Search results for: disease transmission model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21478

Search results for: disease transmission model

20668 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 134
20667 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques

Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu

Abstract:

Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.

Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare

Procedia PDF Downloads 63
20666 Synchronization of Bus Frames during Universal Serial Bus Transfer

Authors: Petr Šimek

Abstract:

This work deals with the problem of synchronization of bus frames during transmission using USB (Universal Serial Bus). The principles for synchronization between USB and the non-deterministic CAN (Controller Area Network) bus will be described here. Furthermore, the work deals with ensuring the time sequence of communication frames when receiving from multiple communication bus channels. The structure of a general object for storing frames from different types of communication buses, such as CAN and LIN (Local Interconnect Network), will be described here. Finally, an evaluation of the communication throughput of bus frames for USB High speed will be performed. The creation of this architecture was based on the analysis of the communication of control units with a large number of communication buses. For the design of the architecture, a test HW with a USB-HS interface was used, which received previously known messages, which were compared with the received result. The result of this investigation is the block architecture of the control program for test HW ensuring correct data transmission via the USB bus.

Keywords: analysis, CAN, interface, LIN, synchronization, USB

Procedia PDF Downloads 60
20665 The Diet Adherence in Cardiovascular Disease Risk Factors Patients in the North of Iran Based on the Mediterranean Diet Adherence

Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahboobeh Gholipour, Moona Naghshbandi

Abstract:

Background and objectives: Before any nutritional intervention, it is necessary to have the prospect of eating habits of people with cardiovascular risk factors. In this study, we assessed the adherence of healthy diet based on Mediterranean dietary pattern and related factors in adults in the north of Iran. Methods: This study was conducted on 550 men and women with cardiovascular risk factors that referred to Heshmat hospital in Rasht, northern Iran. Information was collected by interview and reading medical history and measuring anthropometric indexes. The Mediterranean Diet Adherence Screener was used for assessing dietary adherence, this screener was modified according to religious beliefs and culture of Iran. Results: The mean age of participants was 58±0.38 years. The mean of body mass index was 27±0.01 kg/m2, and the mean of waist circumference was 98±0.2 cm. The mean of dietary adherence was 5.76±0.07. 45% of participants had low adherence, and just 4% had suitable adherence. The mean of dietary adherence in men was significantly higher than women (p=0. 07). Participants in rural area and high educational participants insignificantly had an unsuitable dietary Adherence. There was no significant association between some cardiovascular disease risk factors and dietary adherence. Conclusion: Education to different group about dietary intake correction and using a Mediterranean dietary pattern that is similar to dietary intake in the north of Iran, for controlling cardiovascular disease is necessary.

Keywords: dietary adherence, Mediterranean dietary pattern, cardiovascular disease, north of Iran

Procedia PDF Downloads 251
20664 An Assessment of Finite Element Computations in the Structural Analysis of Diverse Coronary Stent Types: Identifying Prerequisites for Advancement

Authors: Amir Reza Heydari, Yaser Jenab

Abstract:

Coronary artery disease, a common cardiovascular disease, is attributed to the accumulation of cholesterol-based plaques in the coronary arteries, leading to atherosclerosis. This disease is associated with risk factors such as smoking, hypertension, diabetes, and elevated cholesterol levels, contributing to severe clinical consequences, including acute coronary syndromes and myocardial infarction. Treatment approaches such as from lifestyle interventions to surgical procedures like percutaneous coronary intervention and coronary artery bypass surgery. These interventions often employ stents, including bare-metal stents (BMS), drug-eluting stents (DES), and bioresorbable vascular scaffolds (BVS), each with its advantages and limitations. Computational tools have emerged as critical in optimizing stent designs and assessing their performance. The aim of this study is to provide an overview of the computational methods of studies based on the finite element (FE) method in the field of coronary stenting and discuss the potential for development and clinical application of stent devices. Additionally, the importance of assessing the ability of computational models is emphasized to represent real-world phenomena, supported by recent guidelines from the American Society of Mechanical Engineers (ASME). Validation processes proposed include comparing model performance with in vivo, ex-vivo, or in vitro data, alongside uncertainty quantification and sensitivity analysis. These methods can enhance the credibility and reliability of in silico simulations, ultimately aiding in the assessment of coronary stent designs in various clinical contexts.

