Search results for: debt accumulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1079

Search results for: debt accumulation

209 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications

Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.

Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method

Procedia PDF Downloads 410
208 In-situ Phytoremediation Of Polluted Soils By Micropollutants From Artisanal Gold Mining Processes In Burkina Faso

Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien

Abstract:

Artisanal gold mining has seen a resurgence in recent years in Burkina Faso with its corollary of soil and water pollution. Indeed, in addition to visible impacts, it generates discharges rich in trace metal elements and acids. This pollution has significant environmental consequences, making these lands unusable while the population depends on the natural environment for its survival. The goal of this study is to assess the decontamination potential of Chrysopogon zizanioides on two artisanal gold processing sites in Burkina Faso. The cyanidation sites of Nebia (1Ha) and Nimbrogo (2Ha) located respectively in the Central West and Central South regions were selected. The soils were characterized to determine the initial pollution levels before the implementation of phytoremediation. After development of the site, parallel trenches equidistant 6 m apart, 30 cm deep, 40 cm wide and opposite to the water flow direction were dug and filled with earth amended with manure. The Chrysopogon zizanioides plants were transplanted 5 cm equidistant into the trenches. The mere fact that Chrysopogon zizanioides grew in the polluted soil is an indication that this plant tolerates and resists the toxicity of trace elements present on the site. The characterization shows sites very polluted with free cyanide 900 times higher than the national standard, the level of Hg in the soil is 5 times more than the limit value, iron and Zn are respectively 1000 times and 200 more than the tolerated environmental value. At time T1 (6 months) and T2 (12 months) of culture, Chrysopogon zizanioides showed less development on the Nimbrogo site than that of the Nebia site. Plant shoots and associated soil samples were collected and analyzed for total As, Hg, Fe and Zn concentration. The trace element content of the soil, the bioaccumulation factor and the hyper accumulation thresholds were also determined to assess the remediation potential. The concentration of As and Hg in the soil was below international risk thresholds, while that of Fe and Zn was well above these thresholds. The CN removal efficiency at the Nebia site is respectively 29.90% and 68.62% compared to 6.6% and 60.8% at Nimbrogo at time T1 and T2.

Keywords: chrysopogon zizanioides, in-situ phytoremediation, polluted soils, micropollutants

Procedia PDF Downloads 79
207 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation

Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich

Abstract:

Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.

Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance

Procedia PDF Downloads 158
206 Effect of Pioglitazone on Intracellular Na+ Homeostasis in Metabolic Syndrome-Induced Cardiomyopathy in Male Rats

Authors: Ayca Bilginoglu, Belma Turan

Abstract:

Metabolic syndrome, is associated impaired blood glucose level, insulin resistance, dyslipidemia caused by abdominal obesity. Also, it is related with cardiovascular risk accumulation and cardiomyopathy. The hypothesis of this study was to examine the effect of thiazolidinediones such as pioglitazone which is widely used insulin-sensitizing agents that improve glycemic control, on intracellular Na+ homeostasis in metabolic syndrome-induced cardiomyopathy in male rats. Male Wistar-Albino rats were randomly divided into three groups, namely control (Con, n=7), metabolic syndrome (MetS, n=7) and pioglitazone treated metabolic syndrome group (MetS+PGZ, n=7). Metabolic syndrome was induced by providing drinking water that was 32% sucrose, for 18 weeks. All of the animals were exposed to a 12 h light – 12 h dark cycle. Abdominal obesity and glucose intolerance had measured as a marker of metabolic syndrome. Intracellular Na+ ([Na+]i) is an important modulator of excitation–contraction coupling in heart. [Na+]i at rest and [Na+]i during pacing with electrical field stimulation in 0.2 Hz, 0.8 Hz, 2.0 Hz stimulation frequency were recorded in cardiomyocytes. Also, Na+ channel current (INa) density and I-V curve were measured to understand [Na+]i homeostasis. In results, high sucrose intake, as well as the normal daily diet, significantly increased body mass and blood glucose level of the rats in the metabolic syndrome group as compared with the non-treated control group. In MetS+PZG group, the blood glucose level and body inclined to decrease to the Con group. There was a decrease in INa density and there was a shift both activation and inactivation curve of INa. Pioglitazone reversed the shift to the control side. Basal [Na+]i either MetS and Con group were not significantly different, but there was a significantly increase in [Na+]i in stimulated cardiomyocytes in MetS group. Furthermore, pioglitazone had not effect on basal [Na+]i but it reversed the increase in [Na+]i in stimulated cardiomyocytes to the that of Con group. Results of the present study suggest that pioglitazone has a significant effect on the Na+ homeostasis in the metabolic syndrome induced cardiomyopathy in rats. All animal procedures and experiments were approved by the Animal Ethics Committee of Ankara University Faculty of Medicine (2015-2-37).

Keywords: insulin resistance, intracellular sodium, metabolic syndrome, sodium current

Procedia PDF Downloads 286
205 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 144
204 Recovering Copper From Tailing and E-Waste to Create Copper Nanoparticles with Antimicrobial Properties

Authors: Erico R. Carmona, Lucas Hernandez-Saravia, Aliro Villacorta, Felipe Carevic

Abstract:

