Search results for: fatigue crack initiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1293

Search results for: fatigue crack initiation

393 Comparative Study in Treatment of Distal Humerus Fracture with Lateral Column Plate Percutaneous Medial Screw and Intercondylar Screw

Authors: Sameer Gupta, Prant Gupta

Abstract:

Context: Fractures in the distal humerus are complex and challenging injuries for orthopaedic surgeons that can be effectively treated with open reduction and internal fixation. Aims: The study analyses clinical outcomes in patients with intra-articular distal humerus fractures (AO type 13 C3 excluded) treated using a different method of fixation ( LCPMS). Subject and Methods: A study was performed, and the author's personal experiences were reported. Thirty patients were treated using an intercondylar screw with lateral column plating and percutaneous medial column screw fixation. Detailed analysis was done for functional outcomes (average arc of motion, union rate, and complications). Statistical Analysis Used: SPSS software version 22.0 was used for statistical analysis. Results: In our study, at the end of 6 months, Overall good to excellent results were achieved in 28 patients out of 30 after analysis on the basis of MEP score. The majority of patients regained full arc of motion, achieved fracture union without any major complications, and were able to perform almost all activities of daily living (which required good elbow joint movements and functions). Conclusion: We concluded that this novel method provides adequate stability and anatomical reconstruction with an early union rate observed at the end of 6 months. Excellent functional outcome was observed in almost all the patients because of less operating time and initiation of early physiotherapy, as most of the patients experienced mild nature of pain post-surgery.

Keywords: intra arricular distal humerus fracture, percutaneous medial screw, lateral column plate, arc of motion

Procedia PDF Downloads 37
392 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-Silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shantanu Bhatacharya

Abstract:

Design of high-efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to the urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on the Sierpiński fractal triangle, which is aesthetically pleasing and demonstrates a normal incident sound absorption coefficient of more than 0.96 around 700 Hz and transmission loss of around 23 dB while maintaining e air circulation through the triangular cutout. Next, we present a concept of fabrication of large acoustic panels for large-scale applications, which leads to suppressing urban noise pollution.

Keywords: acoustic metamaterials, ventilation, urban noise pollution, noise control

Procedia PDF Downloads 92
391 Water Immersion Recovery for Swimmers in Hot Environments

Authors: Thanura Randula Abeywardena

Abstract:

This study recognized the effectiveness of cold-water immersion recovery post exhaustive short-term exercise. The purpose of this study was to understand if 16- 20°C of cold-water immersion would be beneficial in a tropical environment to achieve optimal recovery in sprint swim performance in comparison to 10-15°C of water immersion. Two 100m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25m swimming pool with full body head out horizontal water immersions of 10-15°C, 16-20°C and 29-32°C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. Twelve well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan national swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p<0.05) suggested performance time, Bla and HR had no significant differences between the 3 conditions after the second sprint; however, RPE was significantly different with p=0.034 between 10-15°C and 16-20°C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors; however, the 16-20°C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have possibly fully recovered before sprint 2, invalidating the physiological effect of recovery.

Keywords: hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming

Procedia PDF Downloads 82
390 Solid Angle Approach to Quantify the Shape of Daughter Cavity in Drying Nano Colloidal Sessile Droplets

Authors: Rishabh Hans, Saksham Sharma

Abstract:

Drying of a sessile droplet imbibed with colloidal solution is a complex process in many aspects. Till now, most of the work revolves around; conditions for buckling onset, post-buckling effects, nature of change of droplet shape etc. In this work, we are determining the shape of daughter cavity (DC) formed during post-buckling onset, a less explored stage, and its relationship with experimental parameters. We have introduced solid angle as a special parameter that can quantify the shape of DC at any instant. It facilitates us to compare the shape while experimenting across different substrate types, droplet sizes and particle concentration. Furthermore, the angular location of ‘weak spot’ on the periphery of droplet, which marks the initiation of cavity growth, varies in different conditions. To solve this problem, we have evaluated the deflection angle of weak spots w.r.t. the vertical axis going through the middle of droplet. Subsequently, the solid angle subtended by DC is analyzed about that inclined axis. Finally, results of analysis allude that increasing colloidal concentration has inverse effect on the growth rate of cavity’s shape. Moreover, the cap radius of DC is observed lower for high PLR which makes the capillary pressure higher and thus tougher to expedite cavity formation relatively. This analysis can be helpful in further studies to relate the shape, deflection angle, growth rate of daughter cavity to the type of droplet crust formed in the end. Examining DC stage shall add another layer to nano-colloidal research which aims to influence many industrial applications like patterning, coatings, drug delivery, food processing etc.