Keywords: atherosclerosis, materials, restenosis, review, validation

Procedia PDF Downloads 90
20663 Serum Levels of Plasminogen Activator Inhibitor-1 (PAI-1) Are Increased in Alzheimer’s Disease and MCI Patients and Correlate With Cognitive Deficits

Authors: Francesco Angelucci, Katerina Veverova, Alžbeta Katonová, Lydia Piendel, Martin Vyhnalek, Jakub Hort

Abstract:

Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by loss of memory, cognitive functions and neurodegeneration. Plasmin is an enzyme degrading many plasma proteins. In the CNS, plasmin may reduce the accumulation of A, and have other actions relevant to AD pathophysiology. Brain plasmin synthesis is regulated by two enzymes: one activating, the tissue plasminogen activator (tPA), and the other inhibiting, the plasminogen activator inhibitor-1 (PAI-1). We investigated whether tPA and PAI-1 serum levels in AD and amnestic mild cognitive impairment (aMCI) patients are altered compared to cognitively healthy controls. Moreover, we examined the PAI-1/tPA ratio in these patient groups. 40 AD, 40 aMCI and 10 healthy controls were recruited. Venous blood was collected and PAI-1 and tPA serum concentrations were quantified by sandwich ELISAs. The results showed that PAI-1 levels increased in AD and aMCI patients. This increase negatively correlated with cognitive deficit measured by MMSE. Similarly, the ratio between tPA and PAI-1 gradually increases in aMCI and AD patients. This study demonstrates that AD and aMCI patients have altered PAI-1 serum levels and PAI-1/tPA ratio. Since these enzymes are CNS regulators of plasmin, PAI-1 serum levels could be a marker reflecting a cognitive decline in AD.

Keywords: Alzheimer disease, amnestic mild cognitive impairment, plasmin, tissue-type plasminogen activator

Procedia PDF Downloads 76
20662 Secure Optical Communication System Using Quantum Cryptography

Authors: Ehab AbdulRazzaq Hussein

Abstract:

Quantum cryptography (QC) is an emerging technology for secure key distribution with single-photon transmissions. In contrast to classical cryptographic schemes, the security of QC schemes is guaranteed by the fundamental laws of nature. Their security stems from the impossibility to distinguish non-orthogonal quantum states with certainty. A potential eavesdropper introduces errors in the transmissions, which can later be discovered by the legitimate participants of the communication. In this paper, the modeling approach is proposed for QC protocol BB84 using polarization coding. The single-photon system is assumed to be used in the designed models. Thus, Eve cannot use beam-splitting strategy to eavesdrop on the quantum channel transmission. The only eavesdropping strategy possible to Eve is the intercept/resend strategy. After quantum transmission of the QC protocol, the quantum bit error rate (QBER) is estimated and compared with a threshold value. If it is above this value the procedure must be stopped and performed later again.

Keywords: security, key distribution, cryptography, quantum protocols, Quantum Cryptography (QC), Quantum Key Distribution (QKD).

Procedia PDF Downloads 401
20661 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 64
20660 A Mathematical Analysis of Behavioural Epidemiology: Drugs Users Transmission Dynamics Based on Level Education for Susceptible Population

Authors: Firman Riyudha, Endrik Mifta Shaiful

Abstract:

The spread of drug users is one kind of behavioral epidemiology that becomes a threat to every country in the world. This problem caused various crisis simultaneously, including financial or economic crisis, social, health, until human crisis. Most drug users are teenagers at school age. A new deterministic model would be constructed to determine the dynamics of the spread of drug users by considering level of education in a susceptible population. Based on the analytical model, two equilibria points were obtained; there were E₀ (zero user) and E₁ (endemic equilibrium). Existence of equilibrium and local stability of equilibria depended on the Basic Reproduction Ratio (R₀). This parameter was defined as the expected rate of secondary prevalence and primary prevalence in virgin population along spreading primary prevalence. The zero-victim equilibrium would be locally asymptotically stable if R₀ < 1 while if R₀ > 1 the endemic equilibrium would be locally asymptotically stable. The result showed that R₀ was proportional to the rate of interaction of each susceptible population based on educational level with the users' population. It is concluded that there was a need to be given a control in interaction, so that drug users population could be minimized. Numerical simulations were also provided to support analytical results.

Keywords: drugs users, level education, mathematical model, stability

Procedia PDF Downloads 473
20659 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building

Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar

Abstract:

The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.

Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system

Procedia PDF Downloads 53
20658 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 514
20657 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 89
20656 Effects of Cranberry Juice Enriched with n-3 PUFA Consumption in Adjunct with Non-Surgical Periodontal Therapy on Glycemic Control, Antioxidant Status and Periodontal indices in Type 2 Diabetes Patients with Periodontitis

Authors: A. Zare Javid, H. Babaee, E. Ashrafzadeh, H. Yousefimanesh, M. Zakerkish, K. Ahmadi Angali, M. Ravanbakhsh

Abstract:

Introduction: Type 2 diabetes mellitus and periodontal disease hold a physiologically relationship. Periodontal disease, a common widespread chronic disease, is considered as an important complication in diabetes mellitus. The prevalence and severity of periodontal disease are increased among diabetic patients. A balanced nutrition may improve either diabetes or periodontal disease by controlling one of them. The aim of this study was to evaluate the effects of cranberry juice enriched with n-3 PUFA and their individual consumption on glycemic control and antioxidant status in diabetic patients with periodontal disease. Methods: In this randomized clinical trial 41 diabetic patients (35 – 65 y) with chronic adult periodontal disease were recruited from Endocrinology Clinic of Golestan Hospital in Ahvaz city, Iran. Subjects were randomly assigned to four groups as follow: one control group (n=12) and three intervention groups as receiving 1 g n-3 PUFA capsule (n=10), 400 ml cranberry juice (n=9), 400 ml cranberry juice enriched with 1g n-3 PUFA (n=10) for 8 weeks. Non-surgical periodontal therapy was provided for all patients during study. Fasting blood glucose, glycated hemoglobin, plasma and saliva TAOC and MDA, pocket depth and bleeding on probing were measured at baseline and post intervention. Results: There was a significant reduction in glycated hemoglobin observed in intervention groups of receiving n-3 PUFA and cranberry enriched with n-3 PUFA (11 %, P = 0.01 and 7 %, P = 0.01, respectively). The intervention group receiving n-3 PUFA had significantly lower glycated hemoglobin compared with control group. There was no significant difference found in FBS between and within groups. Furthermore, there was a significant increase in plasma TAOC only in cranberry enriched with n-3 PUFA group. Moreover, plasma MDA significantly decreased in intervention groups of receiving cranberry and cranberry enriched with n-3 PUFA. A significant increase was observed in TAOC of salvia in cranberry enriched with n-3 PUFA group compared to control group .The intervention group receiving cranberry enriched with n-3 PUFA had significantly lower MDA of salvia compared with control group. Pocket depth were significantly decreased in all groups, however, bleeding on probing didn’t significantly changed in patients post intervention. Conclusion: It is suggested that consumption of cranberry juice enriched with n-3 PUFA as a nutritional approach in adjunct with non-surgical periodontal therapy may help to improve glycosylated hemogolobin and TAOC in salvia and plasma in diabetic patients with periodontal disease.

Keywords: antioxidant, cranberry, oxidant status, periodontal disease, type 2 diabetes mellitus

Procedia PDF Downloads 421
20655 Demographic Profile, Risk Factors and In-hospital Outcomes of Acute Coronary Syndrome (ACS) in Young Population, in Pakistan-Single Center Real World Experience

Authors: Asma Qudrat, Abid Ullah, Rafi Ullah, Ali Raza, Shah Zeb, Syed Ali Shan Ul-Haq, Shahkar Ahmed Shah, Attiya Hameed Khan, Saad Zaheer, Umama Qasim, Kiran Jamal, Zahoor khan

Abstract:

Objectives: Coronary artery disease (CAD) is the major public health issue associated with high mortality and morbidity rate worldwide. Young patients with ACS have unique characteristics with different demographic profiles and risk factors. The precise diagnosis and early risk stratification is important in guiding treatment and predicting the prognosis of young patients with ACS. To evaluate the associated demographics, risk factors, and outcomes profile of ACS in young age patients. Methods: The research follow a retrospective design, the single centre study of patients diagnosis with the first event of ACS in young age (>18 and <40) were included. Data collection included demographic profiles, risk factors, and in-hospital outcomes of young ACS patients. The patient’s data was retrieved through Electronic Medical Records (EMR) of Peshawar Institute of Cardiology (PIC), and all characteristic were assessed. Results: In this study, 77% were male, and 23% were female patients. The risk factors were assessed with CAD and shown significant results (P < 0.01). The most common presentation was STEMI, with (45%) most in ACS young patients. The angiographic pattern showed single vessel disease (SVD) in 49%, double vessel disease (DVD) in 17% and triple vessel disease (TVD) was found in 10%, and Left Artery Disease (LAD) (54%) was present to be the most common involved artery. Conclusion: It is concluded that the male sex was predominant in ACS young age patients. SVD was the common coronary angiographic finding. Risk factors showed significant results towards CAD and common presentations.