Tailings and electronic waste (e-waste) are an important source of global contamination. Chile is one of Organisation for Economic Co-operation and Development (OECD) member countries that least recycled this kind of industrial waste, reaching only 3% of the total. Tailings and e-waste recycling offers a valuable tool to minimize the increasing accumulation of waste, supplement the scarcity of some raw materials and to obtain economic benefits through the commercialization of these. It should be noted that this type of industrial waste is an important source of valuable metals, such as copper, which allow generating new business and added value through its transformation into new materials with advanced physical and biological properties. In this sense, the development of nanotechnology has led to the creation of nanomaterials with multiple applications given their unique physicochemical properties. Among others, copper nanoparticles (CuNPs) have gained great interest due to their optical, catalytic, conductive properties, and particularly because of their broad-spectrum antimicrobial activity. There are different synthesis methods of copper nanoparticles; however, green synthesis is one of the most promising methodologies, since it is simple, low-cost, ecological, and generates stable nanoparticles, which makes it a promising methodology for scaling up. Currently, there are few initiatives that involve the development of methods for the recovery and transformation of copper from waste to produce nanoparticles with new properties and better technological benefits. Thus, the objective of this work is to show preliminary data about the develop a sustainable transformation process of tailings and e-waste that allows obtaining a copper-based nanotechnological product with potential antimicrobial applications. For this, samples of tailings and e-waste collected from Tarapacá and Antofagasta region of northern Chile were used to recover copper through efficient, ecological, and low-cost alkaline hydrometallurgical treatments, which to allow obtaining copper with a high degree of purity. On the other hand, the transformation process from recycled copper to a nanomaterial was carried out through a green synthesis approach by using vegetal organic residue extracts that allows obtaining CuNPs following methodologies previously reported by authors. Initial physical characterization with UV-Vis, FTIR, AFM, and TEM methodologies will be reported for CuNPs synthesized.

Keywords: nanomaterials, industrial waste, chile, recycling

Procedia PDF Downloads 96
203 The Investigation of Endogenous Intoxication and Lipid Peroxidation in Patients with Giardiasis Before and After Treatment

Authors: R. H. Begaydarova, B. Zh. Kultanov, B. T. Esilbaeva, G. E. Nasakaeva, Y. Yukhnevich, G. K. Alshynbekova, A. E. Dyusembaeva

Abstract:

Background: The level of middle molecules of peptides (MMP) allows to evaluate the severity and prognosis of the disease and is a criterion for the effectiveness of the treatment. The detection the products of lipidperoxidation cascade, such as conjugated dienes, malondialdehyde in biological material, has an important role in the development of pathogenesis, the diagnosis and prognosis in different parasitic diseases. Purpose of the study was to evaluate the state of endogenous intoxication and indicators of lipid peroxidation in patients with giardiasis before and after treatment. Materials and methods: Endogenous intoxication was evaluated in patients with giardiasis in the level of middle molecules of peptides (MMP) in the blood. The amount of MMP and products of lipid peroxidation were determined in the blood of 198 patients with giardiasis, 129 of them were women (65%), 69 were men (35%). The MMP level was detected for comparison in the blood of 84 healthy volunteers. The lipid peroxidation were determined in 40 healthy men and women without giardiasis and history of chronic diseases. Data were processed by conventional methods of variation statistics, we calculated the arithmetic mean (M) and standard dispersion (m). t-test (t) was used to assess differences. Results: The level of MMP in the blood was significantly higher in patients with giardiasis in comparison with group of healthy men and women. MMP concentration in the blood of women with Giardia was 2.5 times greater than that of the comparison groups of women. The level of MMP exceeds more than 6 times in men with giardiasis. The decrease in the intensity of endogenous intoxication was two weeks after antigiardia therapy, both men and women. According to the study, a statistically significant increase in the level of all the studied parameters lipid peroxidation cascade was observed in the blood of men with giardiasis, with the exception of the total primary production (NGN). The treatment of giardiasis helped to stabilize the level of almost all metabolites of lipid peroxidation cascade. The exception was level of malondialdehyde, it was significantly elevated to compare with the control group and after treatment. Conclusion: Thus, the MMP level was significantly higher in blood of patients with giardiasis than in comparison group. This is evidence of severe endogenous intoxication caused by giardia infection. The accumulation of primary and secondary products of lipid peroxidation was observed in the blood of men and women. These processes tend to be more active in men than in women. Antigiardiasis therapy contributed to the normalization of almost all the studied indicators of lipid peroxidation in the blood of participants, except the level malondialdehyde in the blood of men.

Keywords: enzymes of antioxidant protection, giardiasis, blood, treatment

Procedia PDF Downloads 239
202 Object-Scene: Deep Convolutional Representation for Scene Classification

Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang

Abstract:

Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.

Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization

Procedia PDF Downloads 333
201 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease

Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan

Abstract:

Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.

Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.

Procedia PDF Downloads 66
200 A Review of Toxic and Non-Toxic Cyanobacteria Species Occurrence in Water Supplies Destined for Maize Meal Production Process: A Case Study of Vhembe District

Authors: M. Mutoti, J. Gumbo, A. Jideani

Abstract:

Cyanobacteria or blue green algae have been part of the human diet for thousands of years. Cyanobacteria can multiply quickly in surface waters and form blooms when favorable conditions prevail, such as high temperature, intense light, high pH, and increased availability of nutrients, especially phosphorous and nitrogen, artificially released by anthropogenic activities. Consumption of edible cyanotoxins such as Spirulina may reduce risks of cataracts and age related macular degeneration. Sulfate polysaccharides exhibit antitumor, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and even antiviral activity against HIV, herpes, and hepatitis. In humans, exposure to cyanotoxins can occur in various ways; however, the oral route is the most important. This is mainly through drinking water, or by eating contaminated foods; it may even involve ingesting water during recreational activities. This paper seeks to present a review on cyanobacteria/cyanotoxin contamination of water and food and implications for human health. In particular, examining the water quality used during maize seed that passes through mill grinding processes. In order to fulfil the objective, this paper starts with the theoretical framework on cyanobacteria contamination of food that will guide review of the present paper. A number of methods for decontaminating cyanotoxins in food is currently available. Therefore, physical, chemical, and biological methods for treating cyanotoxins are reviewed and compared. Furthermore, methods that are utilized for detecting and identifying cyanobacteria present in water and food were also informed in this review. This review has indicated various routes through which humans can be exposed to cyanotoxins. Accumulation of cyanotoxins, mainly microcystins, in food has raised an awareness of the importance of food as microcystins exposure route to human body. Therefore, this review demonstrates the importance of expanding research on cyanobacteria/cyanotoxin contamination of water and food for water treatment and water supply management, with focus on examining water for domestic use. This will help providing information regarding the prevention or minimization of contamination of water and food, and also reduction or removal of contamination through treatment processes and prevention of recontamination in the distribution system.

