Search results for: saline and alkaline soils
1595 Probabilistic Simulation of Triaxial Undrained Cyclic Behavior of Soils
Authors: Arezoo Sadrinezhad, Kallol Sett, S. I. Hariharan
Abstract:
In this paper, a probabilistic framework based on Fokker-Planck-Kolmogorov (FPK) approach has been applied to simulate triaxial cyclic constitutive behavior of uncertain soils. The framework builds upon previous work of the writers, and it has been extended for cyclic probabilistic simulation of triaxial undrained behavior of soils. von Mises elastic-perfectly plastic material model is considered. It is shown that by using probabilistic framework, some of the most important aspects of soil behavior under cyclic loading can be captured even with a simple elastic-perfectly plastic constitutive model.Keywords: elasto-plasticity, uncertainty, soils, fokker-planck equation, fourier spectral method, finite difference method
Procedia PDF Downloads 3791594 The Evaluation of Heavy Metal Pollution Degree in the Soils Around the Zangezur Copper and Molybdenum Combine
Authors: K. A. Ghazaryan, G. A. Gevorgyan, H. S. Movsesyan, N. P. Ghazaryan, K. V. Grigoryan
Abstract:
The heavy metal pollution degree in the soils around the Zangezur copper and molybdenum combine in Syunik Marz, Armenia was aessessed. The results of the study showed that heavy metal pollution degree in the soils mainly decreased with increasing distance from the open mine and the ore enrichment combine which indicated that the open mine and the ore enrichment combine were the main sources of heavy metal pollution. The only exception was observed in the northern part of the open mine where pollution degree in the sites (along the open mine) situated 600 meters far from the mine was higher than that in the sites located 300 meters far from the mine. This can be explained by the characteristics of relief and air currents as well as the weak vegetation cover of these sites and the characteristics of soil structure. According to geo-accumulation index (I-geo), contamination factor (Cf), contamination degree (Cd) and pollution load index (PLI) values, the pollution degree in the soils around the open mine and the ore enrichment combine was higher than that in the soils around the tailing dumps which was due to the proper and accurate operation of the Artsvanik tailing damp and the recultivation of the Voghji tailing dump. The high Cu and Mo pollution of the soils was conditioned by the character of industrial activities, the moving direction of air currents as well as the physicochemical peculiarities of the soils.Keywords: Armenia, Zangezur copper and molybdenum combine, soil, heavy metal pollution degree
Procedia PDF Downloads 3021593 Experimental Assessment of Alkaline Leaching of Lepidolite
Authors: António Fiúza, Aurora Futuro, Joana Monteiro, Joaquim Góis
Abstract:
Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, which is necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques minimize the laboratory effort required by conventional approaches and allow phenomenological comprehension.Keywords: alkaline leaching, lithium, research design, statistical interpretation
Procedia PDF Downloads 971592 Postoperative Budesonide Nasal Irrigation vs Normal Saline Irrigation for Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis
Authors: Rakan Hassan M. Alzahrani, Ziyad Alzahrani, Bader Bashrahil, Abdulrahman Elyasi, Abdullah a Ghaddaf, Rayan Alzahrani, Mohammed Alkathlan, Nawaf Alghamdi, Dakheelallah Almutairi
Abstract:
Background: Corticosteroid irrigations, which regularly involve the off-label use of budesonide mixed with normal saline in high volume Sino-nasal irrigations, have been more commonly used in the management of post-operative chronic rhinosinusitis (CRS). Objective: This article attempted to measure the efficacy of post-operative budesonide nasal irrigation compared to normal saline-alone nasal irrigation in the management of chronic rhinosinusitis (CRS) through a systematic review and meta-analysis of randomized controlled trials (RCTs). Methods: The databases PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched by two independent authors. Only RCTs comparing budesonide irrigation to normal saline alone irrigation for CRS with or without polyposis after functional endoscopic sinus surgery (FESS) were eligible. A random effect analysis model of the reported CRS-related quality of life (QOL) measures and the objective endoscopic assessment scales of the disease was done. Results: Only 6 RCTs met the eligibility criteria, with a total number of participants of 356. Compared to normal saline irrigation, budesonide nasal irrigation showed statically significant improvements in both the CRS-related quality of life (QOL) and the endoscopic findings (MD= -4.22 confidence interval [CI]: -5.63, -2.82 [P < 0.00001]), (SMD= -0.50 confidence interval [CI]: -0.93, -0.06 [P < 0.03]) respectively. Conclusion: Both intervention arms showed improvements in CRS-related QOL and endoscopic findings in post-FESS chronic rhinosinusitis with or without polyposis. However, budesonide irrigation seems to have a slight edge over conventional normal saline irrigation with no reported serious side effects, including hypothalamic-pituitary-adrenal (HPA) axis suppression.Keywords: Budesonide, chronic rhinosinusitis, corticosteroids, nasal irrigation, normal saline
