Search results for: protein malnutrition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2425

Search results for: protein malnutrition

1555 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 52
1554 The Continuing Saga of Poverty Reduction and Food Security in the Philippines

Authors: Shienna Marie Esteban

Abstract:

The economic growth experience of the Philippines is one of the fastest in Asia. However, the said growth has not yet trickled down to every Filipino. This is evident to agricultural-dependent population. Moreover, the contribution of the agriculture sector to GDP has been dwindling while large number of labor force is still dependent on a relatively small share of GDP. As a result, poverty incidence worsened among rural poor causing hunger and malnutrition. Therefore, the existing agricultural policies in the Philippines are pushing to achieve greater food production and productivity to alleviate poverty and food insecurity. Through a review of related literature and collection and analysis of secondary data from DA, DBM, BAS - CountrySTAT, PSA, NSCB, PIDS, IRRI, UN-FAO, IFPRI, and World Bank among others, the study revealed that Philippines is still far from its goals of poverty reduction and food security. In addition, the agricultural sector is underperforming. The productivity growth of the sector comes out mediocre. The common observation is that weakness is attributed to the failures of policy and institutional environments of the agriculture sector. The policy environment failed to create a structure appropriate for the rapid growth of the sector due to institutional and governance weaknesses. A recommendation is to go through institutional and policy reforms through legislative or executive mandates should take form to improve the implementation and enforcement of existing policies.

Keywords: agriculture, food security, policy, poverty

Procedia PDF Downloads 293
1553 Histone Deacetylases Inhibitor - Valproic Acid Sensitizes Human Melanoma Cells for alkylating agent and PARP inhibitor

Authors: Małgorzata Drzewiecka, Tomasz Śliwiński, Maciej Radek

Abstract:

The inhibition of histone deacetyles (HDACs) holds promise as a potential anti-cancer therapy because histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, histone deacetylase inhibitors (HDACi) such as class I HDAC inhibitor - valproic acid (VPA) have been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that, using of VPA in combination with talazoparib (BMN-637 – PARP1 inhibitor – PARPi) and/or Dacarabazine (DTIC - alkylating agent) resulted in increased DNA double strand break (DSB) and reduced survival (while not affecting primary melanocytes )and proliferation of melanoma cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-637. In addition, inhibition of HDAC caused sensitization of melanoma cells to dacarbazine and BMN-637 in melanoma xenografts in vivo. At the mRNA and protein level histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study provides that combining HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is known for being one of the most aggressive malignant tumors. The findings presented here point to a scenario in which HDAC via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.

Keywords: melanoma, hdac, parp inhibitor, valproic acid

Procedia PDF Downloads 55
1552 Improving the Utilization of Telfairia occidentalis Leaf Meal with Cellulase-Glucanase-Xylanase Combination and Selected Probiotic in Broiler Diets

Authors: Ayodeji Fasuyi

Abstract:

Telfairia occidentalis is a leafy vegetable commonly grown in the tropics for nutritional benefits. The use of enzymes and probiotics is becoming prominent due to the ban on antibiotics as growth promoters in many parts of the world. It is conceived that with enzymes and probiotics additives, fibrous leafy vegetables can be incorporated into poultry feeds as protein source. However, certain antinutrients were also found in the leaves of Telfairia occidentalis. Four broiler starter and finisher diets were formulated for the two phases of the broiler experiments. A mixture of fiber degrading enzymes, Roxazyme G2 (combination of cellulase, glucanase and xylanase) and probiotics (Turbotox), a growth promoter, were used in broiler diets at 1:1. The Roxazyme G2/Turbotox mixtures were used in diets containing four varying levels of Telfairia occidentalis leaf meal (TOLM) at 0, 10, 20 and 30%. Diets 1 were standard broiler diets without TOLM and Roxazyme G2 and Turbotox additives. Diets 2, 3 and 4 had enzymes and probiotics additives. Certain mineral elements such as Ca, P, K, Na, Mg, Fe, Mn, Cu and Zn were found in notable quantities viz. 2.6 g/100 g, 1.2 g/100 g, 6.2 g/100 g, 5.1 g/100 g, 4.7 g/100 g, 5875 ppm, 182 ppm, 136 ppm and 1036 ppm, respectively. Phytin, phytin-P, oxalate, tannin and HCN were also found in ample quantities viz. 189.2 mg/100 g, 120.1 mg/100 g, 80.7 mg/100 g, 43.1 mg/100 g and 61.2 mg/100 g, respectively. The average weight gain was highest at 46.3 g/bird/day for birds on 10% TOLM diet but similar (P > 0.05) to 46.2 g/bird/day for birds on 20% TOLM. The feed conversion ratio (FCR) of 2.27 was the lowest and optimum for birds on 10% TOLM although similar (P > 0.05) to 2.29 obtained for birds on 20% TOLM. FCR of 2.61 was the highest at 2.61 for birds on 30% TOLM diet. The lowest FCR of 2.27 was obtained for birds on 10% TOLM diet although similar (P > 0.05) to 2.29 for birds on 20% TOLM diet. Most carcass characteristics and organ weights were similar (P > 0.05) for the experimental birds on the different diets except for kidney, gizzard and intestinal length. The values for kidney, gizzard and intestinal length were significantly higher (P < 0.05) for birds on the TOLM diets. The nitrogen retention had the highest value of 72.37 ± 0.10% for birds on 10% TOLM diet although similar (P > 0.05) to 71.54 ± 1.89 obtained for birds on the control diet without TOLM and enzymes/probiotics mixture. There was evidence of a better utilization of TOLM as a plant protein source. The carcass characteristics and organ weights all showed evidence of uniform tissue buildup and muscles development particularly in diets containing 10% of TOLM level. There was also better nitrogen utilization in birds on the 10% TOLM diet. Considering the cheap cost of TOLM, it is envisaged that its introduction into poultry feeds as a plant protein source will ultimately reduce the cost of poultry feeds.

