Search results for: V. K. Katiyar
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: V. K. Katiyar

6 Analysis of Plates with Varying Rigidities Using Finite Element Method

Authors: Karan Modi, Rajesh Kumar, Jyoti Katiyar, Shreya Thusoo

Abstract:

This paper presents Finite Element Method (FEM) for analyzing the internal responses generated in thin rectangular plates with various edge conditions and rigidity conditions. Comparison has been made between the FEM (ANSYS software) results for displacement, stresses and moments generated with and without the consideration of hole in plate and different aspect ratios. In the end comparison for responses in plain and composite square plates has been studied.

Keywords: ANSYS, finite element method, plates, static analysis

Procedia PDF Downloads 419
5 Blood Flow in Stenosed Arteries: Analytical and Numerical Study

Authors: Shashi Sharma, Uaday Singh, V. K. Katiyar

Abstract:

Blood flow through a stenosed tube, which is of great interest to mechanical engineers as well as medical researchers. If stenosis exists in an artery, normal blood flow is disturbed. The deposition of fatty substances, cholesterol, cellular waste products in the inner lining of an artery results to plaque formation .The present study deals with a mathematical model for blood flow in constricted arteries. Blood is considered as a Newtonian, incompressible, unsteady and laminar fluid flowing in a cylindrical rigid tube along the axial direction. A time varying pressure gradient is applied in the axial direction. An analytical solution is obtained using the numerical inversion method for Laplace Transform for calculating the velocity profile of fluid as well as particles.

Keywords: blood flow, stenosis, Newtonian fluid, medical biology and genetics

Procedia PDF Downloads 488
4 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 487
3 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 469
2 An Investigation of the Therapeutic Effects of Indian Classical Music (Raga Bhairavi) on Mood and Physiological Parameters of Scholars

Authors: Kalpana Singh, Nikita Katiyar

Abstract:

This research investigates the impact of Raga Bhairavi, a prominent musical scale in Indian classical music, on the mood and basic physiological parameters of research scholars at the University of Lucknow - India. The study focuses on the potential therapeutic effects of listening to Raga Bhairavi during morning hours. A controlled experimental design is employed, utilizing self-reporting tools for mood assessment and monitoring physiological indicators such as heart rate, oxygen saturation levels, body temperature and blood pressure. The hypothesis posits that exposure to Raga Bhairavi will lead to positive mood modulation and a reduction in physiological stress markers among research scholars. Data collection involves pre and post-exposure measurements, providing insights into the immediate and cumulative effects of the musical intervention. The study aims to contribute valuable information to the growing field of music therapy, offering a potential avenue for enhancing the well-being and productivity of individuals engaged in intense cognitive activities. Results may have implications for the integration of music-based interventions in academic and research environments, fostering a conducive atmosphere for intellectual pursuits.

Keywords: bio-musicology, classical music, mood assessment, music therapy, physiology, Raga Bhairavi

Procedia PDF Downloads 15
1 Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting

Authors: Shashi Sharma, V. K. Katiyar, Uaday Singh

Abstract:

The ability to manipulate magnetic particles in fluid flows by means of inhomogeneous magnetic fields is used in a wide range of biomedical applications including magnetic drug targeting (MDT). In MDT, magnetic carrier particles bounded with drug molecules are injected into the vascular system up-stream from the malignant tissue and attracted or retained at the specific region in the body with the help of an external magnetic field. Although the concept of MDT has been around for many years, however, wide spread acceptance of the technique is still looming despite the fact that it has shown some promise in both in vivo and clinical studies. This is because traditional MDT has some inherent limitations. Typically, the magnetic force is not very strong and it is also very short ranged. Since the magnetic force must overcome rather large hydrodynamic forces in the body, MDT applications have been limited to sites located close to the surface of the skin. Even in this most favorable situation, studies have shown that it is difficult to collect appreciable amounts of the MDCPs at the target site. To overcome these limitations of the traditional MDT approach, Ritter and co-workers reported the implant assisted magnetic drug targeting (IA-MDT). In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing in a fluid in an implant assisted cylindrical channel under the magnetic field. A coil of ferromagnetic SS 430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under the magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases from 23 to 51 % as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force.

Keywords: capture efficiency, implant assisted-magnetic drug targeting (IA-MDT), magnetic nanoparticles, modelling

Procedia PDF Downloads 432