Keywords: buckling of sessile droplets, daughter cavity, droplet evaporation, nanoporous shell formation, solid angle

Procedia PDF Downloads 255
389 Investigation of Vortex Induced Vibration and Galloping Characteristic for Various Shape Slender Bridge Hanger

Authors: Matza Gusto Andika, Syariefatunnisa

Abstract:

Hanger at the arch bridges is an important part to transfer load on the bridge deck onto the arch. Bridges are subjected to several types of loadings, such as dead load, temperature load, wind load, moving loads etc. Usually the hanger bridge has a typical bluff body shape such as circle, square, H beam, etc. When flow past bluff body, the flow separates from the body surface generating an unsteady broad wake. These vortices are shed to the wake periodically with some frequency that is related to the undisturbed wind speed and the size of the cross-section body by the well-known Strouhal relationship. The dynamic characteristic and hanger shape are crucial for the evaluation of vortex induced vibrations and structural vibrations. The effect of vortex induced vibration is not catastrophic as a flutter phenomenon, but it can make fatigue failure to the structure. Wind tunnel tests are conducted to investigate the VIV and galloping effect at circle, hexagonal, and H beam bluff body for hanger bridge. From this research, the hanger bridge with hexagonal shape has a minimum vibration amplitude due to VIV phenomenon compared to circle and H beam. However, when the wind bruises the acute angle of hexagon shape, the vibration amplitude of bridge hanger with hexagonal shape is higher than the other bluff body.

Keywords: vortex induced vibration, hanger bridge, wind tunnel, galloping

Procedia PDF Downloads 248
388 Effects of Seed Culture and Attached Growth System on the Performance of Anammox Hybrid Reactor (AHR) Treating Nitrogenous Wastewater

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

The start-up of anammox (anaerobic ammonium oxidation) process in hybrid reactor delineated four distinct phases i.e. cell lysis, lag phase, activity elevation and stationary phase. Cell lysis phase was marked by death and decay of heterotrophic denitrifiers resulting in breakdown of organic nitrogen into ammonium. Lag phase showed initiation of anammox activity with turnover of heterotrophic denitrifiers, which is evident from appearance of NO3-N in the effluent. In activity elevation phase, anammox became the dominant reaction, which can be attributed to consequent reduction of NH4-N into N2 with increased NO3-N in the effluent. Proper selection of mixed seed culture at influent NO2-/NH4+ ratio (1:1) and hydraulic retention time (HRT) of 1 day led to early startup of anammox within 70 days. Pseudo steady state removal efficiencies of NH4+ and NO2- were found as 94.3% and 96.4% respectively, at nitrogen loading rate (NLR) of 0.35 kg N/m3d at an HRT of 1 day. Analysis of the data indicated that attached growth system contributes an additional 11% increase in the ammonium removal and results in an average of 29% reduction in sludge washout rate. Mass balance study of nitrogen indicated that 74.1% of total input nitrogen is converted into N2 gas followed by 11.2% being utilized in biomass development. Scanning electron microscope (SEM) observation of the granular sludge clearly showed the presence of cocci and rod shaped microorganisms intermingled on the external surface of the granules. The average size of anammox granules (1.2-1.5 mm) with an average settling velocity of 45.6 m/h indicated a high degree of granulation resulting into formation of well compacted granules in the anammox process.

Keywords: anammox, hybrid reactor, startup, granulation, nitrogen removal, mixed seed culture

Procedia PDF Downloads 163
387 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 65
386 Saliva Cortisol and Yawning as a Predictor of Neurological Disease

Authors: Simon B. N. Thompson

Abstract:

Cortisol is important to our immune system, regulates our stress response, and is a factor in maintaining brain temperature. Saliva cortisol is a practical and useful non-invasive measurement that signifies the presence of the important hormone. Electrical activity in the jaw muscles typically rises when the muscles are moved during yawning and the electrical level is found to be correlated with the cortisol level. In two studies using identical paradigms, a total of 108 healthy subjects were exposed to yawning-provoking stimuli so that their cortisol levels and electrical nerve impulses from their jaw muscles was recorded. Electrical activity is highly correlated with cortisol levels in healthy people. The Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details were collected and exclusion criteria applied for voluntary recruitment: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. Significant differences were found between the saliva cortisol samples for the yawners as compared with the non-yawners between rest and post-stimuli. Significant evidence supports the Thompson Cortisol Hypothesis that suggests rises in cortisol levels are associated with yawning. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.