Keywords: Telfairia occidentalis leaf meal, enzymes, probiotics, additives

Procedia PDF Downloads 110
1551 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 74
1550 Biochemical Characteristics and Microstructure of Ice Cream Prepared from Fresh Cream

Authors: S. Baississe, S. Godbane, A. Lekbir

Abstract:

The objective of our work is to develop an ice cream from a fermented cream, skim milk and other ingredients and follow the evolution of its physicochemical properties, biochemical and microstructure of the products obtained. Our cream is aerated with the manufacturing steps start with a homogenizing follow different ingredients by heating to 40°C emulsion, the preparation is then subjected to a heat treatment at 65°C for 30 min, before being stored in the cold at 4°C for a few hours. This conservation promotes crystallization of the material during the globular stage of maturation of the cream. The emulsifying agent moves gradually absorbed on the surface of fat globules homogeneous, which results in reduced protein stability. During the expansion, the collusion of destabilizing fat globules in the aqueous phase favours their coalescence. During the expansion, the collusion of destabilized fat globules in the aqueous phase favours their coalescence. The stabilizing agent increases the viscosity of the aqueous phase and the drainage limit interaction with the proteins of the aqueous phase and the protein absorbed on fat globules. The cutting improved organoleptic property of our cream is made by the use of three dyes and aromas. The products obtained undergo physicochemical analyses (pH, conductivity and acidity), biochemical (moisture, % dry matter and fat in %), and finally in the microscopic observation of the microstructure and the results obtained by analysis of the image processing software. The results show a remarkable evolution of physicochemical properties (pH, conductivity and acidity), biochemical (moisture, fat and non-fat) and microstructure of the products developed in relation to the raw material (skim milk) and the intermediate product (fermented cream).

Keywords: ice cream, sour cream, physicochemical, biochemical, microstructure

Procedia PDF Downloads 183
1549 Bioaccessibility of Vitamin A Nanoemulsion: Influence of Carrier Oil and Surfactant Concentration

Authors: R. N. Astya, E. S. Nugraha, S. P. Nurheni, Hoerudin

Abstract:

Vitamin A deficiency remains to be among the major malnutrition problems in Indonesia. Vitamin A is a fat-soluble vitamin which renders it difficult to be fortified in water-based foods and beverages. Furthermore, its low solubility and stability in aqueous system may limit its bioaccessibility in the gastrointestinal tract. Nanoemulsification of vitamin A may solve these problems. The objective of this study was to investigate bioaccessibility of vitamin A (retinyl palmitate/RP) nanoemulsion as influenced by two types of carrier oil (Virgin Coconut Oil/VCO and corn oil/CO) and surfactant concentrations (polysorbate 20/Tween 20 3% and 6%). Oil in water (o/w) nanoemulsions of vitamin A was produced through a combination of high shear-high pressure homogenization technique. The results showed that RP-VCO nanoemulsions were 121.62 nm (3%) and 115.40 (6%) nm in particle size, whereas RP-CO nanoemulsions were 154.72 nm (3%) and 134.00 nm (6%) in particle size. As for VCO nanoemulsions, the bioaccessibility of vitamin A was shown to be 89.84% and 55.32%, respectively. On the other hand, CO nanoemulsions produced vitamin A bioaccessibility of 53.66% and 44.85%, respectively. In general, VCO nanoemulsions showed better bioaccessibility of vitamin A than CO nanoemulsions. In this study, RP-VCO nanoemulsion with 3% Tween 20 had the highest ζ-potential value (-26.5 mV) and produced the highest bioaccessibility of vitamin A (89.84%, P<0.05). Additionally, the vitamin A nanoemulsion was stable even for after a week of freeze and thaw treatment. Following the freeze and thaw treatment, the vitamin A nanoemulsion showed good stability without aggregation and separation. These results would be useful for designing effective vitamin A delivery systems for food and beverage applications.

Keywords: bioaccessibility, carrier oil, surfactant, vitamin A nanoemulsion

Procedia PDF Downloads 244
1548 Growth and Yield Assessment of Two Types of Sorghum-Sudangrass Hybrids as Affected by Deficit Irrigation

Authors: A. Abbas Khalaf, L. Issazadeh, Z. Arif Abdullah, J. Hassanpour

Abstract:

In order to evaluate the growth and yield properties of two Sorghum-Sudangrass hybrids under different irrigation levels, an investigation was done in the experiment site of Collage of Agriculture, University of Duhok, Kurdistan region of Iraq (36°5´38 N, 42°52´02 E) in the years 2015-16. The experiment was conducted under Randomized Complete Block Design (RCBD) with three replications, which main factor was irrigation treatments (I100, I75 and I50) according to evaporation pan class A and type of Sorghum-Sudangrass hybrids (KH12SU9001, G1) and (KH12SU9002, G2) were factors of subplots. The parameters studied were: plant height (cm), number of green leaves per plant; leaf area (m2/m2), stem thickness (mm), percent of protein, fresh and dry biomass (ton.ha-1) and also crop water productivity. The results of variance analysis showed that KH12SU9001 variety had more amount of leaf area, percent of protein, fresh and dry biomass yield in comparison to KH12SU9002 variety. By comparing effects of irrigation levels on vegetative growth and yield properties, results showed that amount of plant height, fresh and dry biomass weight was decreased by decreasing irrigation level from full irrigation regime to 5 o% of irrigation level. Also, results of crop water productivity (CWP) indicated that improvement in quantity of irrigation would impact fresh and dry biomass yield significantly. Full irrigation regime was recorded the highest level of CWP (1.28-1.29 kg.m-3).