Keywords: biofilm, cyanobacteria, cyanotoxin, food contamination

Procedia PDF Downloads 162
199 The Structural Analysis of Out-of-Sequence Thrust: Insights from Chaura Thrust of Higher Himalaya in Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

This paper focuses on the structural analysis of Chaura Thrust in Himachal Pradesh, India. It investigates mylonitised zones under microscopic observation, characterizes the box fold and its signature in the regional geology of Himachal Himalaya, and documents the Higher Himalayan Out-of-Sequence Thrust (OOST) in the region. The study aims to provide field evidence and documentation for Chaura Thrust (CT), which was previously considered a blind thrust. The research methodology involves geological field observation, microscopic studies, and strain analysis of oriented samples collected along the Jhakri-Chaura transect. The study presents findings such as the activation ages of MCT and STDS, the identification of mylonitised zones and various types of crenulated schistosity, and the manifestation of box folds and OOST. The presence of meso- and micro-scale box folds around Chaura suggests structural upliftment, while kink folds and shear sense indicators were identified. The research highlights the importance of microscopic studies and contributes to the understanding of the structural analysis of CT and its implications in the regional geology of the Himachal Himalaya. Mylonitised zones with S-C fabric were observed under the microscope, along with dynamic and bulging recrystallization and sub-grain formation. Various types of crenulated schistosity were documented, including a rare case of crenulation cleavage and sigmoid Muscovite occurring together. The conclusions emphasize the non-blind nature of Chaura Thrust, the characterization of box folds, the activation timing of different thrusts, and the significance of microscopic observations. Jhakri/Chaura/Sarahan thrusts are the zone of tectonic imbrication that transport Higher Himalayan gneissic rock on Rampur Quartzite. The evidence of frequent earthquakes and landslides in the Jhakri region confirm the study of morphometric conclusion that there is considerable neo-tectonic activity along an active fault in the Sutlej river basin. The study also documents the presence of OOST in Himachal Pradesh and its potential impact on strain accumulation.

Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust

Procedia PDF Downloads 88
198 Caffeic Acid Methyl and Ethyl Esters Exhibit Beneficial Effect on Glucose and Lipid Metabolism in Cultured Murine Insulin-Sensitive Cells

Authors: Hoda M. Eid, Abir Nachar, Farah Thong, Gary Sweeney, Pierre S. Haddad

Abstract:

Caffeic acid methyl ester (CAME) and caffeic ethyl esters (CAEE) were previously reported to potently stimulate glucose uptake in cultured C2C12 skeletal muscle cells via insulin-independent mechanisms involving the activation of adenosine monophosphate-activated protein kinase (AMPK). In the present study, we investigated the effect of the two compounds on the translocation of glucose transporter GLUT4 in L6 skeletal muscle cells. The cells were treated with the optimum non-toxic concentration (50 µM) of either CAME or CAEE for 18 h. Levels of GLUT4myc at the cell surface were measured by O-phenylenediamine dihydrochloride (OPD) assay. The effects of CAME and CAEE on GLUT1 and GLUT4 protein content were also measured by western immunoblot. Our results show that CAME and CAEE significantly increased glucose uptake, GLUT4 translocation and GLUT4 protein content. Furthermore, the effect of the two CA esters on two insulin-sensitive cell lines: H4IIE rat hepatoma and 3T3-L1 adipocytes were investigated. CAME and CAEE reduced the enzymatic activity of the key hepatic gluconeogenic enzyme glucose-6-phosphatase in a concentration-dependent manner. In addition, they exerted a concentration-dependent antiadipogenic effect on 3T3-L1 cells. Mitotic clonal expansion (MCE), a prerequisite for adipocytes differentiation was also concentration-dependently inhibited. The two compounds abrogated lipid droplet accumulation, blocked MCE and maintained cells in fibroblast-like state when applied at the maximum non-toxic concentration (100 µM). In addition, the expression of the early key adipogenic transcription factors CCAAT enhancer-binding protein beta (C/EBP-β) and the master regulator of adipogenesis peroxisome-proliferator-activated receptor gamma (PPAR-γ) were inhibited. We, therefore, conclude that CAME and CAEE exert pleiotropic benefits in several insulin-sensitive cell lines through insulin-independent mechanisms involving AMPK, hence they may treat obesity, diabetes and other metabolic diseases.

Keywords: type 2 diabetes mellitus, insulin resistance, GLUT4, Akt, AMPK.

Procedia PDF Downloads 309
197 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia

Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa

Abstract:

The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.

Keywords: thermal conductivity, rock, pore fluid, heat propagation

Procedia PDF Downloads 108
196 Non-Canonical Beclin-1-Independent Autophagy and Apoptosis in Cell Death Induced by Rhus coriaria in Human Colon HT-29 Cancer Cells

Authors: Rabah Iratni, Husain El Hasasna, Khawlah Athamneh, Halima Al Sameri, Nehla Benhalilou, Asma Al Rashedi

Abstract:

Background: Cancer therapies have witnessed great advances in the recent past, however, cancer continues to be a leading cause of death, with colorectal cancer being the fourth cause of cancer-related deaths. Colorectal cancer affects both sexes equally with poor survival rate once it metastasizes. Phytochemicals, which are plant derived compounds, have been on a steady rise as anti-cancer drugs due to the accumulation of evidences that support their potential. Here, we investigated the anticancer effect of Rhus coriaria on colon cancer cells. Material and Method: Human colon cancer HT-29 cell line was used. Protein expression and protein phosphorylation were examined using Western blotting. Transcription activity was measure using Quantitative RT-PCR. Human tumoral clonogenic assay was used to assess cell survival. Senescence was assessed by the senescence-associated beta-galactosidase assay. Results: Rhus coriaria extract (RCE) was found to significantly inhibit the viability and colony growth of human HT-29 colon cancer cells. RCE induced senescence and cell cycle arrest at G1 phase. These changes were concomitant with upregulation of p21, p16, downregulation of cyclin D1, p27, c-myc and expression of Senescence-associated-β-Galactosidase activity. Moreover, RCE induced non-canonical beclin-1independent autophagy and subsequent apoptotic cell death through activation of activation caspase 8 and caspase 7. The blocking of autophagy by 3-methyladenine (3-MA) or chloroquine (CQ) reduced RCE-induced cell death. Further, RCE induced DNA damage, reduced mutant p53 protein level and downregulated phospho-AKT and phospho-mTOR, events that preceded autophagy. Mechanistically, we found that RCE inhibited the AKT and mTOR pathway, a regulator of autophagy, by promoting the proteasome-dependent degradation of both AKT and mTOR proteins. Conclusion: Our findings provide strong evidence that Rhus coriaria possesses strong anti-colon cancer activity through induction of senescence and autophagic cell death, making it a promising alternative or adjunct therapeutic candidate against colon cancer.

Keywords: autophagy, proteasome degradation, senescence, mTOR, apoptosis, Beclin-1

Procedia PDF Downloads 263
195 Physical Inactivity and Junk Food Consumption Consequent Obesity among University Girls: A Cross Sectional Study Unveils the Mayhem

Authors: Shahid Mahmood, Ghulam Mueen-Ud-Din, Farah Naz Akbar, Yousaf Quddoos, Syeda Mahvish Zahra, Wajiha Saeed, Tayyaba Sami Ullah

Abstract:

Obesity is an epidemic across the globe that affects all the segments of the population. Physical inactivity, passionate consumption of junk food, inadequate water intake and an unhealthy lifestyle are evident among university girls that are ruining their health gravely especially fat accumulation. The study was carried out to investigate the potential etiological factors of obesity development in university girls. The cross sectional study was carried out after approval of the Departmental Review Committee for Ethics (DRCE) as the par Declaration of Helsinki at Institute of Food Science and Nutrition (IFSN), University of Sargodha, Sargodha-Pakistan and Department of Food Science and Home Economics, G. C. Women University, Faisalabad-Pakistan. 400 girls were selected randomly from different departments of both universities. Nutritional status of the volunteers was assessed through approved protocols for demographics, anthropometrics, body composition, energetics, vital signs, clinical signs and symptoms, medical/family history, and dietary intake assessment (FFQ), water intake and physical activity level. The obesity was determined on body fat (%). Alarming and unheeded etiological factors for the development of obesity in girls were explored by the study. About 93 % girls had a sedentary level of physical activity, zealous consumption of junk food (5.31±1.23 servings), drank little water (1.09±0.26 L/day) that consequent high heaps of fat (35.06±3.02 %), measly body water (52.38±3.4 %), poor bone mass (05.14±0.31 Kg), and high BMI (26.68±1.14 Kg/m²) in 34% girls. The malnutrition also depicted by poor vital signs i.e. low body temperature (97.11±0.93 °F), slightly higher blood pressure (124.19±4.08 / 85.25±2.97 mmHg), rapid pulse rate (99.2 ± 6.85 beats/min), reduced blood O₂ saturation (96.53±0.96 %), scanty peak expiratory flow rate (297 ± 15.7 L /min). The outcomes of the research articulated that physical inactivity; extreme intakes of junk food, insufficient water consumption are etiological factors for obesity development among girls which are usually overlooked in Pakistan.

Keywords: informed consent, junk food, obesity, physical inactivity

Procedia PDF Downloads 190
194 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture

Authors: Charbel Aoun, Loic Lagadec

Abstract:

A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.

Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS

Procedia PDF Downloads 178
193 Hydrogeochemical Investigation of Lead-Zinc Deposits in Oshiri and Ishiagu Areas, South Eastern Nigeria

Authors: Christian Ogubuchi Ede, Moses Oghenenyoreme Eyankware

Abstract:

This study assessed the concentration of heavy metals (HMs) in soil, rock, mine dump pile, and water from Oshiri and Ishiagu areas of Ebonyi State. Investigations on mobile fraction equally evaluated the geochemical condition of different HM using UV spectrophotometer for Mineralized and unmineralized rocks, dumps, and soil, while AAS was used in determining the geochemical nature of the water system. Analysis revealed very high pollution of Cd mostly in Ishiagu (Ihetutu and Amaonye) active mine zones and with subordinates enrichments of Pb, Cu, As, and Zn in Amagu and Umungbala. Oshiri recorded sparingly moderate to high contamination of Cd and Mn but out rightly high anthropogenic input. Observation showed that most of the contamination conditions were unbearable while at the control but decrease with increasing distance from the mine vicinity. The potential heavy metal risk of the environments was evaluated using the risk factors such as enrichment factor, index of Geoacumulation, Contamination Factor, and Effect Range Median. Cadmium and Zn showed moderate to extreme contamination using Geoaccumulation Index (Igeo) while Pb, Cd, and As indicated moderate to strong pollution using the Effect Range Median. Results, when compared with the allowable limits and standards, showed the concentration of the metals in the following order Cd>Zn>Pb>As>Cu>Ni (rocks), Cd>As>Pb>Zn>Cu>Ni (soil) while Cd>Zn>As>Pb> Cu (for mine dump pile. High concentrations of Zn and As were recorded more in mine pond and salt line/drain channels along active mine zones, it heightened its threat during the rainy period as it settles into river course, living behind full-scale contaminations to inhabitants depending on it for domestic uses. Pb and Cu with moderate pollution were recorded in surface/stream water source as its mobility were relatively low. Results from Ishiagu Crush rock sites and Fedeco metallurgical and auto workshop where groundwater contamination was seen infiltrating some of the wells points gave rise to values that were 4 times high than the allowable limits. Some of these metal concentrations according to WHO (2015) if left unmitigated pose adverse effects to the soil and human community.