Keywords: cortisol, diagnosis, neurological disease, thompson cortisol hypothesis, yawning

Procedia PDF Downloads 322
385 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review

Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri

Abstract:

Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.

Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle

Procedia PDF Downloads 102
384 Effect of Recycled Grey Water on Bacterial Concrete

Authors: T. Deepa, S. R. Inchara, S. V. Venkatesh, Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is made using locally available materials. However, Concrete has low tensile strength and may crack in the early days with exothermic hydration. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for Biomineralization or MICP (Microbially Induced Calcite Precipitation) Technique and to address the increased Construction water demand, Recycled Grey Water which is obtained from STP of PES University, opted in place of Potable water. In this work, M30 grade conventional concrete is designed using OPC 53 grade cement, Manufactured Sand, Natural coarse aggregates, and Potable water. Conventional Concrete (CC), Bacterial Concrete with Potable water (BS), and Recycled Grey Water concrete (RGW) are the three different concrete specimens casted. Experimental studies such as the strength test and the surface hardness test are conducted on Conventional and Bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for Self-healing - as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD).Noticeable Calcium salt deposition is observed on the surface of BS and RGW cracked specimen. Surface hardness and EDAX test gave promising result on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gain in Compression and Flexure. Results also indicate that Recycled Grey Water can be a substitute for Normal water in concrete.

Keywords: bacillus subtilis, bacterial concrete, recycled grey water, self-healing, surface hardness of concrete

Procedia PDF Downloads 111
383 Trunk and Gluteus-Medius Muscles’ Fatigability during Occupational Standing in Clinical Instructors with Low Back Pain

Authors: Eman A. Embaby, Amira A. A. Abdallah

Abstract:

Background: Occupational standing is associated with low back pain (LBP) development. Yet, trunk and gluteus-medius muscles’ fatigability has not been extensively studied during occupational standing. This study examined and correlated the rectus abdominus (RA), erector-spinae (ES), external oblique (EO), and gluteus-medius (GM) muscles’ fatigability on both sides while standing in a confined area for 30 min Methods: Median frequency EMG data were collected from 15 female clinical instructors with chronic LBP (group A) and 15 asymptomatic controls (group B) (mean age 29.53±2.4 vs. 29.07±2.4 years, weight 63.6±7 vs. 60±7.8 kg, and height 162.73±4 vs. 162.8±6 cm respectively) using a spectrum analysis program. Data were collected in the first and last 5min of the standing task. Results: Using Mixed three-way ANOVA, group A showed significantly (p<0.05) lower frequencies for the right and left ES, and right GM in the last 5 min and significantly higher frequencies for the left RA in the first and last 5min than group B. In addition, the left ES and right EO, ES and GM in group B showed significantly higher frequencies and the left ES in group A showed significantly lower frequencies in the last 5min compared with the first. Moreover, the right RA showed significantly higher frequencies than the left in the last 5min in group B. Finally, there were significant (p<0.05) correlations among the median frequencies of the tested four muscles on the same side and between both sides in both groups. Discussion/Conclusions: Clinical instructors with LBP are more liable to have higher trunk and gluteus-medius muscle fatigue than asymptomatic individuals. Thus, endurance training for these muscles should be included in the rehabilitation of such patients.

Keywords: EMG, fatigability, gluteus-medius, LBP, standing, trunk

Procedia PDF Downloads 222
382 A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions

Authors: Tsukasa Ogawa, Mitsuhiro Okayasu

Abstract:

To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition.

Keywords: electric power generation, piezoelectric ceramic, lead zirconate titanate ceramic, loading conditions

Procedia PDF Downloads 151
381 Workplace Risk Assessment in a Paint Factory

Authors: Rula D. Alshareef, Safa S. Alqathmi, Ghadah K. Alkhouldi, Reem O. Bagabas, Farheen B. Hasan

Abstract:

Safety engineering is among the most crucial considerations in any work environment. Providing mentally, physically, and environmentally safe work conditions must be the top priority of any successful organization. Company X is a local paint production company in Saudi Arabia; in a month, the factory experienced two significant accidents, which indicates that workers’ safety is overlooked. The aim of the research is to examine the risks, assess the root causes and recommend control measures that will eventually contribute to providing a safe workplace. The methodology used is sectioned into three phases, risk identification, assessment, and finally, mitigation. In the identification phase, the team used Rapid Entire Body Assessment (REBA) and National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) tools to holistically establish knowledge about the current risk posed to the factory. The physical hazards in the factory were assessed in two different operations, which are mixing and filling/packaging. For the risk assessment phase, the hazards were deeply analyzed through their severity and impact. Additionally, through risk mitigation, the Rapid Entire Body Assessment (REBA) score decreased from 11 to 7, and the National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) has been reduced from 5.27 to 1.85.