Keywords: deficit irrigation, growth, sorghum-sudangrass hybrid, yield

Procedia PDF Downloads 108
1547 Determination of Proximate, Mineral, and Heavy Metal Contents of Fish from the Lower River Niger at Agenebode, Edo State, Nigeria

Authors: Agbugui M. O., Inobeme A.

Abstract:

Fish constitutes a vital component of human diets due to their rich nutritional compositions. They serve as a remarkable source of proteins, vitamins, and fatty acids, which are indispensable for the effective growth and development of humans. The need to explore the nutritional compositions of various species of fish in different water bodies becomes paramount. Presently, consumer concern is not just on food's nutritional value but also on the safety level. Environmental contamination by heavy metals has become an issue of pressing concern in recent times. Heavy metals, due to their ubiquitous nature, are found in various water bodies as they are released from various anthropogenic activities. This work investigated the proximate compositions, mineral contents, and heavy metals concentrations of four different species of fish (P. annectens, L. niloticus, G. niloticus, and H. niloticus) collected from the lower Niger at Agenebode using standard procedures. The highest protein contents were in Gymnarchus niloticus (37.32%), while the least was in Heterotis niloticus (20.41%). Protopterus annectens had the highest carbohydrate content (34.55%), while Heterotis niloticus had the least (12.24%). The highest lipid content (14.41%) was in Gymnarchus niloticus. The highest concentration of potassium was 21.00 ppm. The concentrations of heavy metals in ppm ranged from 0.01 – 1.4 (Cd), 0.07 – 2.89 (Pb), 0.02 – 16.4 (Hg), 0.88 – 5.1 (Cu) and 1.2 – 8.23 (Zn). The concentrations of Hg, Cd and Pb in some of the samples investigated were higher than the permissible limits based on international standards. There is a pressing need for further study focusing on various species of animals and plants in the area due to the alarming contents of these metals; remedial measures could also be ensured for safety.

Keywords: trace metals, nutritional value, human health, crude protein, lipid content

Procedia PDF Downloads 69
1546 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 307
1545 Biochemical Effects of Low Dose Dimethyl Sulfoxide on HepG2 Liver Cancer Cell Line

Authors: Esra Sengul, R. G. Aktas, M. E. Sitar, H. Isan

Abstract:

Hepatocellular carcinoma (HCC) is a hepatocellular tumor commonly found on the surface of the chronic liver. HepG2 is the most commonly used cell type in HCC studies. The main proteins remaining in the blood serum after separation of plasma fibrinogen are albumin and globulin. The fact that the albumin showed hepatocellular damage and reflect the synthesis capacity of the liver was the main reason for our use. Alpha-Fetoprotein (AFP) is an albumin-like structural embryonic globulin found in the embryonic cortex, cord blood, and fetal liver. It has been used as a marker in the follow-up of tumor growth in various malign tumors and in the efficacy of surgical-medical treatments, so it is a good protein to look at with albumins. We have seen the morphological changes of dimethyl sulfoxide (DMSO) on HepG2 and decided to investigate its biochemical effects. We examined the effects of DMSO, which is used in cell cultures, on albumin, AFP and total protein at low doses. Material Method: Cell Culture: Medium was prepared in cell culture using Dulbecco's Modified Eagle Media (DMEM), Fetal Bovine Serum Dulbecco's (FBS), Phosphate Buffered Saline and trypsin maintained at -20 ° C. Fixation of Cells: HepG2 cells, which have been appropriately developed at the end of the first week, were fixed with acetone. We stored our cells in PBS at + 4 ° C until the fixation was completed. Area Calculation: The areas of the cells are calculated in the ImageJ (IJ). Microscope examination: The examination was performed with a Zeiss Inverted Microscope. Daytime photographs were taken at 40x, 100x 200x and 400x. Biochemical Tests: Protein (Total): Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Albumin: Serum sample was analyzed by a spectrophotometric method in autoanalyzer. Alpha-fetoprotein: Serum sample was analyzed by ECLIA method. Results: When liver cancer cells were cultured in medium with 1% DMSO for 4 weeks, a significant difference was observed when compared with the control group. As a result, we have seen that DMSO can be used as an important agent in the treatment of liver cancer. Cell areas were reduced in the DMSO group compared to the control group and the confluency ratio increased. The ability to form spheroids was also significantly higher in the DMSO group. Alpha-fetoprotein was lower than the values of an ordinary liver cancer patient and the total protein amount increased to the reference range of the normal individual. Because the albumin sample was below the specimen value, the numerical results could not be obtained on biochemical examinations. We interpret all these results as making DMSO a caretaking aid. Since each one was not enough alone we used 3 parameters and the results were positive when we refer to the values of a normal healthy individual in parallel. We hope to extend the study further by adding new parameters and genetic analyzes, by increasing the number of samples, and by using DMSO as an adjunct agent in the treatment of liver cancer.

Keywords: hepatocellular carcinoma, HepG2, dimethyl sulfoxide, cell culture, ELISA

Procedia PDF Downloads 118
1544 Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver

Authors: Hafiza Javaria Ashraf, Xinghong Wang, Zhanghong Shi, Youming Hou

Abstract:

Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity.

Keywords: biological invasion, c-type lectin, insect immunity, Rhynchophorus ferrugineus Oliver

Procedia PDF Downloads 127
1543 The Study of Spray Drying Process for Skimmed Coconut Milk

Authors: Jaruwan Duangchuen, Siwalak Pathaveerat

Abstract:

Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).

Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin

Procedia PDF Downloads 305
1542 Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA are Reduced in Patients with Type 2 Diabetes Evidence That Insulin Resistance is Associated with a Disturbed Antioxidant Defense Mechanism

Authors: Ghibeche Abderrahmane

Abstract:

To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n=7) and age-matched (n=5) and young (n=9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50,P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle.

Keywords: euglycemic-hyperinsulinemic, HSP72, mRNA, diabete

Procedia PDF Downloads 414
1541 Comparison of Serum Levels of Secreted Frizzler Protein 5 in Patients with Type 2 Diabetes Mellitus Treated and Not Treated with Metformin

Authors: Irma Gabriela Lopez-Moreno, Elva Perez-Luque, Herlinda Aguilar-Zavala

Abstract:

Introduction: Type 2 Diabetes Mellitus (T2DM) is characterized by combination of insulin resistance and deterioration of insulin secretion. Sfrp5 is a protein that antagonizes Wnt5a proteins by preventing it from reaching its receptor and activating the Wnt/β-catenin signaling pathway, this pathway is one of the most important regulators of adipogenesis. Although metformin decreases glucose levels its mechanisms of action are not fully known but it has been implicated in the inhibition of the Wnt/β-catenin signaling pathway. Objective: The objective was evaluating the effects of metformin on serum levels of Sfrp5 in patients with T2DM treated and not treated with metformin. Methods: Two groups of patients were selected: one group of T2DM patients treated with metformin (n = 35) and another group of subjects with recent diagnosis of T2DM untreated (n = 35) with a mean age of 48 ± 9 years. In these subjects anthropometric measures were taken as weight, height, waist and hip circumference, were calculated the percentage of body fat, visceral fat and muscle mass. In addition, were measured glucose levels, lipid profile, adiponectin and Sfrp5. Results: Sfrp5 were higher in metformin-treated patients compared to the untreated group (19.9 vs 13.6 ng/mL p < 0.001), a negative correlation was found between Sfrp5 levels and total cholesterol levels (r= -0.25, p = 0.03) and percentage of visceral fat (r = -0.26, p = 0.03) and a positive correlation with HDL cholesterol levels (r = 0.31, p = 0.01) and adiponectin (r=0.65, p = < 0.001). Conclusions: The findings show that metformin consumption increased levels of Sfrp5, which may lead to a decrease in the activation of the WNT/β-catenin pathway impacting on adipogenesis.

Keywords: adiponectin, diabetes, metformin, Sfrp5

Procedia PDF Downloads 157
1540 The Value of Serum Procalcitonin in Patients with Acute Musculoskeletal Infections

Authors: Mustafa Al-Yaseen, Haider Mohammed Mahdi, Haider Ali Al–Zahid, Nazar S. Haddad

Abstract:

Background: Early diagnosis of musculoskeletal infections is of vital importance to avoid devastating complications. There is no single laboratory marker which is sensitive and specific in diagnosing these infections accurately. White blood cell count, erythrocyte sedimentation rate, and C-reactive protein are not specific as they can also be elevated in conditions other than bacterial infections. Materials Culture and sensitivity is not a true gold standard due to its varied positivity rates. Serum Procalcitonin is one of the new laboratory markers for pyogenic infections. The objective of this study is to assess the value of PCT in the diagnosis of soft tissue, bone, and joint infections. Patients and Methods: Patients of all age groups (seventy-four patients) with a diagnosis of musculoskeletal infection are prospectively included in this study. All patients were subjected to White blood cell count, erythrocyte sedimentation rate, C-reactive protein, and serum Procalcitonin measurements. A healthy non infected outpatient group (twenty-two patients) taken as a control group and underwent the same evaluation steps as the study group. Results: The study group showed mean Procalcitonin levels of 1.3 ng/ml. Procalcitonin, at 0.5 ng/ml, was (42.6%) sensitive and (95.5%) specific in diagnosing of musculoskeletal infections with (positive predictive value of 87.5% and negative predictive value of 48.3%) and (positive likelihood ratio of 9.3 and negative likelihood ratio of 0.6). Conclusion: Serum Procalcitonin, at a cut – off of 0.5 ng/ml, is a specific but not sensitive marker in the diagnosis of musculoskeletal infections, and it can be used effectively to rule in the diagnosis of infection but not to rule out it.

Keywords: procalcitonin, infection, labratory markers, musculoskeletal

Procedia PDF Downloads 141
1539 Identification of Superior Cowpea Mutant Genotypes, Their Adaptability, and Stability Under South African Conditions

Authors: M. Ntswane, N. Mbuma, M. Labuschagne, A. Mofokeng, M. Rantso

Abstract:

Cowpea is an essential legume for the nutrition and health of millions of people in different regions. The production and productivity of the crop are very limited in South Africa due to a lack of adapted and stable genotypes. The improvement of nutritional quality is made possible by manipulating the genes of diverse cowpea genotypes available around the world. Assessing the adaptability and stability of the cowpea mutant genotypes for yield and nutritional quality requires examining them in different environments. The objective of the study was to determine the adaptability and stability of cowpea mutant genotypes under South African conditions and to identify the superior genotypes that combine grain yield components, antioxidants, and nutritional quality. Thirty-one cowpea genotypes were obtained from the Agricultural Research Council grain crops (ARC-GC) and were planted in Glen, Mafikeng, Polokwane, Potchefstroom, Taung, and Vaalharts during the 2021/22 summer cropping season. Significant genotype by location interactions indicated the possibility of genetic improvement of these traits. The genotype plus genotype by environment indicated broad adaptability and stability of mutant genotypes. The principal component analysis identified the association of the genotypes with the traits. Phenotypic correlation analysis showed that Zn and protein content were significant and positively correlated and suggested the possibility of indirect selection of these traits. Results from this study could be used to help plant breeders in making informed decisions and developing nutritionally improved cowpea genotypes with the aim of addressing the challenges of poor nutritional quality.