Keywords: coronary artery disease, Non-ST elevation myocardial infarction, ST elevation myocardial infarction, unstable angina, acute coronary syndrome

Procedia PDF Downloads 162
20654 Self-Efficacy Psychoeducational Programme for Patients With End-Stage Renal Disease

Authors: H.C. Chen, S. W. C. Chan, K. Cheng, A. Vathsala, H. K. Sran, H. He

Abstract:

Background: End-stage renal disease (ESRD) is the last stage of chronic kidney disease. The numbers of patients with ESRD have increased worldwide due to the growing number of aging, diabetes and hypertension populations. Patients with ESRD suffer from physical illness and psychological distress due to complex treatment regimens, which often affect the patients’ social and psychological functioning. As a result, the patients may fail to perform daily self-care and self-management, and consequently experience worsening conditions. Aims: The study aims to examine the effectiveness of a self-efficacy psychoeducational programme on primary outcome (self-efficacy) and secondary outcomes (psychological wellbeing, treatment adherence, and quality of life) in patients with ESRD and haemodialysis in Singapore. Methodology: A randomised controlled, two-group pretest and repeated posttests design will be carried out. A total of 154 participants (n=154) will be recruited. The participants in the control group will receive a routine treatment. The participants in the intervention group will receive a self-efficacy psychoeducational programme in addition to the routine treatment. The programme is a two-session of educational intervention in a week. A booklet, two consecutive sessions of face-to-face individual education, and an abdominal breathing exercise are adopted in the programme. Outcome measurements include Dialysis Specific Self-efficacy Scale, Kidney Disease Quality of Life- 36 Hospital Anxiety and Depression Scale, Renal Adherence Attitudes Questionnaire and Renal Adherence Behaviour Questionnaire. The questionnaires will be used to measure at baseline, 1- and 3- and 6-month follow-up periods. Process evaluation will be conducted with a semi-structured face to face interview. Quantitative data will be analysed using SPSS21.0 software. Qualitative data will be analysed by content analysis. Significance of the study: This study will identify a clinically useful and potentially effective approach to help patients with end-stage renal disease and haemodialysis by enhancing their self-efficacy in self-care behaviour, and therefore improving their psychological wellbeing, treatment adherence and quality of life. This study will provide information to develop clinical guidelines to improve patients’ disease self-management and to enhance health-related outcomes. Hopefully it will help reducing disease burden.

Keywords: end-stage renal disease (ESRD), haemodialysis, psychoeducation, self-efficacy

Procedia PDF Downloads 302
20653 Model Driven Architecture Methodologies: A Review

Authors: Arslan Murtaza

Abstract:

Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.

Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies

Procedia PDF Downloads 456
20652 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy

Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie

Abstract:

In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.

Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data

Procedia PDF Downloads 319
20651 Microscopic Analysis of Bulk, High-Tc Superconductors by Transmission Kikuchi Diffraction

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

In this contribution, the Transmission-Kikuchi Diffraction (TKD, or sometimes called t-EBSD) is applied to bulk, melt-grown YBa₂Cu₃O₇ (YBCO) superconductors prepared by the MTMG (melt-textured melt-grown) technique and the infiltration growth (IG) technique. TEM slices required for the analysis were prepared by means of Focused Ion-Beam (FIB) milling using mechanically polished sample surfaces, which enable a proper selection of the interesting regions for investigations. The required optical transparency was reached by an additional polishing step of the resulting surfaces using FIB-Ga-ion and Ar-ion milling. The improved spatial resolution of TKD enabled the investigation of the tiny YBa₂Cu₃O₅ (Y-211) particles having a diameter of about 50-100 nm embedded within the YBCO matrix and of other added secondary phase particles. With the TKD technique, the microstructural properties of the YBCO matrix are studied in detail. It is observed that the matrix shows the effects of stress/strain, depending on the size and distribution of the embedded particles, which are important for providing additional flux pinning centers in such superconducting bulk samples. Using the Kernel Average Misorientation (KAM) maps, the strain induced in the superconducting matrix around the particles, which increases the flux pinning effectivity, can be clearly revealed. This type of analysis of the EBSD/TKD data is, therefore, also important for other material systems, where nanoparticles are embedded in a matrix.