Keywords: ergonomics, safety, workplace risks, hazards, awkward posture, fatigue, work environment

Procedia PDF Downloads 64
380 Study on Comparison Between Acoustic Emission Behavior and Strain on Concrete Surface During Rebar Corrosion in Reinforced Concrete

Authors: Ejazulhaq Rahimi

Abstract:

The development of techniques evaluating deterioration on concrete structures is vital for structural health monitoring (SHM). One of the main reasons for reinforced concrete structure's deterioration is the corroding of embedded rebars. It is a natural process that begins when the rebar starts to rust. It occurs when the protective layer on the rebar is destroyed. The rebar in concrete is usually protected against corrosion by the high pH of the surrounding cement paste. However, there are chemicals that can destroy the protective layer, making it susceptible to corrosion. It is very destructive for the lifespan and durability of the concrete structure. Corrosion products which are 3 to 6 times voluminous than the rebar stress its surrounding concrete and lead to fracture as cracks even peeling off the cover concrete over the rebar. As is clear that concrete shows limit elastic behavior in its stress strain property, so corrosion product stresses can be detected as strains from the concrete surface. It means that surface strains have a relation with the situation and amount of corrosion products and related concrete fractures inside reinforced concrete. In this paper, a comparative study of surface strains due to corrosion products detected by strain gauges and acoustic emission (AE) testing under periodic accelerated corrosion in the salty environment with 3% NaCl is reported. From the results, three different stages of strains were clearly observed based on the type and rate of strains in each corrosion situation and related fracture types. AE parameters which mostly are related to fracture and their shapes, describe the same phases. It is confirmed that there is a great agreement to the result of each other and describes three phases as generation and expansion of corrosion products and initiation and propagation of corrosion-induced cracks, and surface cracks. In addition, the strain on the concrete surface was rapidly increased before the cracks arrived at the surface of the concrete.

Keywords: acoustic emission, monitoring, rebar corrosion, reinforced concrete, strain

Procedia PDF Downloads 161
379 Hepatological Alterations in Market Gardeners Occupationally Exposed to Pesticides in the Western Highlands of Cameroon

Authors: M. G. Tanga, P. B. Telefo, D. N. Tarla

Abstract:

Even though the WHO, the EPA and other regulatory bodies have recognized the effects of acute pesticide poisoning little data exists on health effects after long-term low-dose exposures especially in Africa and Cameroon. The aim of this study was to evaluate the impact of pesticides on the hepatic functions of market gardeners in the Western Region of Cameroon by studying some biochemical parameters. Sixty six male market gardeners in Foumbot, Massangam, and Bantoum were interviewed on their health status, habits and pesticide use in agriculture, including the spray frequency, application method, and pesticide dosage. Thirty men with no history of pesticide exposure were recruited as control group. Thereafter, their blood samples were collected for assessment of hepatic function biomarkers (ALT, AST, and albumin). The results showed that 56 pesticides containing 25 active ingredients were currently used by market gardeners enrolled in our study and most of their symptoms (headache, fatigue, skin rashes, eye irritation, and nausea) were related to the use of these chemicals. Compared to the control subjects market gardeners’ ALT levels (32.9 ± 7.19 UL-1 vs. 82.11 ± 35.40 UL-1; P < 0.001) and, AST levels (40.63 ± 6.52 UL-1 vs. 112.11 UL-1 ± 47.15 UL-1; P < 0.001) were significantly increased. These results suggest that liver function tests can be used as biomarkers to indicate toxicity before overt clinical signs occur. The market gardeners’ chronic exposure to pesticides due to poor application measures could lead to hepatic function impairment. Further research on larger scale is needed to confirm these findings and to establish a mechanism of toxicity.

Keywords: biomarkers, liver, pesticides, occupational exposure

Procedia PDF Downloads 295
378 Paleogene Syn-Rift Play Identification in Palembang Sub-Basin, South Sumatera, Indonesia

Authors: Perdana Rakhmana Putra, Hansen Wijaya, Sri Budiyani, Muhamad Natsir, Alexis badai Samudra

Abstract:

The Palembang Sub-Basin (PSB) located in southern part of South Sumatera basin (SSB) consist of half-graben complex trending N-S to NW-SE. These geometries are believe as an impact of strike-slip regime developed in Eocene-Oligocene. Generally, most of the wells in this area produced hydrocarbon from late stage of syn-rift sequences called Lower Talang Akar (LTAF) and post-rift sequences called Batu Raja Formation (BRF) and drilled to proved hydrocarbon on structural trap; three-way dip anticline, four-way dip anticline, dissected anticline, and stratigraphy trap; carbonate build-up and stratigraphic pinch out. Only a few wells reached the deeper syn-rift sequences called Lahat Formation (LAF) and Lemat Formation (LEF). The new interpretation of subsurface data was done by the tectonostratigraphy concept and focusing on syn-rift sequence. Base on seismic characteristic on basin centre, it divided into four sequences: pre-rift sequence, rift initiation, maximum rift and late rift. These sequences believed as a new exploration target on PSB mature basin. This paper will demonstrate the paleo depositional setting during Paleogene and exploration play concept of syn-rift sequence in PSB. The main play for this area consists of stratigraphic and structure play, where the stratigraphic play is Eocene-Oligocene sediment consist of LAF sandstone, LEF-Benakat formation, and LAF with pinch-out geometry. The pinch-out, lenses geometry and on-lap features can be seen on the seismic reflector and formed at the time of the syn-rift sequence. The structural play is dominated by a 3 Way Dip play related to reverse fault trap.

Keywords: syn-rift, tectono-stratigraphy, exploration play, basin center play, south sumatera basin

Procedia PDF Downloads 170
377 Intervention Guide for Holistic Needs and Coping Strategies of Cancer Patients

Authors: Arvin Baes

Abstract:

This study was conducted to assess the holistic needs of cancer patients in terms of physiological, psychological, social, and spiritual needs and to determine how they respond through coping. It was conducted from January-April 2018 from various hospitals in Laguna, with 20 respondents. It utilized a survey descriptive type of research, a checklist type of questionnaire, and purposive sampling in selecting the respondents. It was found out that in terms of physiological needs, fatigue is the most common symptoms they experienced. In terms of psychological, social, and spiritual needs, most of the patients experienced a significant concern. Meanwhile, in coping, religion dominates among the 14 strategies followed by Use of Emotional Support and Positive Reframing, and Substance Use obtained the lowest response. Most of the respondents were female, and its significant relationship in terms of Positive Reframing agrees significantly. In coping and civil status, Positive Reframing and Humor are significant among married respondents. In coping and stage of cancer, 'Positive Reframing' and 'Humor' are significant with the stage of cancer. In coping and treatment modalities, Active Coping, Use of Emotional Support, and Religion are significantly related to patients’ treatment modalities. There is also a significant relationship between Active Coping and Physiological Needs, Religion and Psychological Needs, and Self-blaming and Psychological, Social, and Spiritual Needs. Thus, it is concluded that holistic needs and coping are essential to each other to meet the wholeness of cancer patients. A formulated care intervention program would be beneficial among this group of patients.

Keywords: coping strategies, cancer, cancer patients, holistic needs

Procedia PDF Downloads 97
376 Prognostic Impact of Pre-transplant Ferritinemia: A Survival Analysis Among Allograft Patients

Authors: Mekni Sabrine, Nouira Mariem

Abstract:

Background and aim: Allogeneic hematopoietic stem cell transplantation is a curative treatment for several hematological diseases; however, it has a non-negligible morbidity and mortality depending on several prognostic factors, including pre-transplant hyperferritinemia. The aim of our study was to estimate the impact of hyperferritinemia on survivals and on the occurrence of post-transplant complications. Methods: It was a longitudinal study conducted over 8 years and including all patients who had a first allograft. The impact of pretransplant hyperferritinemia (ferritinemia ≥1500) on survivals was studied using the Kaplan Meier method and the COX model for uni- and multivariate analysis. The Khi-deux test and binary logistic regression were used to study the association between pretransplant ferritinemia and post-transplant complications. Results: One hundred forty patients were included with an average age of 26.6 years and a sex ratio (M/F)=1.4. Hyperferritinemia was found in 33% of patients. It had no significant impact on either overall survival (p=0.9) or event -free survival (p=0.6). In multivariate analysis, only the type of disease was independently associated with overall survival (p=0.04) and event-free survival (p=0.002). For post-allograft complications: The occurrence of early documented infections was independently associated with pretransplant hyperferritinemia (p=0.02) and the presence of acute graft versus host disease( GVHD) (p<10-3). The occurrence of acute GVHD was associated with early documented infection (p=0.002) and Cytomegalovirus reactivation (p<10-3). The occurrence of chronic GVHD was associated with the presence of Cytomegalovirus reactivation (p=0.006) and graft source (p=0.009). Conclusion: Our study showed the significant impact of pre-transplant hyperferritinemia on the occurrence of early infections but not on survivals. Early and more accurate assessment iron overload by other tests such as liver magnetic resonance imaging with initiation of chelating treatment could prevent the occurrence of such complications after transplantation.