Procedia PDF Downloads 781591 Physicochemistry of Pozzolanic Stabilization of a Class A-2-7 Lateritic Soil
Authors: Ahmed O. Apampa, Yinusa A. Jimoh
Abstract:
The paper examines the mechanism of pozzolan-soil reactions, using a recent study on the chemical stabilization of a Class A-2-7 (3) lateritic soil, with corn cob ash (CCA) as case study. The objectives are to establish a nexus between cation exchange capacity of the soil, the alkaline forming compounds in CCA and percentage CCA addition to soil beyond which no more improvement in strength properties can be achieved; and to propose feasible chemical reactions to explain the chemical stabilization of the lateritic soil with CCA alone. The lateritic soil, as well as CCA of pozzolanic quality Class C were separately analysed for their metallic oxide composition using the X-Ray Fluorescence technique. The cation exchange capacity (CEC) of the soil and the CCA were computed theoretically using the percentage composition of the base cations Ca2+, Mg2+ K+ and Na2+ as 1.48 meq/100 g and 61.67 meq/100 g respectively, thus indicating a ratio of 0.024 or 2.4%. This figure, taken as the theoretical amount required to just fill up the exchangeable sites of the clay molecules, compares well with the laboratory observation of 1.5% for the optimum level of CCA addition to lateritic soil. The paper went on to present chemical reaction equations between the alkaline earth metals in the CCA and the silica in the lateritic soil to form silicates, thereby proposing an extension of the theory of mechanism of soil stabilization to cover chemical stabilization with pozzolanic ash only. The paper concluded by recommending further research on the molecular structure of soils stabilized with pozzolanic waste ash alone, with a view to confirming the chemical equations advanced in the study.Keywords: cation exchange capacity, corn cob ash, lateritic soil, soil stabilization
Procedia PDF Downloads 2481590 Hemp Defoliation Technology and Management before Harvesting
Authors: Rataya Yanaphan, Saksiri Kuppatarat, Sarita Pinmanee
Abstract:
Hemp (Cannabis sativa L. ssp. Sativa) cultivation for fiber is limited by extremely high labor cost, especially for the removal of the leaves before harvest. This study evaluated chemical defoliants as a means to remove the leaves of hemp before harvest, in an effort to reduce labor expenditures in the production on hemp fiber. This study was conducted by spraying the leaves of hemp with five different treatments: saline solution, Urea (CH4N2O), Ethephon, copper Sulphate (CuSO4) and water (control) before harvesting. The largest percentage of leaf loss 6 days after spraying was with saline solution (43%), followed by Ethephon (32%). However, saline solution also caused drying of the stems but Ethephon did not. Thus, Ethephon was evaluated in the second experiment by spraying with Ethephon concentrations of 0, 10, 15 and 20 ml per 1 liter of water at 7 days before harvest. Spraying with 0.5% Ethephon resulted in 13.6% leaf fall. Spraying with 1.5% and 2% Ethephon resulted in 82.2% and 82.3 % leaf fall, respectively. In addition, using Ethephon to defoliate hemp had no detrimental effect the yield. Therefore, Ethephon concentration at 15 ml per 1 liter of water will be recommended for use in removing hemp leaves by spraying at 7 days before harvest to lower labor cost.Keywords: defoliation technology, ethephon, hemp cultivation, saline solution
Procedia PDF Downloads 2201589 The Increasing of Unconfined Compression Strength of Clay Soils Stabilized with Cement
Authors: Ali̇ Si̇nan Soğanci
Abstract:
The cement stabilization is one of the ground improvement method applied worldwide to increase the strength of clayey soils. The using of cement has got lots of advantages compared to other stabilization methods. Cement stabilization can be done quickly, the cost is low and creates a more durable structure with the soil. Cement can be used in the treatment of a wide variety of soils. The best results of the cement stabilization were seen on silts as well as coarse-grained soils. In this study, blocks of clay were taken from the Apa-Hotamış conveyance channel route which is 125km long will be built in Konya that take the water with 70m3/sec from Mavi tunnel to Hotamış storage. Firstly, the index properties of clay samples were determined according to the Unified Soil Classification System. The experimental program was carried out on compacted soil specimens with 0%, 7 %, 15% and 30 % cement additives and the results of unconfined compression strength were discussed. The results of unconfined compression tests indicated an increase in strength with increasing cement content.Keywords: cement stabilization, unconfined compression test, clayey soils, unified soil classification system.