Keywords: cowpea seeds, adaptability, stability, mineral elements, protein content

Procedia PDF Downloads 82
1538 Cannabinoids and Terpenes as Potential Modulators of Efflux Transporters for Overcoming Drug Resistance in Epilepsy

Authors: Tomáš Nejedlý, Dominika Mrázková, Jitka Viktorová

Abstract:

The blood-brain barrier (BBB) serves as a protective shield, preventing the entry of harmful substances into the central nervous system. On the other hand, it also restricts the transport of neuroactive drugs, such as antiepileptics, which mitigate epileptic seizures. Drug-resistant epilepsy is often associated with the overexpression of efflux transporters, including P-glycoprotein (P-gp) or multidrug resistance protein 1 (MRP1), on the BBB. The aim of this work is to find P-gp and MRP1 inhibitors derived from phytocannabinoids and terpenes. The work evaluates whether these compounds interact directly with P-gp or MRP1 by rhodamine 123 or fluorescein efflux assay. The effect of phytocannabinoids on the gene expression of these transporters is also studied using qPCR and Western blot. These transporters are found in BBB cells; however, we decided to use the human ovarian cancer cell line (A2780ADR) due to its overproduction of P-gp and malignant glioma cell line (U87) due to its overproduction of MRP1. The results showed that while terpenes suppressed the activity of efflux transporters, phytocannabinoids tended to decrease their expression. Terpenes demonstrated an average inhibition of 65%, surpassing phytocannabinoids, which exhibited an average inhibition of approximately 30%. Particularly noteworthy was the modulating effect of (-)-α-bisabolol with the highest activity among the compounds tested. Based on these findings, phytocannabinoids and terpenes emerge as promising natural candidates for addressing drug resistance linked to efflux transporters. Acknowledgment: The project was funded by the Grant No 22-20860S of The Czech Science Foundation.

Keywords: drug-resistant epilepsy, efflux transporters, multidrug resistance protein 1, P-glycoprotein, phytocannabinoids, terpens

Procedia PDF Downloads 34
1537 Nutritional Composition of Provitamin A-Biofortified Amahewu, a Maize Based Beverage with Potential to Alleviate Vitamin A Deficiency

Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela

Abstract:

Amahewu, a lactic acid fermented non-alcoholic maize based beverage is widely consumed in Southern Africa. It is traditionally made with white maize which is deficient in vitamin A. Provitamin A-biofortified maize has been developed for use as a complementary strategy to alleviate vitamin A deficiency. In this study the nutritional composition and protein digestibility of amahewu produced using provitamin A-biofortified maize was determined. Provitamin A-biofortified amahewu was processed by fermenting cooked maize porridge using malted provitamin A-biofortified maize, wheat bran and lactobacillus mixed starter culture with either malted maize or wheat bran. The total provitamin A content in amahewu products ranged from 3.3-3.8 μg/g (DW). The % retention of total provitamin A ranged from 79 %- 90 % μg/g (DW). The lowest % retention was observed in products fermented with the addition of starter culture. The gross energy of amahewu products were approx. 20 MJ/kg. There was a slight increase in the lysine content of amahewu after fermentation. Protein digestibility of amahewu (approx.91%) was slightly higher compared to unprocessed provitamin A maize (86%). However, a general decrease was observed in the minerals when compared to the unprocessed provitamin A maize. Amahewu processed using starter cultures has higher iron content than those processed with the addition of malt. These result suggests that provitamin A-biofortified amahewu has the potential to make a significant contribution towards alleviating Vitamin A Deficiency in rural communities who are also the most vulnerable to VAD.

Keywords: vitamin A deficiency, provitamin A maize, biofortification, fermentation

Procedia PDF Downloads 385
1536 Effect of Leaf Essential Oil of Citrus sinensis at Different Harvest Time on Some Liver and Kidney Function Indices of Diabetic Rats

Authors: O. Soji-Omoniwa, N. O. Muhammad, L. A. Usman, B. P. Omoniwa

Abstract:

This study was conducted to investigate the effect of the leaf essential oil of C. sinensis harvested at 7.00a.m and 4.00p.m on some Liver and Kidney function indices of diabetic rats as well as investigate the effect of time of harvest on the observed effect. Experimental animals were divided into 4 groups (A, B, C and D). Diabetes mellitus was induced in all animals, except the normal control group (Group A), by injecting 150mg/kg body weight of alloxan monohydrate intraperitoneally. Group A received distilled water while group B (diabetic control group) was not treated. Group C and D were treated with leaf essential oil of C. sinensis harvested at 7.00 a.m and 4.00 p.m respectively at a dose of 110 mg/kg body weight every other day for 15 days. Alkaline phosphatase (ALP), Alanine Transaminase (ALT) and Aspartate Transaminase (AST) activity was evaluated in the serum, Liver and Kidney of studied animals. Total and Direct Bilirubin level, Total Protein and Globulin, Creatinine and Urea level were also evaluated. Result showed that creatinine and urea, serum ALP, AST and ALT levels was significantly reduced (p < 0.05), while the levels of total Protein and Globulin increased significantly (p < 0.05) for the treated animals compared to the diabetic control group. In conclusion, the leaf essential oil of Citrus sinensis ameliorated the impaired renal and liver function; however, the time of harvest of the leaf does not significantly affect its ameliorative effect.