Keywords: water, geo-accumulation, heavy metals, mine and Nigeria.

Procedia PDF Downloads 172
192 Peculiar Mineralogical and Chemical Evolution of Contaminated Igneous Rocks at a Gabbro-Carbonate Contact, Wadai Bayhan, Yemen

Authors: Murad Ali, Shoji Arai, Mohamed Khedr, Mukhtar Nasher, Shawki Nasr

Abstract:

The Wadi Bayhan area of southeastern Yemen is about 60 km NW of Al-Bayda city in the Al-Bayda uplift terrane at the southeast margin of the Arabian-Nubian Shield. Intrusion of alkali gabbro into carbonate rocks apparently produced an 8m to 10 m thick reaction zone at the contact. This had been identified as nepheline pyroxenite. We have observed this to be mineralogically zoned with calc-silicate assemblages (e.g. pyroxene, calcite, spinel, garnet and melilite). The presence of melilite implies a skarn. The sinuous embayed pyroxenite-skarn contact, the presence of skarn minerals in pyroxenite, and textural evidence for growth of calc-silicate skarn by replacement of both carbonate rocks and solid pyroxenite indicate that reaction involved assimilation of carbonate wall rock by magma and loss of Al and Si to the skarn. Textural relationships between minerals provide evidence for a metasomatic development of the skarn at the expense of the pyroxenite. This process, related to the circulation of fluids equilibrated with carbonates, is responsible for those pyroxenite-spinel (± calcite) skarns. The uneven modal distribution of euhedral pyroxenite and enveloping nepheline in pyroxenite, the restricted occurrence of alkali gabbro as dikes in pyroxenite and skarn and the leucocratic matrix of pyroxenite suggest that pyroxenite represents an accumulation of titanaugite cemented by an alkali-rich residual magma and that alkali gabbro represents a part of the residual contaminated magma that was squeezed out of the pyroxene crystal mush. Carbonate assimilation is modeled by reaction of calcite and magmatic plagioclase, which results in resorption of plagioclase, growth of pyroxene enriched in Ca, Fe, Ti, and Al, and solution of nepheline in residual contaminated magma. The composition of nepheline pyroxenite evolved by addition of Ca from dissolved carbonate rocks, loss of Al and Si to skarn, and local segregation of solid pyroxene and alkali gabbro magma. The predominance of pyroxenite among contaminated rocks and their restriction to a large zone along the intrusive contact provide little evidence for the genesis of a significant volume of alkaline magmatic surroundings by carbonate assimilation.

Keywords: Yemen, Wadi Bayhan, skarn, pyroxenite, carbonatite, metasomatic

Procedia PDF Downloads 323
191 Managing of Cobalt and Chromium Ions by Patients with Metal-on-Metal Hip Prosthesis

Authors: Alina Beraudi, Simona Catalani, Dalila De Pasquale, Eva Bianconi, Umberto Santoro, Susanna Stea, Pietro Apostoli

Abstract:

Recently the European Community, in line with the international scientific community such as with the Consensus Statement, has determined to stop the use of metal-on-metal big head stemmed hip prosthesis. Among the factors accounted as responsible for the high failure rates of these hip implants are the release and accumulation of metal ions. Many studies have correlated the presence of these ions, besides other factors, with the induction of oxidative stress response. In our study on 12 subjects, we observed the patient specific capability to eliminate metal ions after revision surgery. While for cobalt all the patients were able to completely excrete cobalt ions within 5-7 months after metal-on-metal bearing removal, for chromium ions it didn’t happen. If on the one hand the toxicokinetic differences between the two types of ions are confirmed by toxicological and occupational studies, on the other hand, this peculiar way of exposition represents a novel and important point of view. Thus, two different approaches were performed to better understand the subject specific capability to transport metal ions (albumin study) and to manage the response to them (heme-oxygenase-1 study): - a mutational screening of ALBUMIN gene was conducted in 30 MoM prosthetic patients resulting in the absence of nucleotidic changes compared with the ALB reference sequence. To this study was also added the analysis of expression of modified albumin protein; - a gene and protein expression study on 44 patients of heme-oxygenase-1, that is one of the most important antioxidant enzyme induced by metallic ions, was performed. This study resulted in no statistically significant differences in the expression of the gene and protein heme-oxygenase-1 between prosthetic and non-prosthetic patients, as well as between patients with high and low ions levels. Our results show that the protein studied (albumin and heme-oxygenase-1) seem to be not involved in determining chromium and cobalt ions level. On the other hand, achromium and cobalt elimination rates are different, but similar in all patients analyzed, suggesting that this process could be not patient-related. We support the importance of researching more about ions transport within the organism once released by hip prosthesis, about the chemical species involved, the districts where they are contained and the mechanisms of elimination, not excluding the existence of a subjective susceptibility to these metals ions.

Keywords: chromium, cobalt, hip prosthesis, individual susceptibility

Procedia PDF Downloads 384
190 Evaluating the Potential of a Fast Growing Indian Marine Cyanobacterium by Reconstructing and Analysis of a Genome Scale Metabolic Model

Authors: Ruchi Pathania, Ahmad Ahmad, Shireesh Srivastava

Abstract:

Cyanobacteria is a promising microbe that can capture and convert atmospheric CO₂ and light into valuable industrial bio-products like biofuels, biodegradable plastics, etc. Among their most attractive traits are faster autotrophic growth, whole year cultivation using non-arable land, high photosynthetic activity, much greater biomass and productivity and easy for genetic manipulations. Cyanobacteria store carbon in the form of glycogen which can be hydrolyzed to release glucose and fermented to form bioethanol or other valuable products. Marine cyanobacterial species are especially attractive for countries with scarcity of freshwater. We recently identified a marine native cyanobacterium Synechococcus sp. BDU 130192 which has good growth rate and high level of polyglucans accumulation compared to Synechococcus PCC 7002. In this study, firstly we sequenced the whole genome and the sequences were annotated using the RAST server. Genome scale metabolic model (GSMM) was reconstructed through COBRA toolbox. GSMM is a computational representation of the metabolic reactions and metabolites of the target strain. GSMMs construction through the application of Flux Balance Analysis (FBA), which uses external nutrient uptake rates and estimate steady state intracellular and extracellular reaction fluxes, including maximization of cell growth. The model, which we have named isyn942, includes 942 reactions and 913 metabolites having 831 metabolic, 78 transport and 33 exchange reactions. The phylogenetic tree obtained by BLAST search revealed that the strain was a close relative of Synechococcus PCC 7002. The flux balance analysis (FBA) was applied on the model iSyn942 to predict the theoretical yields (mol product produced/mol CO₂ consumed) for native and non-native products like acetone, butanol, etc. under phototrophic condition by applying metabolic engineering strategies. The reported strain can be a viable strain for biotechnological applications, and the model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for enhanced production of various bioproducts.

Keywords: cyanobacteria, flux balance analysis, genome scale metabolic model, metabolic engineering

Procedia PDF Downloads 158
189 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Compost Application

Authors: Ayman El Sabagh, SobhySorour, AbdElhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. What adds to the concern is that all the legume crops are sensitive to increasing soil salinity. So it is implacable to either search for salinity enhancement of legume plants. The exogenous of osmoprotectants has been found effective in reducing the adverse effects of salinity stress on plant growth. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine and compost application on soybean plants grown under salinity stress. Experiments were carried out in the greenhouse of the experimental station, plant nutritional physiology, Hiroshima University, Japan in 2011- 2012. The experiment was arranged in a factorial design with 4 replications at NaCl concentrations (0 and 15 mM). The exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Compost treatments (0 and 24 t ha-1). Results indicated that salinity stress induced reduction in all growth and physiological parameters (dry weights plant-1, chlorophyll content, N and K+ content) likewise, seed and quality traits of soybean plant compared with those of the unstressed plants. In contrast, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Thus tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved membrane stability, K+, and proline accumulation on contrary, decreased Na+ content. These results clearly demonstrate that could be used to reduce the harmful effect of salinity on both physiological aspects and growth parameters of soybean. They are capable of restoring yield potential and quality of seed and may be useful in agronomic situations where saline conditions are diagnosed as a problem. Consequently, exogenous osmo-protectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance in the drylands.

Keywords: compost, glycine betaine, proline, salinity tolerance, soybean

Procedia PDF Downloads 374
188 Association between Cholesterol Levels and Atopy among Adolescents with and without Sufficient Amount of Physical Activity

Authors: Keith T. S. Tung, H. W. Tsang, Rosa S. Wong, Frederick K. Ho, Patrick Ip

Abstract:

Objectives: Atopic diseases are increasingly prevalent among children and adolescents, both locally and internationally. One of the possible contributing factors could be the hypercholesterolemia which leads to cholesterol accumulation in macrophages and other immune cells that would eventually promote inflammatory responses, including augmentation of toll-like receptor (TLR). Meanwhile, physical activity is well known for its beneficial effects against the condition of hypercholesterolemia and incidence of atopic diseases. This study, therefore, explored whether atopic diseases were associated with increased cholesterol levels and whether physical activity habit influenced this association. Methods: This is a sub-study derived from the longitudinal cohort study which recruited a group of children at five years of age in Kindergarten 3 (K3) to investigate the long-term impact of family socioeconomic status on child development. In 2018/19, adolescents (average age: 13 years old) were asked to report their physical activity habit and history of any atopic diseases. During health assessment, peripheral blood samples were collected from the adolescents to study their lipid profile [total cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol]. Regression analyses were performed to test the relationships between variables of interest. Results: Among the 315 adolescents, 99 (31.4%) reported to have allergic rhinitis. There were 45 (14.3%) with eczema, 17 (5.4%) with a food allergy, and 12 (3.8%) with asthma. Regression analyses showed that adolescents with a history of any type of atopic diseases had significantly higher total cholesterol (B=13.3, p < 0.01) and LDL cholesterol (B=7.9, p < 0.05) levels. Further subgroup analyses were conducted to examine the effect of physical activity level on the association between atopic diseases and cholesterol levels. We found stronger associations among those who did not meet the World Health Organization recommendation of at least 60 minutes of moderate-to-vigorous activities each day (total cholesterol: B=15.5, p < 0.01; LDL cholesterol: B=10.4, p < 0.05). For those who met this recommendation, the associations between atopic diseases and cholesterol levels became insignificant. Conclusion: Our study results support the current research evidence on the relationship between an elevated level of cholesterol and atopic diseases. More importantly, our results provide preliminary support for the protective effect of regular exercises against elevated cholesterol level due to atopic diseases. The findings highlight the importance of a healthy lifestyle for keeping cholesterol levels in the normal range, which can bring benefits to both physical and mental health.

Keywords: atopic diseases, Chinese adolescents, cholesterol level, physical activity

Procedia PDF Downloads 122
187 Social Enterprises over Microfinance Institutions: The Challenges of Governance and Management

Authors: Dean Sinković, Tea Golja, Morena Paulišić

Abstract:

Upon the end of the vicious war in former Yugoslavia in 1995, international development community widely promoted microfinance as the key development framework to eradicate poverty, create jobs, increase income. Widespread claims were made that microfinance institutions would play vital role in creating a bedrock for sustainable ‘bottom-up’ economic development trajectory, thus, helping newly formed states to find proper way from economic post-war depression. This uplifting neoliberal narrative has no empirical support in the Republic of Croatia. Firstly, the type of enterprises created via microfinance sector are small, unskilled, labor intensive, no technology and with huge debt burden. This results in extremely high failure rates of microenterprises and poor individuals plunging into even deeper poverty, acute indebtedness and social marginalization. Secondly, evidence shows that microcredit is exact reflection of dangerous and destructive sub-prime lending model with ‘boom-to-bust’ scenarios in which benefits are solely extracted by the tiny financial and political elite working around the microfinance sector. We argue that microcredit providers are not proper financial structures through which developing countries should look way out of underdevelopment and poverty. In order to achieve sustainable long-term growth goals, public policy needs to focus on creating, supporting and facilitating the small and mid-size enterprises development. These enterprises should be technically sophisticated, capable of creating new capabilities and innovations, with managerial expertise (skills formation) and inter-connected with other organizations (i.e. clusters, networks, supply chains, etc.). Evidence from South-East Europe suggest that such structures are not created via microfinance model but can be fostered through various forms of social enterprises. Various legal entities may operate as social enterprises: limited liability private company, limited liability public company, cooperative, associations, foundations, institutions, Mutual Insurances and Credit union. Our main hypothesis is that cooperatives are potential agents of social and economic transformation and community development in the region. Financial cooperatives are structures that can foster more efficient allocation of financial resources involving deeper democratic arrangements and more socially just outcomes. In Croatia, pioneers of the first social enterprises were civil society organizations whilst forming a separated legal entity. (i.e. cooperatives, associations, commercial companies working on the principles of returning the investment to the founder). Ever since 1995 cooperatives in Croatia have not grown by pursuing their own internal growth but mostly by relying on external financial support. The greater part of today’s registered cooperatives tend to be agricultural (39%), followed by war veterans cooperatives (38%) and others. There are no financial cooperatives in Croatia. Due to the above mentioned we look at the historical developments and the prevailing social enterprises forms and discuss their advantages and disadvantages as potential agents for social and economic transformation and community development in the region. There is an evident lack of understanding of this business model and of its potential for social and economic development followed by an unfavorable institutional environment. Thus, we discuss the role of governance and management in the formation of social enterprises in Croatia, stressing the challenges for the governance of the country’s social enterprise movement.

Keywords: financial cooperatives, governance and management models, microfinance institutions, social enterprises

Procedia PDF Downloads 277
186 Assessment of Genetic Variability of Potato Genotypes for Proline Under Salt Stress Conditions

Authors: Elchin Hajiyev, Afet Memmedova Dadash, Sabina Hajiyeva, Aynur Karimova, Ramiz Aliyev

Abstract:

Although potatoes have a wide distribution range, the yield potential of varieties varies greatly depending on the region. Our country is made up of agricultural regions with very different environmental characteristics.In this case, we cannot expect the introduced varieties to show the same adaptation to the different conditions of our country. For this reason, in our country, varieties with high general adaptability should be used, rather than varieties with special adaptability in certain areas. Soil salinization has become a global problem.Increased salinity has a serious impact on food security by reducing plant productivity. Plants have protective mechanisms of adaptation to salt stress, such as the synthesis of physiologically active substances, resistance to antioxidant stress and oxidation of membrane lipids. One of these substances is free proline. Our study revealed genetic variation in proline accumulation among samples exposed to stress factors.Changes in proline content under stress conditions were studied in 50 samples. There was wide variation across all treatments.The amount of proline varied between 7.2–37.7 μM/g under salinity conditions.The lowest rate was in the SF33 genotype (1.5 times more than the control (2.5 μM/g)).The highest level of proline under the influence of salt stress was in the SF45 genotype (7.25 times higher than the control (32.5 μM/g)). Our studies have found that the protective system reacts differently to the influence of stress factors. According to the results obtained on the amount of proline, adaptation mechanisms must be more actively activated to maintain metabolism and ensure viability in sensitive forms under the influence of stress factors. At high doses of the salt stressor, a tenfold increase in proline compared to the control indicates significant damage to the plant organism as a result of stress.To prevent damage to the body, the antioxidant system needs to quickly mobilize and work at full capacity in adverse conditions. An increase in the dose of the stress factor salt in our study caused a greater increase in the amount of free proline in plant tissues. Considering the functions of proline as an osmoprotector and antioxidant, it was found that increasing its amount is aimed at protecting the plant from the acute effects of stressors.

Keywords: genetic variability, potato, genotypes, proline, stress

Procedia PDF Downloads 53
185 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 86
184 Treatment of Papillary Thyroid Carcinoma Metastasis to the Sternum: A Case Report

Authors: Geliashvili T. M., Tyulyandina A. S., Valiev A. K., Kononets P. V., Kharatishvili T. K., Salkov A. G., Pronin A. I., Gadzhieva E. H., Parnas A. V., Ilyakov V. S.

Abstract:

Aim/Introduction: Metastasis (Mts) to the sternum, while extremely rare in differentiated thyroid cancer (DTC) (1), requires a personalized, multidisciplinary treatment approach. In aggressively growing Mts to the sternum, which rapidly become unresectable, a comprehensive therapeutic and diagnostic approach is particularly important. Materials and methods: We present a clinical case of solitary Mts to the sternum as first manifestation of a papillary thyroid microcarcinoma in a 55-year-old man. Results: 18F-FDG PET/CT after thyroidectomy confirmed the solitary Mts to the sternum with extremely high FDG uptake (SUVmax=71,1), which predicted its radioiodine-refractory (RIR). Due to close attachment to the mediastinum and rapid growth, Mts was considered unresectable. During the next three months, the patient received targeted therapy with the tyrosine kinase inhibitor (TKI) Lenvatinib 24 mg per day. 1st course of radioiodine therapy (RIT) 6 GBq was also performed, the results of which confirmed the RIR of the tumor process. As a result of systemic therapy (targeted therapy combined with RIT and suppressive hormone therapy with L-thyroxine), there was a significant biochemical response (decrease of serum thyroglobulin level from 50,000 ng/ml to 550 ng/ml) and a partial response with decrease of tumor size (from 80x69x123 mm to 65x50x112 mm) and decrease of FDG accumulation (SUVmax from 71.1 to 63). All of this made possible to perform surgical treatment of Mts - sternal extirpation with its replacement by an individual titanium implant. At the control examination, the stimulated thyroglobulin level was only 134 ng/ml, and PET/CT revealed postoperative areas of 18F-FDG metabolism in the removed sternal Mts. Also, 18F-FDG PET/CT in the early (metabolic) stage revealed two new bone Mts (in the area of L3 SUVmax=17,32 and right iliac bone SUVmax=13,73), which, as well as the removed sternal Mts, appeared to be RIRs at the 2nd course of RIT 6 GBq. Subsequently, on 02.2022, external beam radiation therapy (EBRT) was performed on the newly identified oligometastatic bone foci. At present, the patient is under dynamic monitoring and in the process of suppressive hormone therapy with L-thyroxine. Conclusion: Thus, only due to the early prescription of targeted TKI therapy was it possible to perform surgical resection of Mts to the sternum, thereby improve the patient's quality of life and preserve the possibility of radical treatment in case of oligometastatic disease progression.