Keywords: transmission Kikuchi diffraction, EBSD, TKD, embedded particles, superconductors YBa₂Cu₃O₇

Procedia PDF Downloads 133
20650 Evolutionary Advantages of Loneliness with an Agent-Based Model

Authors: David Gottlieb, Jason Yoder

Abstract:

The feeling of loneliness is not uncommon in modern society, and yet, there is a fundamental lack of understanding in its origins and purpose in nature. One interpretation of loneliness is that it is a subjective experience that punishes a lack of social behavior, and thus its emergence in human evolution is seemingly tied to the survival of early human tribes. Still, a common counterintuitive response to loneliness is a state of hypervigilance, resulting in social withdrawal, which may appear maladaptive to modern society. So far, no computational model of loneliness’ effect during evolution yet exists; however, agent-based models (ABM) can be used to investigate social behavior, and applying evolution to agents’ behaviors can demonstrate selective advantages for particular behaviors. We propose an ABM where each agent contains four social behaviors, and one goal-seeking behavior, letting evolution select the best behavioral patterns for resource allocation. In our paper, we use an algorithm similar to the boid model to guide the behavior of agents, but expand the set of rules that govern their behavior. While we use cohesion, separation, and alignment for simple social movement, our expanded model adds goal-oriented behavior, which is inspired by particle swarm optimization, such that agents move relative to their personal best position. Since agents are given the ability to form connections by interacting with each other, our final behavior guides agent movement toward its social connections. Finally, we introduce a mechanism to represent a state of loneliness, which engages when an agent's perceived social involvement does not meet its expected social involvement. This enables us to investigate a minimal model of loneliness, and using evolution we attempt to elucidate its value in human survival. Agents are placed in an environment in which they must acquire resources, as their fitness is based on the total resource collected. With these rules in place, we are able to run evolution under various conditions, including resource-rich environments, and when disease is present. Our simulations indicate that there is strong selection pressure for social behavior under circumstances where there is a clear discrepancy between initial resource locations, and against social behavior when disease is present, mirroring hypervigilance. This not only provides an explanation for the emergence of loneliness, but also reflects the diversity of response to loneliness in the real world. In addition, there is evidence of a richness of social behavior when loneliness was present. By introducing just two resource locations, we observed a divergence in social motivation after agents became lonely, where one agent learned to move to the other, who was in a better resource position. The results and ongoing work from this project show that it is possible to glean insight into the evolutionary advantages of even simple mechanisms of loneliness. The model we developed has produced unexpected results and has led to more questions, such as the impact loneliness would have at a larger scale, or the effect of creating a set of rules governing interaction beyond adjacency.

Keywords: agent-based, behavior, evolution, loneliness, social

Procedia PDF Downloads 94
20649 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation

Procedia PDF Downloads 145
20648 Associations Between Psychological Distress and COVID-19 Disease Course: A Retrospective Cohort Study of 3084 Cases in Belgium

Authors: Gwendy Darras, Mattias Desmet

Abstract:

Previous research showed that psychological distress has a negative impact on the disease course of viral infections. For COVID-19, the same association was observed in small samples of specific segments of the population (e.g. health care workers). The present study presents a more refined analysis of this association, measuring a broader spectrum of psychological distress in a large sample (n=3084) of the general Flemish population. Several types of psychological distress (state, trait and health anxiety, depression, intra-, and interpersonal stress) are registered throughout three periods: one year before the contamination, one week before the contamination, and during the contamination. In doing so, validated scales such as DASS-21, IIP-32, and FCV-19S are used. Furthermore, the course of COVID-19 is registered in several ways: number of symptoms, number of days sick leave due to COVID-19, and number of days the symptoms have lasted. Also, different control variables such as vaccination status, medical and psychological history are taken into account. Statistical analysis shows that all types of psychological distress are positively correlated with the severity of the COVID-19 disease course. Anxiety during the contamination shows the strongest correlation, but psychological distress one year before the onset of COVID-19 was still significantly associated with the worsening of the disease course. As the assessment of the latter type of distress happened before the onset of the COVID-19 disease course, retrospective bias resulting in artificial associations between self-reported stress and COVID-19 severity is unlikely to have impacted the observations. In view of possible future pandemics, it is important to focus on general stress and anxiety reduction in the general population as soon as possible. It is also advisable to minimize the use of stress-inducing messages to encourage the population to adhere to the measures issued during a pandemic.