Keywords: C. sinensis, function indices, harvest time, leaf essential oil.

Procedia PDF Downloads 332
1535 Genetic Polymorphism and Insilico Study Epitope Block 2 MSP1 Gene of Plasmodium falciparum Isolate Endemic Jayapura

Authors: Arsyam Mawardi, Sony Suhandono, Azzania Fibriani, Fifi Fitriyah Masduki

Abstract:

Malaria is an infectious disease caused by Plasmodium sp. This disease has a high prevalence in Indonesia, especially in Jayapura. The vaccine that is currently being developed has not been effective in overcoming malaria. This is due to the high polymorphism in the Plasmodium genome especially in areas that encode Plasmodium surface proteins. Merozoite Surface Protein 1 (MSP1) Plasmodium falciparum is a surface protein that plays a role in the invasion process in human erythrocytes through the interaction of Glycophorin A protein receptors and sialic acid in erythrocytes with Reticulocyte Binding Proteins (RBP) and Duffy Adhesion Protein (DAP) ligands in merozoites. MSP1 can be targeted to be a specific antigen and predicted epitope area which will be used for the development of diagnostic and malaria vaccine therapy. MSP1 consists of 17 blocks, each block is dimorphic, and has been marked as the K1 and MAD20 alleles. Exceptions only in block 2, because it has 3 alleles, among others K1, MAD20 and RO33. These polymorphisms cause allelic variations and implicate the severity of patients infected P. falciparum. In addition, polymorphism of MSP1 in Jayapura isolates has not been reported so it is interesting to be further identified and projected as a specific antigen. Therefore, in this study, we analyzed the allele polymorphism as well as detected the MSP1 epitope antigen candidate on block 2 P. falciparum. Clinical samples of selected malaria patients followed the consecutive sampling method, examining malaria parasites with blood preparations on glass objects observed through a microscope. Plasmodium DNA was isolated from the blood of malarial positive patients. The block 2 MSP1 gene was amplified using PCR method and cloned using the pGEM-T easy vector then transformed to TOP'10 E.coli. Positive colonies selection was performed with blue-white screening. The existence of target DNA was confirmed by PCR colonies and DNA sequencing methods. Furthermore, DNA sequence analysis was done through alignment and formation of a phylogenetic tree using MEGA 6 software and insilico analysis using IEDB software to predict epitope candidate for P. falciparum. A total of 15 patient samples have been isolated from Plasmodium DNA. PCR amplification results show the target gene size about ± 1049 bp. The results of MSP1 nucleotide alignment analysis reveal that block 2 MSP1 genes derived from the sample of malarial patients were distributed in four different allele family groups, K1 (7), MAD20 (1), RO33 (0) and MSP1_Jayapura (10) alleles. The most commonly appears of the detected allele is MSP1_Jayapura single allele. There was no significant association between sex variables, age, the density of parasitemia and alel variation (Mann Whitney, U > 0.05), while symptomatic signs have a significant difference as a trigger of detectable allele variation (U < 0.05). In this research, insilico study shows that there is a new epitope antigen candidate from the MSP1_Jayapura allele and it is predicted to be recognized by B cells with 17 amino acid lengths in the amino acid sequence 187 to 203.

Keywords: epitope candidate, insilico analysis, MSP1 P. falciparum, polymorphism

Procedia PDF Downloads 158
1534 Different Feedings on Chemical Characteristics of Atlantic Salmon Fillet

Authors: Mahsa Jalili, Trude Johansen, Signe Dille Lovmo, Turid Rustad, Rolf Erik Olsen, Atle M. Bones

Abstract:

The quality of fish muscle is a key factor in fish industry, and dietary ingredients can influence fish quality. The aim of this study was to examine the impact of krill meal, soybean meal, Bactocell® and butyrate fortified feeds and control diet on characteristics of salmon fillet. Thirty Atlantic salmon (6 per each group) were farmed for 12 weeks. All the fish were killed and frozen immediately. The white muscle from top posterior part of dorsal fin was dissected to analyze fat content, carotenoid content, content of water-soluble and salt-soluble proteins, cathepsin B and cathepsin B-L activities. ANOVA test was used to analyze mean and standard error of mean values at 0.05 significance level. There were significant difference in cathepsin B activity, water-soluble proteins and salt-soluble proteins (p-value= 0.005, 0.009 and 0.002). The mean values of other factors were not significantly different among the groups. Cathepsin B activity was higher in soymeal group. Water-soluble proteins were reported higher in soy meal and krill groups and salt-soluble proteins were significantly higher in soy meal and butyrate rich diets. Although soy meal has proven effect on enteritis, it results in higher percentage of protein in fillets. On the other hand, this feeding may have role in textural deterioration of fillets owing to higher values of endogenous cathepsin B in soymeal group.

Keywords: aquaculture, food quality, Krill protein extract, prebiotics, probiotics, Salmo salar, soy

Procedia PDF Downloads 183
1533 Short-Term versus Long-Term Effect of Waterpipe Smoking Exposure on Cardiovascular Biomarkers in Mice

Authors: Abeer Rababa'h, Ragad Bsoul, Mohammad Alkhatatbeh, Karem Alzoubi

Abstract:

Introduction: Tobacco use is one of the main risk factors to cardiovascular diseases (CVD) and atherosclerosis in particular. WPS contains several toxic materials such as: nicotine, carcinogens, tar, carbon monoxide and heavy metals. Thus, WPS is considered to be as one of the toxic environmental factors that should be investigated intensively. Therefore, the aim of this study is to investigate the effect of WPS on several cardiovascular biological markers that may cause atherosclerosis in mice. The study also conducted to study the temporal effects of WPS on the atherosclerotic biomarkers upon short (2 weeks) and long-term (8 weeks) exposures. Methods: mice were exposed to WPS and heart homogenates were analyzed to elucidate the effects of WPS on matrix metalloproteinase (MMPs), endothelin-1 (ET-1) and, myeloperoxidase (MPO). Following protein estimation, enzyme-linked immunosorbent assays were done to measure the levels of MMPs (isoforms 1, 3, and 9), MPO, and ET-1 protein expressions. Results: our data showed that acute exposure to WPS significantly enhances the levels of MMP-3, MMP- 9, and MPO expressions (p < 0.05) compared to their corresponding control. However, the body was capable to normalize the level of expressions for such parameters following continuous exposure for 8 weeks (p > 0.05). Additionally, we showed that the level of ET-1 expression was significantly higher upon chronic exposure to WPS compared to both control and acute exposure groups (p < 0.05). Conclusion: Waterpipe exposure has a significant negative effect on atherosclerosis and the enhancement of the atherosclerotic biomarkers expression (MMP-3 and 9, MPO, and ET-1) might represent an early scavenger of compensatory efforts to maintain cardiac function after WP exposure.

Keywords: atherosclerotic biomarkers, cardiovascular disease, matrix metalloproteinase, waterpipe

Procedia PDF Downloads 325
1532 Mapping Structurally Significant Areas of G-CSF during Thermal Degradation with NMR

Authors: Mark-Adam Kellerman

Abstract:

Proteins are capable of exploring vast mutational spaces. This makes it difficult for protein engineers to devise rational methods to improve stability and function via mutagenesis. Deciding which residues to mutate requires knowledge of the characteristics they elicit. We probed the characteristics of residues in granulocyte-colony stimulating factor (G-CSF) using a thermal melt (from 295K to 323K) to denature it in a 700 MHz Bruker spectrometer. These characteristics included dynamics, micro-environmental changes experienced/ induced during denaturing and structure-function relationships. 15N-1H HSQC experiments were performed at 2K increments along with this thermal melt. We observed that dynamic residues that also undergo a lot of change in their microenvironment were predominantly in unstructured regions. Moreover, we were able to identify four residues (G4, A6, T133 and Q134) that we class as high priority targets for mutagenesis, given that they all appear in both the top 10% of measures for environmental changes and dynamics (∑Δ and ∆PI). We were also able to probe these NMR observables and combine them with molecular dynamics (MD) to elucidate what appears to be an opening motion of G-CSFs binding site III. V48 appears to be pivotal to this opening motion, which also seemingly distorts the loop region between helices A and B. This observation is in agreement with previous findings that the conformation of this loop region becomes altered in an aggregation-prone state of G-CSF. Hence, we present here an approach to profile the characteristics of residues in order to highlight their potential as rational mutagenesis targets and their roles in important conformational changes. These findings present not only an opportunity to effectively make biobetters, but also open up the possibility to further understand epistasis and machine learn residue behaviours.

Keywords: protein engineering, rational mutagenesis, NMR, molecular dynamics

Procedia PDF Downloads 228
1531 Disaster Risk Reduction (DRR) through Harvesting Encosternum delegorguei Insect (Harurwa) in Nerumedzo, Bikita District, Zimbabwe

Authors: Mkhokheli Sithole, Brenda N. Muchapondwa

Abstract:

Food security is becoming a critical issue for people residing mainly in the rural areas where frequent droughts interrupt food production, reduce income, compromise the ability to save and erode livelihoods. This tends to increase the vulnerability of poor households to food and income insecurity, hence, malnutrition. There is an emerging need for DRR strategies to complement the existing rain fed crop production based livelihoods. One of such strategies employed by the community of Nerumedzo in Bikita district is the harvesting of Encosternum delegorguei insect. This article analyses the livelihood impacts of Encosternum delegorguei insect as a DRR strategy. The research used a combination of qualitative and quantitative approaches. The insect samples were tested in the laboratory for their nutritional composition while surveys were done on a sample of 40 community members. Participatory observations and 5 focus group discussions were also done. The results revealed that harvesting the Encosternum delegorguei insects provides a livelihood for the locals by complementing crop production thereby mitigating potential negative effects of frequent droughts. The insects are now a significant source of income to poor households in the community.

Keywords: disaster risk reduction, livelihoods, human, social sciences

Procedia PDF Downloads 176
1530 Mechanical Properties of Young and Senescence Fibroblast Cells Using Passive Microrheology

Authors: Samira Khalaji, , Fenneke Klein Jan, Kay-E. Gottschalk, Eugenia Makrantonaki, Karin Scharffetter-Kochanek

Abstract:

Biological aging is a multi-dimensional process that takes place over a whole range of scales from the nanoscopic alterations within individual cells, over transformations in tissues and organs and to changes of the whole organism. On the single cell level, aging involves mutation of genes, differences in gene expression levels as well as altered posttranslational modifications of proteins. A variety of proteins is affected, including proteins of the cell cytoskeleton and migration machinery. Previous work quantified the expression of cytoskeleton proteins on the gene and protein levels in senescent and young fibroblasts. Their results show that senescent skin fibroblasts have an upregulated expression of the intermediate filament (IF) protein vimentin in contrast to actin and tubulin, which are downregulated. IFs play an important role in providing mechanical stability of cells. However, the mechanical properties of IFs depending on cellular senescence or age of the donor has not been studied so far. Hence, we employed passive microrheology on primary human dermal fibroblasts from female donors with age of 28 years (young) and 86 years (old) as model of in vivo aging and human normal dermal fibroblast from 11-year old male with CPD 17-35 (young) and CPD 58-59 (senescence) as a model of in vitro replicative senescence. In contrast to the expectations, our primary results show no significant differences in the viscoelastic properties of fibroblasts depending on age of the donor or cellular replicative senescence.

