were significantly worse among mothers with more than 90 minutes of travel time from the health center to the district hospital compared to health centers attached to the hospital (OR = 5.12, p = 0.02). Neonatal outcomes were also significantly different depending on decision to incision intervals; neonates with cesarean deliveries starting more than thirty minutes after decision had better outcomes than those started immediately (OR = 0.32, p = 0.04). Interventions that decrease barriers to access to maternal health care services can improve neonatal outcome after emergency cesarean section. Triaging could explain the inverse relationship between time from decision to incision and neonatal outcome; this must be studied more in the future.

Keywords: Africa, emergency obstetric care, rural health delivery, maternal and child health

Procedia PDF Downloads 224
2502 Gestational Vitamin D Levels Mitigate the Effect of Pre-pregnancy Obesity on Gestational Diabetes Mellitus: A Birth Cohort Study

Authors: Majeda S. Hammoud

Abstract:

Background and Aim: Gestational diabetes mellitus (GDM) is a common pregnancy complication affecting around 14% of pregnancies globally that carries short and long-term consequences to the mother and her child. Pre-pregnancy overweight or obesity is the most consistently and strongly associated modifiable risk factor with GDM development. This analysis aimed to determine whether vitamin D status during pregnancy modulates the effect of pre-pregnancy obesity/overweight on GDM risk while stratifying by maternal age. Methods: Data from the Kuwait Birth Cohort (KBC) study were analyzed, which enrolled pregnant women in the second or third trimester of gestation. Pre-pregnancy body mass index (BMI; kg/m2) was categorized as under/normal weight (<25.0), overweight (25.0 to <30.0), and obesity (≥30.0). 25 hydroxyvitamin D levels were measured in blood samples that were collected at recruitment and categorized as deficiency (<50 nmol/L) and insufficiency/sufficiency (≥50 nmol/L). GDM status was ascertained according to international guidelines. Logistic regression was used to evaluate associations, and adjusted odds ratios (aOR) and 95% confidence intervals (CI) were estimated. Results: The analyzed study sample included a total of 982 pregnant women, with a mean (SD) age of 31.4 (5.2) years. The prevalence of GDM was estimated to be 17.3% (95% CI: 14.9-19.7), and the prevalence of pre-pregnancy overweight and obesity was 37.8% (95% CI: 34.8-40.8) and 28.8% (95% CI: 26.0-31.7), respectively. The prevalence of gestational vitamin D deficiency was estimated to be 55.3% (95% CI: 52.2-58.4). The association between pre-pregnancy overweight or obesity with GDM risk differed according to maternal age and gestational vitamin D status (Pinteraction[BMI × age × vitamin D = 0.047). Among pregnant women aged <35 years, prepregnancy obesity compared to under/normal weight was associated with increased GDM risk among women with gestational vitamin D deficiency (aOR: 3.65, 95% CI: 1.50-8.86, p = 0.004) and vitamin D insufficiency/sufficiency (aOR: 2.55, 95% CI: 1.16-5.61, p = 0.019). In contrast, among pregnant women aged ≥35 years, pre-pregnancy obesity compared to under/normal weight was associated with increased GDM risk among women with gestational vitamin D deficiency (aOR: 9.70, 95% CI: 2.01-46.69, p = 0.005), but not among women with vitamin D insufficiency/sufficiency (aOR: 1.46, 95% CI: 0.42-5.16, p = 0.553). Conclusion: The effect of pre-pregnancy obesity on GDM risk is modulated by maternal age and gestational vitamin D status, with the effect of pre-pregnancy obesity being more pronounced among older pregnant women (aged ≥35 years) with gestational vitamin D deficiency compared to those with vitamin D insufficiency/sufficiency. Whereas, among younger women (aged <35 years), the effect of pre-pregnancy obesity on GDM risk was not modulated by gestational vitamin D status. Therefore, vitamin D supplementation among pregnant women, specifically older women with pre-pregnancy obesity, may mitigate the effect of pre-pregnancy obesity on GDM risk.

Keywords: gestational diabetes mellitus, vitamin D, obesity, body mass index

Procedia PDF Downloads 42
2501 Association Between Short-term NOx Exposure and Asthma Exacerbations in East London: A Time Series Regression Model

Authors: Hajar Hajmohammadi, Paul Pfeffer, Anna De Simoni, Jim Cole, Chris Griffiths, Sally Hull, Benjamin Heydecker

Abstract:

Background: There is strong interest in the relationship between short-term air pollution exposure and human health. Most studies in this field focus on serious health effects such as death or hospital admission, but air pollution exposure affects many people with less severe impacts, such as exacerbations of respiratory conditions. A lack of quantitative analysis and inconsistent findings suggest improved methodology is needed to understand these effectsmore fully. Method: We developed a time series regression model to quantify the relationship between daily NOₓ concentration and Asthma exacerbations requiring oral steroids from primary care settings. Explanatory variables include daily NOₓ concentration measurements extracted from 8 available background and roadside monitoring stations in east London and daily ambient temperature extracted for London City Airport, located in east London. Lags of NOx concentrations up to 21 days (3 weeks) were used in the model. The dependent variable was the daily number of oral steroid courses prescribed for GP registered patients with asthma in east London. A mixed distribution model was then fitted to the significant lags of the regression model. Result: Results of the time series modelling showed a significant relationship between NOₓconcentrations on each day and the number of oral steroid courses prescribed in the following three weeks. In addition, the model using only roadside stations performs better than the model with a mixture of roadside and background stations.

Keywords: air pollution, time series modeling, public health, road transport

Procedia PDF Downloads 145