Keywords: anxiety, COVID-19, depression, psychoneuroimmunology, psychological distress, stress

Procedia PDF Downloads 83
20647 Epidemiology, Prevention and Treatment of Leishmaniasis in Afghanistan

Authors: Mohammad Reza Mohammadi, Layegheh Daliri

Abstract:

Introduction: Leishmaniasis occurs in infectious diseases of Leishmania protozoa in Afghanistan, anthroponotic leishmaniasis and common cutaneous leishmaniasis (ZCL). Anthroponotic skin leishmania tropica may cause urban diseases and transmitted by Phlebotomus Sergenti. In different parts of Afghanistan, different species of Leishmania are observed. We report the epidemiological characteristics of prevention and treatment in this study. Methods: This study examines the epidemiology and prevention of religious diseases in Afghanistan. Knowledge gaps were analyzed and collected with our own data. Results: In Afghanistan, most of the Lishmania Tropic seekers are Four species of Leishmania in northern Afghanistan, including Leishmania Tropica, L. Major and L. Donovani, cause skin lesions, but L. Donovani and L. infantum are visible. Even combined prevention can significantly reduce the amount of infection. Conclusion: Skinny, as well as visceral leishmaniasis, can occur among the returnees from Afghanistan. Unusual and poor skin lesions can be created by L. Donovani. In most pathogenic areas, the transmission of common diseases between humans and animals. Home dogs are the main reservoir, transferring in some areas such as India and Sudan.

Keywords: leishmania donovani, leishmania tropica, treatment, disease, epidemiology

Procedia PDF Downloads 179
20646 Transcriptome Analysis for Insights into Disease Progression in Dengue Patients

Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee

Abstract:

Dengue virus infection is now considered as one of the most important mosquito-borne infection in human. The virus is known to promote vascular permeability, cerebral edema leading to Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Dengue infection has known to be endemic in India for over two centuries as a benign and self-limited disease. In the last couple of years, the disease symptoms have changed, manifesting severe secondary complication. So far, Delhi has experienced 12 outbreaks of dengue virus infection since 1997 with the last reported in 2014-15. Without specific antivirals, the case management of high-risk dengue patients entirely relies on supportive care, involving constant monitoring and timely fluid support to prevent hypovolemic shock. Nonetheless, the diverse clinical spectrum of dengue disease, as well as its initial similarity to other viral febrile illnesses, presents a challenge in the early identification of this high-risk group. WHO recommends the use of warning signs to identify high-risk patients, but warning signs generally appear during, or just one day before the development of severe illness, thus, providing only a narrow window for clinical intervention. The ability to predict which patient may develop DHF and DSS may improve the triage and treatment. With the recent discovery of high throughput RNA sequencing allows us to understand the disease progression at the genomic level. Here, we will collate the results of RNA-Sequencing data obtained recently from PBMC of different categories of dengue patients from India and will discuss the possible role of deregulated genes and long non-coding RNAs NEAT1 for development of disease progression.

Keywords: long non-coding RNA (lncRNA), dengue, peripheral blood mononuclear cell (PBMC), nuclear enriched abundant transcript 1 (NEAT1), dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS)

Procedia PDF Downloads 306
20645 Effects of Blood Pressure According to Age on End-Stage Renal Disease Development in Diabetes Mellitus Patients: A Nationwide Population-Based Cohort Study

Authors: Eun Hui Bae, Sang Yeob Lim, Bongseong Kim, Tae Ryom Oh, Su Hyun Song, Sang Heon Suh, Hong Sang Choi, Eun Mi Yang, Chang Seong Kim, Seong Kwon Ma, Kyung-Do Han, Soo Wan Kim

Abstract:

Background: Recent hypertension guidelines have recommended lower blood pressure (BP) targets in high-risk patients. However, there are no specific guidelines based on age or systolic and diastolic blood pressure (SBP and DBP, respectively). We aimed to assess the effects of age-related BP on the development of end-stage renal disease (ESRD) in patients with diabetes. Methods: A total of 2,563,870 patients with DM aged >20 years were selected from the Korean National Health Screening Program from 2009 to 2012 and followed up until the end of 2019. Participants were categorized into age and BP groups, and the hazard ratios (HRs) for ESRD were calculated. Results: During a median follow-up of 7.15 years, the incidence rates of ESRD increased with increasing SBP and DBP. The HR for ESRD was the highest in patients younger than 40 years of age with DBP ≥ 100 mmHg. The effect of SBP and DBP on ESRD development was attenuated with age (interaction p-value was <0.0001 for age and SBP and 0.0022 for age and DBP). The subgroup analysis for sex, anti-hypertension medication, and history of chronic kidney disease (CKD) showed higher HRs for ESRD among males younger than 40 years, not taking anti-hypertension medications and CKD compared to those among females older than 40 years, anti-hypertension medication and non-CKD groups. Conclusions: Higher SBP and DBP increase the risk of developing ESRD in patients with diabetes, and in particular, younger individuals face greater risk. Therefore, intensive BP management is warranted in younger patients to prevent ESRD.