Keywords: aging, cytoskeleton, fibroblast, mechanical properties

Procedia PDF Downloads 291
1529 Effect of Ocimum americanum Water Extract on Antioxidant System in Rat

Authors: Pornrut Rabintossaporn, Suphaket Saenthaweesuk, Amornnat Thuppia, Nuntiya Somparn

Abstract:

Several dietary and herbal plants have been shown to possess cytoprotective and antioxidant effects with various mechanisms of action. The aim of this study was to determine the antioxidant effects and its mechanism of aqueous leaves extract of Ocimum americanum (OA), commonly known as American basil or 'hoary basil', in rat. The extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with the extract at the dose of 100, 200 and 400 mg/kg for 28 days. Phytochemical screening of plant extracts revealed the presence of alkaloid, cardiac glycosides, tannin and steroid compounds. The extract contained phenolic compounds 36.91 ± 0.66 mg of gallic acid equivalents per gram OA extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 41.27 ± 1.86 µg/mL, which is relatively lower than that of BHT with IC50 of 12.34 ± 1.14µg/mL. In the animals, the extract was well tolerated by the animals throughout the 28 days of study as shown by normal serum levels AST, ALP, ALT, BUN and Cr as well as normal histology of liver and pancreatic and kidney tissue. The protein expression of antioxidant enzymes, γ-glutamylcysteine ligase (γ-GCL) in liver was significantly increased compared with normal control. Consistent with the induction of γ-GCL protein expression significantly reduction of serum oxidative stress marker malondialdehyde (MDA) was found in rat treated with OA extract compared with control. Taken together, this study provides evidence that Ocimum americanum exhibits direct antioxidant properties and can induce cytoprotective enzyme in vivo.

Keywords: antioxidant, γ-glutamylcysteine ligase, MDA, Ocimum americanum

Procedia PDF Downloads 216
1528 The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by miR-375 and Anti-miR-9

Authors: Arefeh Jafarian, Mohammad Taghikani, Saied Abroun, Amir Allahverdi, Masoud Soleimani

Abstract:

Introduction: The miRNAs have key roles in control of pancreatic islet development and insulin secretion. In this regards, current study investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. Findings: After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose as well as extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. In derived IPCs by miR-375 alone are capable to express insulin and other endocrine specific transcription factors, the cells lack the machinery to respond to glucose. The differentiated hMSCs by miR-375 and anti-miR-9 lentiviruses could secrete insulin and c-peptide in a glucose-regulated manner. Conclusion: It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.

Keywords: diabetes, differentiation, MSCs, insulin producing cells, miR-375, miR-9

Procedia PDF Downloads 293
1527 Targeting Peptide Based Therapeutics: Integrated Computational and Experimental Studies of Autophagic Regulation in Host-Parasite Interaction

Authors: Vrushali Guhe, Shailza Singh

Abstract:

Cutaneous leishmaniasis is neglected tropical disease present worldwide caused by the protozoan parasite Leishmania major, the therapeutic armamentarium for leishmaniasis are showing several limitations as drugs are showing toxic effects with increasing resistance by a parasite. Thus identification of novel therapeutic targets is of paramount importance. Previous studies have shown that autophagy, a cellular process, can either facilitate infection or aid in the elimination of the parasite, depending on the specific parasite species and host background in leishmaniasis. In the present study, our objective was to target the essential autophagy protein ATG8, which plays a crucial role in the survival, infection dynamics, and differentiation of the Leishmania parasite. ATG8 in Leishmania major and its homologue, LC3, in Homo sapiens, act as autophagic markers. Present study manifested the crucial role of ATG8 protein as a potential target for combating Leishmania major infection. Through bioinformatics analysis, we identified non-conserved motifs within the ATG8 protein of Leishmania major, which are not present in LC3 of Homo sapiens. Against these two non-conserved motifs, we generated a peptide library of 60 peptides on the basis of physicochemical properties. These peptides underwent a filtering process based on various parameters, including feasibility of synthesis and purification, compatibility with Selective Reaction Monitoring (SRM)/Multiple reaction monitoring (MRM), hydrophobicity, hydropathy index, average molecular weight (Mw average), monoisotopic molecular weight (Mw monoisotopic), theoretical isoelectric point (pI), and half-life. Further filtering criterion shortlisted three peptides by using molecular docking and molecular dynamics simulations. The direct interaction between ATG8 and the shortlisted peptides was confirmed through Surface Plasmon Resonance (SPR) experiments. Notably, these peptides exhibited the remarkable ability to penetrate the parasite membrane and exert profound effects on Leishmania major. The treatment with these peptides significantly impacted parasite survival, leading to alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, suggesting their involvement in disrupting the regulation of autophagy within Leishmania major. In vitro, studies demonstrated that the selected peptides effectively reduced the parasite load within infected host cells. Encouragingly, these findings were corroborated by in vivo experiments, which showed a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II within host cells. In conclusion, our findings highlight the efficacy of these novel peptides in targeting Leishmania major’s ATG8 and disrupting parasite survival. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis via targeting autophagy protein ATG8 of Leishmania major.

Keywords: ATG8, leishmaniasis, surface plasmon resonance, MD simulation, molecular docking, peptide designing, therapeutics

Procedia PDF Downloads 55
1526 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent

Authors: Vatsal M. Patel, Navin B. Patel

Abstract:

The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.

Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave

Procedia PDF Downloads 136