Keywords: allogeneic, transplants, ferritin, survival

Procedia PDF Downloads 50
375 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt

Authors: Abbaas I. Kareem, H. Nikraz

Abstract:

The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.

Keywords: aggregate crashed value, double coating technique, hot mix asphalt, Marshall parameters, recycled concrete aggregates

Procedia PDF Downloads 260
374 Young Female’s Heart Was Bitten by Unknown Ghost (Isolated Cardiac Sarcoidosis): A Case Report

Authors: Heru Al Amin

Abstract:

Sarcoidosis is a granulomatous inflammatory disorder of unclear etiology that can affect multiple different organ systems. Isolated cardiac sarcoidosis is a very rare condition that causes lethal arrhythmia and heart failure. A definite diagnosis of cardiac sarcoidosis remains challenging. The use of multimodality imaging plays a pivotal role in the diagnosis of this entity. Case summary: In this report, we discuss a case of a 50-year-old woman who presented with recurrent palpitation, dizziness, vertigo and presyncope. Electrocardiogram revealed variable heart blocks, including first-degree AV block, second-degree AV block, high-degree AV block, complete AV block, trifascicular block and sometimes supraventricular arrhythmia. Twenty-four hours of Holter monitoring show atrial bigeminy, first-degree AV block and trifascicular block. Transthoracic echocardiography showed Thinning of basal anteroseptal and inferred septum with LV dilatation with reduction of Global Longitudinal Strain. A dual-chamber pacemaker was implanted. CT Coronary angiogram showed no coronary artery disease. Cardiac magnetic resonance revealed basal anteroseptal and inferior septum thinning with focal edema with LGE suggestive of sarcoidosis. Computed tomography of the chest showed no lymphadenopathy or pulmonary infiltration. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) of the whole body showed. We started steroids and followed up with the patient. Conclusion: This case serves to highlight the challenges in identifying and managing isolated CS in a young patient with recurrent syncope with variable heart block. Early, even late initiation of steroids can improve arrhythmia as well as left ventricular function.

Keywords: cardiac sarcoidosis, conduction abnormality, syncope, cardiac MRI

Procedia PDF Downloads 65
373 Laser Shock Peening of Additively Manufactured Nickel-Based Superalloys

Authors: Michael Munther, Keivan Davami

Abstract:

One significant roadblock for additively manufactured (AM) parts is the buildup of residual tensile stresses during the fabrication process. These residual stresses are formed due to the intense localized thermal gradients and high cooling rates that cause non-uniform material expansion/contraction and mismatched strain profiles during powder-bed fusion techniques, such as direct metal laser sintering (DMLS). The residual stresses adversely affect the fatigue life of the AM parts. Moreover, if the residual stresses become higher than the material’s yield strength, they will lead to acute geometric distortion. These are limiting the applications and acceptance of AM components for safety-critical applications. Herein, we discuss laser shock peening method as an advanced technique for the manipulation of the residual stresses in AM parts. An X-ray diffraction technique is used for the measurements of the residual stresses before and after the laser shock peening process. Also, the hardness of the structures is measured using a nanoindentation technique. Maps of nanohardness and modulus are obtained from the nanoindentation, and a correlation is made between the residual stresses and the mechanical properties. The results indicate that laser shock peening is able to induce compressive residual stresses in the structure that mitigate the tensile residual stresses and increase the hardness of AM IN718, a superalloy, almost 20%. No significant changes were observed in the modulus after laser shock peening. The results strongly suggest that laser shock peening can be used as an advanced post-processing technique to optimize the service lives of critical components for various applications.

Keywords: additive manufacturing, Inconel 718, laser shock peening, residual stresses

Procedia PDF Downloads 106
372 Utilization of Acupuncture in Palliative Care for Cancer Patients