Keywords: differentiated thyroid cancer, metastasis to the sternum, radioiodine therapy, radioiodine-refractory cancer, targeted therapy, lenvatinib

Procedia PDF Downloads 106
183 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery

Authors: Abebe Taye

Abstract:

The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.

Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability

Procedia PDF Downloads 77
182 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones

Authors: Mohamed Abdelkareem

Abstract:

Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.

Keywords: GIS, remote sensing, groundwater, Egypt

Procedia PDF Downloads 98
181 Optimal Allocation of Oil Rents and Public Investment In Low-Income Developing Countries: A Computable General Equilibrium Analysis

Authors: Paule Olivia Akotto

Abstract:

The recent literature suggests spending between 50%-85% of oil rents. However, there are not yet clear guidelines for allocating this windfall in the public investment system, while most of the resource-rich countries fail to improve their intergenerational mobility. We study a design of the optimal spending system in Senegal, a low-income developing country featuring newly discovered oil fields and low intergenerational mobility. We build a dynamic general equilibrium model in which rural and urban (Dakar and other urban centers henceforth OUC) households face different health, education, and employment opportunities based on their location, affecting their intergenerational mobility. The model captures the relationship between oil rents, public investment, and multidimensional inequality of opportunity. The government invests oil rents in three broad sectors: health and education, road and industries, and agriculture. Through endogenous productivity externality and human capital accumulation, our model generates the predominant position of Dakar and OUC households in terms of access to health, education, and employment in line with Senegal data. Rural households are worse off in all dimensions. We compute the optimal spending policy under two sets of simulation scenarios. Under the current Senegal public investment strategy, which weighs more health and education investments, we find that the reform maximizing the decline in inequality of opportunity between households, frontloads investment during the first eight years of the oil exploitation and spends the perpetual value of oil wealth thereafter. We will then identify the marginal winners and losers associated with this policy and its redistributive implications. Under our second set of scenarios, we will test whether the Senegalese economy can reach better equality of opportunity outcomes under this frontloading reform, by allowing the sectoral shares of investment to vary. The trade-off will be between cutting human capital investment in favor of agricultural and productive infrastructure or increasing the former. We will characterize the optimal policy by specifying where the higher weight should be. We expect that the optimal policy of the second set strictly dominates in terms of equality of opportunity, the optimal policy computed under the current investment strategy. Finally, we will quantify this optimal policy's aggregate and distributional effects on poverty, well-being, and gender earning gaps.

Keywords: developing countries, general equilibrium, inequality of opportunity, oil rents

Procedia PDF Downloads 239
180 Estimation of Ribb Dam Catchment Sediment Yield and Reservoir Effective Life Using Soil and Water Assessment Tool Model and Empirical Methods

Authors: Getalem E. Haylia

Abstract:

The Ribb dam is one of the irrigation projects in the Upper Blue Nile basin, Ethiopia, to irrigate the Fogera plain. Reservoir sedimentation is a major problem because it reduces the useful reservoir capacity by the accumulation of sediments coming from the watersheds. Estimates of sediment yield are needed for studies of reservoir sedimentation and planning of soil and water conservation measures. The objective of this study was to simulate the Ribb dam catchment sediment yield using SWAT model and to estimate Ribb reservoir effective life according to trap efficiency methods. The Ribb dam catchment is found in North Western part of Ethiopia highlands, and it belongs to the upper Blue Nile and Lake Tana basins. Soil and Water Assessment Tool (SWAT) was selected to simulate flow and sediment yield in the Ribb dam catchment. The model sensitivity, calibration, and validation analysis at Ambo Bahir site were performed with Sequential Uncertainty Fitting (SUFI-2). The flow data at this site was obtained by transforming the Lower Ribb gauge station (2002-2013) flow data using Area Ratio Method. The sediment load was derived based on the sediment concentration yield curve of Ambo site. Stream flow results showed that the Nash-Sutcliffe efficiency coefficient (NSE) was 0.81 and the coefficient of determination (R²) was 0.86 in calibration period (2004-2010) and, 0.74 and 0.77 in validation period (2011-2013), respectively. Using the same periods, the NS and R² for the sediment load calibration were 0.85 and 0.79 and, for the validation, it became 0.83 and 0.78, respectively. The simulated average daily flow rate and sediment yield generated from Ribb dam watershed were 3.38 m³/s and 1772.96 tons/km²/yr, respectively. The effective life of Ribb reservoir was estimated using the developed empirical methods of the Brune (1953), Churchill (1948) and Brown (1958) methods and found to be 30, 38 and 29 years respectively. To conclude, massive sediment comes from the steep slope agricultural areas, and approximately 98-100% of this incoming annual sediment loads have been trapped by the Ribb reservoir. In Ribb catchment, as well as reservoir systematic and thorough consideration of technical, social, environmental, and catchment managements and practices should be made to lengthen the useful life of Ribb reservoir.

Keywords: catchment, reservoir effective life, reservoir sedimentation, Ribb, sediment yield, SWAT model

Procedia PDF Downloads 189