Procedia PDF Downloads 4231588 The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran
Authors: Milad Mirzaei Aminiyan, Abdolreza Akhgar, Farzad Mirzaei Aminiyan
Abstract:
Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.Keywords: groundwater quality, irrigation water quality, salinity, alkalinity, Rafsanjan plain, pistachio
Procedia PDF Downloads 4171587 Quantification of Extent of Pollution from Total Lead in the Shooting Ranges Found in Southern and Central Botswana: A Pioneering Study
Authors: Nicholas Sehube, Rosemary Kelebemang, Pogisego Dinake
Abstract:
The extent of Pb contamination of shooting range soils has never been ascertained in Botswana, this was the first attempt in evaluating the deposition of Pb into the soils emanating from munitions. A total of 8 military shooting ranges were used for this study. Soil samples were collected at each of the 8 shooting ranges at the berm (stop butt), target line, 50 and 100 m from the berm. In all of the shooting ranges investigated the highest concentrations were found in the berm soils. The highest Pb concentrations of 38 406.87 mg/Kg were found in the berm soils of Thebephatshwa shooting range which is enclosed within a military camp with staff residential dwelling only a kilometre away. Most of the shooting ranges soils contained elevated levels of Pb in the ranges above 2000 mg/kg far exceeding the United States Environmental Protection Agency (USEPA) critical value of 400 mg/Kg. Mobilization of lead at high pH is attributed to low organic matter and such was the case with Thebephatshwa shooting range with a percept organic matter of 0.35±0.08. The predominant weathering products in these shooting ranges were cerussite (PbCO3), hydrocerussite (Pb(CO3)2(OH)2 and massicot (PbO). The detailed examination and characterization of the extent of pollution will help in the development and implementation of scientifically sound remediation and restoration of shooting ranges soils.Keywords: ammunition, Botswana, Pb, pollution, soil
Procedia PDF Downloads 2361586 The Friction of Oil Contaminated Granular Soils; Experimental Study
Authors: Miron A., Tadmor R., Pinkert S.
Abstract:
Soil contamination is a pressing environmental concern, drawing considerable focus due to its adverse ecological and health outcomes, and the frequent occurrence of contamination incidents in recent years. The interaction between the oil pollutant and the host soil can alter the mechanical properties of the soil in a manner that can crucially affect engineering challenges associated with the stability of soil systems. The geotechnical investigation of contaminated soils has gained momentum since the Gulf War in the 1990s, when a massive amount of oil was spilled into the ocean. Over recent years, various types of soil contaminations have been studied to understand the impact of pollution type, uncovering the mechanical complexity that arises not just from the pollutant type but also from the properties of the host soil and the interplay between them. This complexity is associated with diametrically opposite effects in different soil types. For instance, while certain oils may enhance the frictional properties of cohesive soils, they can reduce the friction in granular soils. This striking difference can be attributed to the different mechanisms at play: physico-chemical interactions predominate in the former case, whereas lubrication effects are more significant in the latter. this study introduces an empirical law designed to quantify the mechanical effect of oil contamination in granular soils, factoring the properties of both the contaminating oil and the host soil. This law is achieved by comprehensive experimental research that spans a wide array of oil types and soils with unique configurations and morphologies. By integrating these diverse data points, our law facilitates accurate predictions of how oil contamination modifies the frictional characteristics of general granular soils.Keywords: contaminated soils, lubrication, friction, granular media
Procedia PDF Downloads 551585 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils
Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade
Abstract:
Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.Keywords: bearing capacity, reinforcement, geogrid, plate load test, layered soils
Procedia PDF Downloads 1741584 Stabilization of Expansive Soils with Polypropylene Fiber
Authors: Ali Sinan Soğancı
Abstract:
Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent
Procedia PDF Downloads 4731583 Estimation of Subgrade Resilient Modulus from Soil Index Properties
Authors: Magdi M. E. Zumrawi, Mohamed Awad
Abstract:
Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.Keywords: Consistency factor, resilient modulus, subgrade soil, properties
Procedia PDF Downloads 1931582 Investigation on the Changes in the Chemical Composition and Ecological State of Soils Contaminated with Heavy Metals
Authors: Metodi Mladenov
Abstract:
Heavy metals contamination of soils is a big problem mainly as a result of industrial production. From this point of view, this is of interests the processes for decontamination of soils for crop of production with low content of heavy metals and suitable for consumption from the animals and the peoples. In the current article, there are presented data for established changes in chemical composition and ecological state on soils contaminated from non-ferrous metallurgy manufacturing, for seven years time period. There was done investigation on alteration of pH, conductivity and contain of the next elements: As, Cd, Cu, Cr, Ni, Pb, Zn, Co, Mn and Al. Also, there was done visual observations under the processes of recovery of root-inhabitable soil layer and reforestation. Obtained data show friendly changes for the investigated indicators pH and conductivity and decreasing of content of some form analyzed elements. Visual observations show augmentation of plant cover areas and change in species structure with increase of number of shrubby and wood specimens.Keywords: conductivity, contamination of soils, chemical composition, inductively coupled plasma–optical emission spectrometry, heavy metals, visual observation
Procedia PDF Downloads 1801581 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils
Authors: Ali Sinan Soğancı
Abstract:
Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent
Procedia PDF Downloads 5191580 Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia
Authors: Nicolaas Unland, John Webb
Abstract:
The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies.Keywords: acid sulfate soil, incubation, management, model, risk
Procedia PDF Downloads 3581579 Effect on Nutritional and Antioxidant Properties of Yellow Alkaline Noodles Substituted with Different Levels of Mangosteen (Garcinia Mangostana) Pericarp Powder
Authors: Mardiana Ahamad Zabidi, Nurain Abdul Karim, Nur Shazrinna Sazali
Abstract:
Mangosteen (Garcinia mangostana) pericarp is considered as agricultural waste and not fully utilized in food products. It is widely reported that mangosteen pericarp contains high antioxidant properties. The objective of this study is to develop novel yellow alkaline noodle (YAN) substituted with different levels of mangosteen pericarp powder (MPP). YAN formulation was substituted with different levels of MPP (0%, 5%, 10% and 15%). The effect on nutritional and antioxidant properties were evaluated. Higher substitution levels of MPP resulted in significant increase (p < 0.05) of ash, fibre, specific mineral elements, and antioxidant properties (total phenolic, total flavonoid, anthocyanin and DPPH) than control sample.Keywords: antioxidant properties, Mangosteen pericarp, proximate composition, yellow alkaline noodle
Procedia PDF Downloads 4311578 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils
Authors: Waddah Abdullah, Saleh Al-Sarem
Abstract:
Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency
Procedia PDF Downloads 1841577 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials
Authors: R. Ziaie Moayed, A. Khalili
Abstract:
Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.Keywords: bearing capacity, FLAC3D, geosynthetic, settlement, stone column
Procedia PDF Downloads 1721576 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province
Authors: Kourosh Nazarian
Abstract:
Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.Keywords: Stress, creep, faryab, surface runoff
Procedia PDF Downloads 1791575 Classification Systems of Peat Soils Based on Their Geotechnical, Physical and Chemical Properties
Authors: Mohammad Saberian, Reza Porhoseini, Mohammad Ali Rahgozar
Abstract:
Peat is a partially carbonized vegetable tissue which is formed in wet conditions by decomposition of various plants, mosses and animal remains. This restricted definition, including only materials which are entirely of vegetative origin, conflicts with several established soil classification systems. Peat soils are usually defined as soils having more than 75 percent organic matter. Due to this composition, the structure of peat soil is highly different from the mineral soils such as silt, clay and sand. Peat has high compressibility, high moisture content, low shear strength and low bearing capacity, so it is considered to be in the category of problematic. Since this kind of soil is generally found in many countries and various zones, except for desert and polar zones, recognizing this soil is inevitably significant. The objective of this paper is to review the classification of peats based on various properties of peat soils such as organic contents, water content, color, odor, and decomposition, scholars offer various classification systems which Von Post classification system is one of the most well-known and efficient system.Keywords: peat soil, degree of decomposition, organic content, water content, Von Post classification