Keywords: hypertension, young adult, end-stage renal disease, diabetes mellitus, chronic kidney disease, blood pressure

Procedia PDF Downloads 124
20644 A Foodborne Cholera Outbreak in a School Caused by Eating Contaminated Fried Fish: Hoima Municipality, Uganda, February 2018

Authors: Dativa Maria Aliddeki, Fred Monje, Godfrey Nsereko, Benon Kwesiga, Daniel Kadobera, Alex Riolexus Ario

Abstract:

Background: Cholera is a severe gastrointestinal disease caused by Vibrio cholera. It has caused several pandemics. On 26 February 2018, a suspected cholera outbreak, with one death, occurred in School X in Hoima Municipality, western Uganda. We investigated to identify the scope and mode of transmission of the outbreak, and recommend evidence-based control measures. Methods: We defined a suspected case as onset of diarrhea, vomiting, or abdominal pain in a student or staff of School X or their family members during 14 February–10 March. A confirmed case was a suspected case with V. cholerae cultured from stool. We reviewed medical records at Hoima Hospital and searched for cases at School X. We conducted descriptive epidemiologic analysis and hypothesis-generating interviews of 15 case-patients. In a retrospective cohort study, we compared attack rates between exposed and unexposed persons. Results: We identified 15 cases among 75 students and staff of School X and their family members (attack rate=20%), with onset from 25-28 February. One patient died (case-fatality rate=6.6%). The epidemic curve indicated a point-source exposure. On 24 February, a student brought fried fish from her home in a fishing village, where a cholera outbreak was ongoing. Of the 21 persons who ate the fish, 57% developed cholera, compared with 5.6% of 54 persons who did not eat (RR=10; 95% CI=3.2-33). None of 4 persons who recooked the fish before eating, compared with 71% of 17 who did not recook it, developed cholera (RR=0.0, 95%CIFisher exact=0.0-0.95). Of 12 stool specimens cultured, 6 yielded V. cholerae. Conclusion: This cholera outbreak was caused by eating fried fish, which might have been contaminated with V. cholerae in a village with an ongoing outbreak. Lack of thorough cooking of the fish might have facilitated the outbreak. We recommended thoroughly cooking fish before consumption.

Keywords: cholera, disease outbreak, foodborne, global health security, Uganda

Procedia PDF Downloads 198
20643 Correlation between Microalbuminuria and Hypertension in Type 2 Diabetic Patients

Authors: Alia Ali, Azeem Taj, Muhammed Joher Amin, Farrukh Iqbal, Zafar Iqbal

Abstract:

Background: Hypertension is commonly found in patients with Diabetic Kidney Disease (DKD). Microalbuminuria is the first clinical sign of involvement of kidneys in patients with type 2 diabetes. Uncontrolled hypertension induces a higher risk of cardiovascular events, including death, increasing proteinuria and progression to kidney disease. Objectives: To determine the correlation between microalbuminuria and hypertension and their association with other risk factors in type 2 diabetic patients. Methods: One hundred and thirteen type 2 diabetic patients were screened for microalbuminuria and raised blood pressure, attending the diabetic clinic of Shaikh Zayed Hospital, Lahore, Pakistan. The study was conducted from November 2012 to June 2013. Results: Patients were divided into two groups. Group 1, those with normoalbuminuria (n=63) and Group 2, those having microalbuminuria (n=50). Group 2 patients showed higher blood pressure values as compared to Group 1. The results were statistically significant and showed poor glycemic control as a contributing risk factor. Conclusion: The study concluded that there is high frequency of hypertension among type 2 diabetics but still much higher among those having microalbuminuria. So, early recognition of renal dysfunction through detection of microalbuminuria and to start treatment without any delay will confer future protection from end-stage renal disease as well as hypertension and its complications in type 2 diabetic patients.

Keywords: hypertension, microalbuminuria, diabetic kidney disease, type 2 Diabetes mellitus

Procedia PDF Downloads 395
20642 Expression of ULK-1 mRNA in Human Peripheral Blood Mononuclear Cells from Patients with Alzheimer's Disease

Authors: Ali Bayram, Remzi Yiğiter

Abstract:

Objective: Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disease. At present, diagnosis of AD is rather late in the disease. Therefore, we attempted to find peripheral biomarkers for the early diagnosis of AD. Herein, we conducted a study to investigate the unc-51 like autophagy activating kinase-1 (ULK1) mRNA expression levels in human peripheral blood mononuclear cells from patients with Alzheimer's disease. Method: To determine whether ULK1 gene expression are altered in AD patients, we measured their gene expression in human peripheral blood cell in 50 patients with AD and 50 age and gender matched healthy controls by quantitative real-time PCR technique. Results: We found that both ULK1 gene expression in peripheral blood cell were significantly decreased in patients with AD as compared with controls (p <0.05). Lower levels of ULK1 gene expression were significantly associated with the increased risk for AD. Conclusions: Serine/threonine-protein kinase involved in autophagy in response to starvation. Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes. Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR. Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2, and PRKAG1, leading to negatively regulate AMPK activity. May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences. Plays a role early in neuronal differentiation and is required for granule cell axon formation. Alzheimer is the most common neurodegenerative disease. Our results provide useful information that the ULK1 gene expression is decreased in the neurodegeneration and AD patients with, indicating their possible systemic involvement in AD.

Keywords: Alzheimer’s sisease, ULK1, mRNA expression, RT-PCR

Procedia PDF Downloads 396
20641 Muscle Relaxant Dantrolene Repurposed to Treat Alzheimer's Disease

Authors: Huafeng Wei

Abstract:

Failures of developing new drugs primarily based on the amyloid pathology hypothesis after decades of efforts internationally lead to changes of focus targeting alternative pathways of pathology in Alzheimer’s disease (AD). Disruption of intracellular Ca2+ homeostasis, especially the pathological and excessive Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) Ca2+ channels, has been considered an upstream pathology resulting in major AD pathologies, such as amyloid and Tau pathology, mitochondria damage and inflammation, etc. Therefore, dantrolene, an inhibitor of RyRs that reduces the pathological Ca2+ release from ER and a clinically available drug for the treatment of malignant hyperthermia and muscle spasm, is expected to ameliorate AD multiple pathologies synapse and cognitive dysfunction. Our own studies indicated that dantrolene ameliorated impairment of neurogenesis and synaptogenesis in neurons developed from induced pluripotent stem cells (iPSCs) originated from skin fibroblasts of either familiar (FAD) or sporadic (SAD) AD by restoring intracellular Ca2+ homeostasis. Intranasal administration of dantrolene significantly increased its passage across the blood-brain barrier (BBB) and, therefore its brain concentrations and durations. This can render dantrolene a more effective therapeutic drug with fewer side effects for chronic AD treatment. This review summarizes the potential therapeutic and side effects of dantrolene and repurposes intranasal dantrolene as a disease-modifying drug for future AD treatment.

Keywords: Alzheimer's disease, calcium, drug development, dementia, neurodegeneration, neurogenesis

Procedia PDF Downloads 207
20640 The Role of Inflammasomes for aβ Microglia Phagocytosis in Alzheimer Disease

Authors: Francesca La Rosa , Marina Saresella, Mario Clerici, Michael Heneka

Abstract:

Neuroinflammation plays a key role in the modulation of the pathogenesis of neurodegenerative disorder such as Alzheimer's Disease (AD). Microglia, the main immune effector of the brain, are able to migrate to sites of Amyloid-beta (Aβ) deposition to eliminate Aβ phagocytosis upon activation by multiple receptors: Toll like receptors and scavenger receptors. The issue of whether microglia are able to eliminate pathological lesions such as neurofibrillary tangles or senile plaques from AD brain still remains the matter of controversy. Recent data suggest that the Nod Like Receptor 3 (NLRP3), multiprotein inflammasome complexes, plays a role in AD, as its activation in the microglia by Aβ triggers. IL-1β is produced as a biologically inactive pro-form and requires caspase-1 for activation and secretion. Caspase-1 activity is controlled by inflammasomes. We investigate about the importance of inflammasomes complex in the Aβ phagocytosis and its degradation. The preliminary results of phagocytosis assay and immunofluorescent experiment on primary Microglia cells to lipopolysaccharide (LPS) an Aβ exposure show that a previous treatment with LPS reduce Aβ phagocytosis. Different results were obtained in Primary Microglia wild type, NLRP3 and ASC Knockout suggesting a real inflammasomes involvement in Alzheimer's pathology. Inflammasomes inactivation reduces the production of inflammatory cytokines prolonging the protective activity of microglia and Aβ clearance, featuring a typical microglia phenotype of the early stage of AD disease.

Keywords: Alzheimer disease, innate immunity, neuroinflammation, NLRP3

Procedia PDF Downloads 453
20639 The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose

Authors: Mohamed Rabhi, Kouider Halim Benrahou

Abstract:

The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations.

Keywords: CMC, rheological modeling, Ostwald model, cross model, viscosity

Procedia PDF Downloads 402