Authors: Jui-Hung Hung, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

Modern medicine highly emphasizes the importance of palliative treatment. The inception of palliative and hospice care recently developed into the concept of caring for the patients’ and families’ physical, psychological and spiritual problems. There are several benefits related to palliative care such as reducing medical expenses, decreasing patients’ suffer, and supporting patient go through the finale of the life. Nowadays, in Taiwan, over 60-70% terminal cancer patients were covered in hospice care, and the coverage rate increased annually. Acupuncture is a well-known therapy used more than thousand years to relieve symptoms of cancer patient. Many reports showed that, even in the Western society, many reputable medical centers can provide Acupuncture therapy for patients. Accordingly, using Acupuncture for cancer patient care is a global trend. There are increased evidences indicate that Acupuncture can relieve the symptoms for cancer patients including pain, reduce the dosage of anesthetic, improve the cancer-related fatigue, relieve the chemotherapy-related nausea and vomiting, ease anxiety mood and even improving the quality of life. Furthermore, some trials show that Acupuncture may help relieve xerostomia, hot flash, sleep disorders, and some GI discomfort and so on. Acupuncture therapy has many advantages for clinical use with effective, low-cost, minimal side effect, suitable for cancer patients and even for elderly population. Especially in nowadays, there are more diversified challenges in modern medicine, all of them will make the higher medical budget. We suggest that Acupuncture will be one of methods for palliative care for cancer patients.

Keywords: Acupuncture, cancer, integrative medicine, palliative care

Procedia PDF Downloads 333
371 Effective Environmental Planning Management (EPM) as Panacea to Sustainable Urban Development

Authors: Jegede Kehinde Jacob, Ola Akeem Bayonle, Adewale Yemi Yekeen

Abstract:

The rapid rate of urban growth in most developing countries of the world in recent times is alarming. Mass movement of people from rural areas to the urban centres, the consequence of the uncontrolled rapid urbanisation resulting to many un-conforming environmental challenges such as inadequate infrastructure, land, water and air pollution, poor environmental sanitation, poor and inadequate housing, urban degradation, sprawl and slums, urban violence, crime, robbery and prostitution as well as many other social vices that make the cities unsustainable. The resultant effects of all these are abysmal failure in the management of cities on the part of the governing authorities and other relevant stakeholders as well as unconducive and unwholesome condition of living of the people. This paper attempts to examine holistically the issue of environmental planning management (EPM) process development and management concept with a view for dynamic and interactive approach for various stakeholders as partners in achieving sustainable cities of our dream. The areas of discussion including conceptual and contextual issues, sustainable cities concept, good urban governance including literature review. The paper goes further to examine opportunities and challenges of built environment generally, the nature and context of environmental problems in particular, the role and duties of environmental planning and management (EPM) process in sustainable urban development. The paper further reviewed briefly the various levels of institutionalisation of EPM process with a typical case study of sustainable Ibadan project (SIP). The paper concludes with a list of recommendations to ensure effective and lasting solutions to cities problems through initiation of EPM process achievable in a sustainable manner.

Keywords: built environment, environmental planning, sustainable cities, sustainable development, urbanization

Procedia PDF Downloads 235
370 Assessment of HIV/Hepatitis B Virus Co-Infection among Patients Living with HIV in Northern and Southern Region of Nigeria

Authors: Folajinmi Oluwasina, Greg Abiaziem, Moses Luke, Mobolaji Kolawole, Nancy Yibowei, Anne Taiwo

Abstract:

Background: Occurrence of HIV infection has an adverse effect on the natural causes of Hepatitis B Viral (HBV) infection, faster progression of hepatic fibrosis demonstrated in patients with co-infection. This study was carried out to determine the incidence of HBV infection among HIV-positive patients, and to retrospectively evaluate laboratory characteristics of patients with HIV/HBV co-infection. Methods: A retrospective analysis of patient files for all HIV-infected cases followed-up and treated at 52 health facilities. Among HIV-infected cases, those with HBsAg positivity and HIV/Hepatitis B co-infection were determined. Socio demographic, alcohol or substance use, ART, CD4, Viral Load levels and treatment durations were retrospectively evaluated. Results: Of the 125 HIV-infected patients evaluated retrospectively, 17 (13.6%) had HBsAg positivity. Of these 17 cases were 11(64.7%) male and 6 (35.3%) female, with a mean age of 48.7 years. No patients had a history of alcohol or substance use. The mean duration of follow up was 28 months. 9 (52.9%) patients had negative HBV DNA at presentation while 8(47%) had positive HBV DNA, with normal ALT levels in all subjects. Among the 9 cases with negative HBV DNA who had no indication for the treatment of chronic hepatitis B. In five cases, treatment was commenced since HBV DNA was elevated in conjunction with low CD4. One patient in whom treatment was not indicated based on HBV DNA and CD4 levels in conjunction with the absence of AIDS defining clinical picture was currently being followed-up without treatment. Of the patients receiving HAART therapy, the average CD4 count at presentation was 278 cells/mm3 vs. 466 cells/mm3 at the end of 12 months. In three subjects with positive HBV DNA, a decrease in HBV DNA was noted after initiation of treatment. In four patients with negative DNA who received treatment, the HBV DNA negative status was found to remain, while one patient who did not receive treatment had elevated HBV DNA and decreased CD4 levels. Conclusion: It was shown that this group of patients with HIV/HBV co-infection, HAART was found to be associated with a decrease in HBV DNA in HBV DNA positive cases, absence of transition to positivity among those with negative HBV DNA, and with increased CD4 in all subjects.