Procedia PDF Downloads 5951574 The Grain Size Distribution of Sandy Soils in Libya
Authors: Massoud Farag Abouklaish
Abstract:
The main aim of the present study is to investigate and classify the particle size distribution of sandy soils in Libya. More than fifty soil samples collected from many regions in North, West and South of Libya. Laboratory sieve analysis tests performed on disturbed soil samples to determine grain size distribution. As well as to provide an indicator of general engineering behavior and good understanding, test results are presented and analysed. In addition, conclusions, recommendations are made.Keywords: Libya, grain size, sandy soils, sieve analysis tests
Procedia PDF Downloads 6141573 Studies on Climatic and Soil Site Suitability of Major Grapes-Growing Soils of Eastern and Southern Dry Zones of Karnataka
Authors: Harsha B. R., Anil Kumar K. S.
Abstract:
Climate and soils are the two most dynamic entities among the factors affecting growth and grapes productivity. Studying of prevailing climate over the years in a region provides sufficient information related to management practices to be carried out in vineyards. Evaluating the suitability of vineyard soils under different climatic conditions serves as the yardstick to analyse the performance of grapevines. This study was formulated to study the climate and evaluate the site-suitability of soils in vineyards of southern Karnataka, which has registered its superiority in the quality production of wine. Ten soil profiles were excavated for suitability evaluation of soils, and six taluks were studied for climatic analysis. In almost all the regions studied, recharge starts at the end of the May or June months, peaking in either September or October months. Soil Starts drying from mid of December months in the taluks studied. Bangalore North (Rajanukunte) soils were highly suited for grapes cultivation with no or slight limitations. Bangalore North (GKVK Farm) was moderately suited with slight to moderate limitations of slope and available nitrogen content. Moderate suitability was observed in the rest of the profiles studied in Eastern dry zone soils with the slight to moderate limitations of either organic carbon or available nitrogen or both in the Eastern dry zone. Magadi (Southern dry zone) soils were moderately suitable with slight to moderate limitations of graveliness, available nitrogen, organic carbon, and exchangeable sodium percentage. Sustainable performance of vineyards in terms of yield can be achieved in these taluks by managing the constraints existing in soils.Keywords: climatic analysis, dry zone, water recharge, growing period, suitability, sustainability
Procedia PDF Downloads 1241572 Soil Sensibility Characterization of Granular Soils Due to Suffusion
Authors: Abdul Rochim, Didier Marot, Luc Sibille
Abstract:
This paper studies the characterization of soil sensibility due to suffusion process by carrying out a series of one-dimensional downward seepage flow tests realized with an erodimeter. Tests were performed under controlled hydraulic gradient in sandy gravel soils. We propose the analysis based on energy induced by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. With this approach, the effect of hydraulic loading histories and initial fines contents to soil sensibility are presented. It is found that for given soils, erosion coefficients are different if tests are performed under different hydraulic loading histories. For given initial fines fraction contents, the sensibility may be grouped in the same classification. The lower fines content soils tend to require larger flow energy to the onset of erosion. These results demonstrate that this approach is effective to characterize suffusion sensibility for granular soils.Keywords: erodimeter, sandy gravel, suffusion, water seepage energy
Procedia PDF Downloads 4471571 Wheat (Triticum Aestivum) Yield Improved with Irrigation Scheduling under Salinity
Authors: Taramani Yadav, Gajender Kumar, R.K. Yadav, H.S. Jat
Abstract:
Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.Keywords: Irrigation, Salinity, Wheat, Yield
Procedia PDF Downloads 1661570 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals
Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle
Abstract:
This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.Keywords: bioleaching, extraction, microorganisms, soil, polluted, Thiobacillus ferooxidans
Procedia PDF Downloads 1611569 Electrokinetic Remediation of Nickel Contaminated Clayey Soils
Authors: Waddah S. Abdullah, Saleh M. Al-Sarem
Abstract:
Electrokinetic remediation of contaminated soils has undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar contaminants (such as heavy metals) and nonpolar organic contaminants. It can efficiently be used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. EK processes have proved to be superior to other conventional methods, such as the pump and treat, and soil washing, since these methods are ineffective in such cases. This paper describes the use of electrokinetic remediation to clean up soils contaminated with nickel. Open cells, as well as advanced cylindrical cells, were used to perform electrokinetic experiments. Azraq green clay (low permeability soil, taken from the east part of Jordan) was used for the experiments. The clayey soil was spiked with 500 ppm of nickel. The EK experiments were conducted under direct current of 80 mA and 50 mA. Chelating agents (NaEDTA), disodium ethylene diamine-tetra-ascetic acid was used to enhance the electroremediation processes. The effect of carbonates presence in soils was, also, investigated by use of sodium carbonate. pH changes in the anode and the cathode compartments were controlled by using buffer solutions. The results showed that the average removal efficiency was 64%, for the Nickel spiked saturated clayey soil.Experiment results have shown that carbonates retarded the remediation process of nickel contaminated soils. Na-EDTA effectively enhanced the decontamination process, with removal efficiency increased from 64% without using the NaEDTA to over 90% after using Na-EDTA.Keywords: buffer solution, contaminated soils, EDTA enhancement, electrokinetic processes, Nickel contaminated soil, soil remediation
Procedia PDF Downloads 2451568 A Comparison between Russian and Western Approach for Deep Foundation Design
Authors: Saeed Delara, Kendra MacKay
Abstract:
Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.Keywords: pile capacity, pile settlement, Russian approach, western approach
Procedia PDF Downloads 1661567 Pre-Soaking Application of Salicylic Acid on Four Wheat Cultivars under Saline Concentrations
Authors: Saad M. Howladar, Mike Dennett
Abstract:
The effect of salinity (0-200 mMNaCl) on wheat growth (leaf and tiller numbers, and fresh and dry weights) underseed soaking (6 and 24 hs) insalicylic acid (SA) was investigated. The impact of salinity was less pronounced in salt tolerant cultivars (Sakha 93 and S24) than Paragon and S24. Chlorophyll content was increased as a response to salinity stress. It was raised in 100 mMNaCl more than 200 mMNaCl. The same trend was found in 24 hs soaking, except chlorophyll content in Paragon and S24 under 200 mMNaCl was more than 100 mMNaCl. SA application induced a positive effect on growth parameters in some cultivars, particularly Paragon under saline and non-saline condition. Soaking for 6 hs was more effective than 24 hs soaking, especially in Paragon and Sakha 93. SA supply caused a slight effect on chlorophyll content but this was not significant and there was no significant difference between both soaking hs. The effect of SA on growth parameters and chlorophyll content depends on cultivar genotype and SA concentration.Keywords: salinity, salicylic acid, growth parameters, chlorophyll content, wheat cultivars
Procedia PDF Downloads 5471566 Study of Polycyclic Aromatic Hydrocarbons Biodegradation by Bacterial Isolated from Contaminated Soils
Authors: Z. Abdessemed, N. Messaâdia, M. Houhamdi
Abstract:
The PAH (Polycyclic Aromatic Hydrocarbons) represent a persistent source of pollution for oil field soils. Their degradation, essentially dominated by the aerobic bacterial and fungal flora, exhibits certain aspects for remediation of these soils microbial oxygenases have, as their substrates, a large range of PAH. The variety and the performance of these enzymes allow the initiation of the biodegradation of any PAH through many different metabolic pathways. These pathways are very important for the recycling of the PAH in the biosphere, where substances supposed indigestible by living organisms are rapidly transformed into simples compounds, directly assimilated by the intermediate metabolism of other microorganisms.Keywords: polycyclic aromatic hydrocarbons, microbial oxygenases, biodegradation, metabolic pathways
Procedia PDF Downloads 278