Keywords: Hepatitis B, DNA, anti retroviral therapy, co-infection

Procedia PDF Downloads 246
369 Hematuria Following Magnesium Sulfate Administration in a Pregnant Patient with Renal Tubular Acidosis

Authors: Jan Gayl Barcelon, N. Gorgonio

Abstract:

Renal tubular acidosis, a medical condition that involves the accumulation of acid in the body due to failure of the kidneys to maintain normal urine and blood pH, is rarely encountered in pregnancy. The effect of renal tubular acidosis in pregnancy is not fully established. It may worsen during pregnancy and cause maternal and fetal morbidity. A 30-year-old primigravida was diagnosed with renal tubular acidosis at age 7, but due to uncontrolled disease progression, she developed rickets at age 10. She was first seen in our institution at eight weeks gestation and maintained on bicarbonate and potassium supplementation. At 26 weeks gestation, she was diagnosed with polyhydramnios, causing on and off irregular uterine contractions. At 30 weeks gestation, despite oral Nifedipine, premature labor was uncontrolled; hence she was admitted for tocolysis. With elevated creatinine (123 umol/L) and a normal blood urea nitrogen level (6.70 mmol/L), she was referred to Nephrology Service, which cleared the patient prior to MgSO₄ drip. Dosing of 4g MgSO₄ over 20 minutes followed by a maintenance of 2g/hour x 24 hours for neuroprotection and tocolysis was ordered. Two hours after MgSO₄ drip initiation, hematuria developed with adequate urine output. The infusion was immediately stopped. The serum magnesium level was high normal at 6.7 mEq/L. After 4 hours of renal clearance, the repeat serum magnesium level was normal (2.7 mEq/L) and with clear urine output. The patient was then given Nifedipine 30mg/tab, 3x a day which controlled the uterine contractions. At 37 weeks gestation, the patient delivered via primary low transverse Cesarean Section to a live female with a birthweight of 2470gm, appropriate for gestational age. The use of MgSO₄ for the control of premature labor in patients with chronic renal disease secondary to renal tubular can cause hematuria.

Keywords: hematuria, magnesium sulfate, premature labor, renal tubular acidosis

Procedia PDF Downloads 113
368 Use of Non-woven Polyethylene Terephthalate Fabrics to Improve Certain Properties of Concrete

Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri

Abstract:

Plastic packages have been broadly used for a long time. Such widespread usage of plastic has resulted in an increased amount of plastic wastes and many environmental impacts. Plastic wastes are one of the most significant types of waste materials because of their non-degradation and low biodegradability. It is why many researchers tried to find a safe and environmentally friendly solution for plastic wastes. In this goal, in the civil engineering industry, many types of plastic wastes have been incorporated, as a partial substitution of aggregates or as additive materials (fibers) in concrete mixtures because of their lengthier lifetime and lower weight. This work aims to study the mechanical properties (compressive, split tensile and flexural strengths) of concrete with a water-cement ratio (w/c) of 0.45 and with the incorporation of non-woven PET plastic sheets. Five configurations -without PET (reference), 1-layer sheet, 2-side, 3-side, and full sample wrapping- were applied. The 7, 14 and 28-days samples’ compressive strengths, flexural strength and split tensile strength were measured. The outcomes of the study show that the compressive strength was improved for the wrapped samples, particularly for the cylindrical specimens. Also, split tensile and flexural behaviors of the wrapped samples improved significantly compared to the reference ones. Moreover, reference samples were damaged into many parts after mechanical testing, while wrapped specimens were taken by the applied configurations and were not divided into many small fragments. Therefore, non-woven fabrics appeared to improve some properties of the concrete.

Keywords: solid waste plastic, non-woven polyethylene terephthalate sheets, mechanical behaviors, crack pattern

Procedia PDF Downloads 115
367 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame

Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt

Abstract:

Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.

Keywords: dissimilar metal, EMI shielding, joint strength, soldering

Procedia PDF Downloads 145
366 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 181
365 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films

Procedia PDF Downloads 142
364 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures

Authors: Anny Zambrano, German Gonzalez, Yair Quintero

Abstract:

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.

Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness

Procedia PDF Downloads 319