Search results for: motor fluctuations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1333

Search results for: motor fluctuations

553 Climate Change, Agriculture and Food Security in Sub-Saharan Africa: What Effects and What Answers?

Authors: Abdoulahad Allamine

Abstract:

The objective of this study is to assess the impact of climate variability on agriculture and food security in 43 countries of sub-Saharan Africa. We use for this purpose the data from BADC bases, UNCTAD, and WDI FAOSTAT to estimate a VAR model on panel data. The sample is divided into three (03) agro-climatic zones, more explicitly the equatorial zone, the Sahel region and the semi-arid zone. This allows to highlight the differential impacts sustained by countries and appropriate responses to each group of countries. The results show that the sharp fluctuations in the volume of rainfall negatively affect agriculture and food security of countries in the equatorial zone, with heavy rainfall and high temperatures in the Sahel region. However, countries with low temperatures and low rainfall are the least affected. The hedging policies against the risks of climate variability must be more active in the first two groups of countries. On this basis and in general, we recommend integration of agricultural policies between countries is done to reduce the effects of climate variability on agriculture and food security. It would be logical to encourage regional and international closer collaboration on the development and dissemination of improved varieties, ecological intensification, and management of biotic and abiotic stresses facing these climate variability to sustainably increase food production. Small farmers also need training in agricultural risk hedging techniques related to climate variations; this requires an increase in state budgets allocated to agriculture.

Keywords: agro-climatic zones, climate variability, food security, Sub-Saharan Africa, VAR on panel data

Procedia PDF Downloads 378
552 Diesel Engine Performance Optimization to Reduce Fuel Consumption and Emissions Issues

Authors: hadi kargar, bahador shabani

Abstract:

In this article, 16 cylinder motor combustion CFD modeling with a diameter of 165 mm and 195 mm along the way to help the FIRE software to optimize its function to work. A three-dimensional model of the processes that formed inside the cylinder made that involves mixing the fuel and air, ignition and spraying. In this three-dimensional model, all chemical species, density of air fuel spraying and spray with full profile intended to detailed results from mixing the fuel and air, igniting the ignition advance, spray, and mixed media in different times and get fit by moving the piston. Optimal selection of the model for the shape of the piston and spraying fuel specifications (including the management of spraying, the number of azhneh hole, start time of spraying and spraying angle) to achieve the best fuel consumption and minimal pollution. The spray hole 6 and 7 in three different configurations with five spraying and gives the best geometry and various performances in the simulation. 6 hole spray angle, finally spraying 72.5 degrees and two forms of spraying a better performance in comparison with other items of their own.

Keywords: spray, FIRE, CFD, optimize, diesel engine

Procedia PDF Downloads 410
551 A Detailed Study of Two Different Airfoils on Flight Performance of MAV of Same Physical Dimension

Authors: Shoeb A. Adeel, Shashant Anand, Vivek Paul, Dinesh, Suraj, Roshan

Abstract:

The paper presents a study of micro air vehicles (MAVs) with wingspans of 20 Cm with two different airfoil configurations. MAVs have vast potential applications in both military and civilian areas. These MAVs are fully autonomous and supply real-time data. The paper focuses on two different designs of the MAVs one being N22 airfoil and the other a flat plate with similar dimension. As designed, the MAV would fly in a low Reynolds-number regime at airspeeds of 15 & 20 m/sec. Propulsion would be provided by an electric motor with an advanced lithium. Because of the close coupling between vehicle elements, system integration would be a significant challenge, requiring tight packaging and multifunction components to meet mass limitations and Centre of Gravity (C.G) balancing. These MAVs are feasible and within a couple of years of technology development in key areas including sensors, propulsion, Aerodynamics, and packaging these would be easily available to the users at affordable prices. The paper finally compares the flight performance of the two configurations.

Keywords: airfoil, CFD, MAV, flight performance, endurance, climb, lift, drag

Procedia PDF Downloads 486
550 Development and Evaluation of Naringenin Nanosuspension to Improve Antioxidant Potential

Authors: Md. Shadab, Mariyam N. Nashid, Venkata Srikanth Meka, Thiagarajan Madheswaran

Abstract:

Naringenin (NAR), is a naturally occurring plant flavonoid, found predominantly in citrus fruits, that possesses a wide range of pharmacological properties including anti-oxidant, anti-inflammatory behaviour, cholesterol-lowering and anticarcinogenic activities. However, despite the therapeutic potential of naringenin shown in a number of animal models, its clinical development has been hindered due to its low aqueous solubility, slow dissolution rate and inefficient transport across biological membranes resulting in low bioavailability. Naringenin nanosuspension were produced using stabilizers Tween® 80 by high pressure homogenization techniques. The nanosuspensions were characterized with regard to size (photon correlation spectroscopy (PCS), size distribution, charge (zeta potential measurements), morphology, short term physical stability, dissolution profile and antioxidant potential. A nanocrystal PCS size of about 500 nm was obtained after 20 homogenization cycles at 1500 bar. The short-term stability was assessed by storage of the nanosuspensions at 4 ◦C, room temperature and 40 ◦C. Result showed that naringenin nanosuspension was physically unstable due to large fluctuations in the particle size and zeta potential after 30 days. Naringenin nanosuspension demonstrated higher drug dissolution (97.90%) compared to naringenin powder (62.76%) after 120 minutes of testing. Naringenin nanosuspension showed increased antioxidant activity compared to naringenin powder with a percentage DPPH radical scavenging activity of 49.17% and 31.45% respectively at the lowest DPPH concentration.

Keywords: bioavailability, naringenin, nanosuspension, oral delivery

Procedia PDF Downloads 323
549 Virtual Reality for Post COVID-19 Stroke: A Case Report

Authors: Kasra Afsahi, Maryam Soheilifar

Abstract:

COVID-19 has been associated with stroke and neurological complications. The patient was a 59-year- old male who presented with sudden left hemiparesis and diplopia due to cavernous sinus thrombosis (CST) on 28/03/2020. The COVID-19 test was positive. Multislice CT (MSCT) showed ischemic infarction. He underwent surgical sinectomy 9 days after admission. Physiotherapy began for him in August 2020. Our game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and function for stroke. After 6 weeks of VR therapy plus conventional physiotherapy exercises (18 sessions, three times per week, 60 minutes each session), there were significant improvements in Brunnstrom Motor Recovery Stage (from “4” to “5”), Fugl-Meyer Scale score of upper extremity section (from 49 to 54), and Modified Barthel Index (from15 to 18). There were no adverse effects. This case with stroke post-COVID-19 due to the CST showed the usefulness of VR therapy used as an adjunct to conventional physiotherapy in improving affected upper extremity.

Keywords: COVID-19, stroke, virtual reality, rehabilitation

Procedia PDF Downloads 182
548 Establishment of Landslide Warning System Using Surface or Sub-Surface Sensors Data

Authors: Neetu Tyagi, Sumit Sharma

Abstract:

The study illustrates the results of an integrated study done on Tangni landslide located on NH-58 at Chamoli, Uttarakhand. Geological, geo-morphological and geotechnical investigations were carried out to understand the mechanism of landslide and to plan further investigation and monitoring. At any rate, the movements were favored by continuous rainfall water infiltration from the zones where the phyllites/slates and Dolomites outcrop. The site investigations were carried out including the monitoring of landslide movements and of the water level fluctuations due to rainfall give us a better understanding of landslide dynamics that have been causing in time soil instability at Tangni landslide site. The Early Warning System (EWS) installed different types of sensors and all sensors were directly connected to data logger and raw data transfer to the Defence Terrain Research Laboratory (DTRL) server room with the help of File Transfer Protocol (FTP). The slip surfaces were found at depths ranging from 8 to 10 m from Geophysical survey and hence sensors were installed to the depth of 15m at various locations of landslide. Rainfall is the main triggering factor of landslide. In this study, the developed model of unsaturated soil slope stability is carried out. The analysis of sensors data available for one year, indicated the sliding surface of landslide at depth between 6 to 12m with total displacement up to 6cm per year recorded at the body of landslide. The aim of this study is to set the threshold and generate early warning. Local peoples already alert towards landslide, if they have any types of warning system.

Keywords: early warning system, file transfer protocol, geo-morphological, geotechnical, landslide

Procedia PDF Downloads 149
547 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum

Procedia PDF Downloads 213
546 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation

Authors: Ying Xin, Shigeki Kametani

Abstract:

This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.

Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system

Procedia PDF Downloads 292
545 Design of an Electric Vehicle Model with a Dynamo Drive Setup Using Model-Based Development (MBD) (EV Using MBD)

Authors: Gondu Vykunta Rao, Madhuri Bayya, Aruna Bharathi M., Paramesw Chidamparam, B. Murali

Abstract:

The increase in software content in today’s electric vehicles is increasing attention to having vast, unique topographies from low emission to high efficiency, whereas the chemical batteries have huge short comes, such as limited cycle life, power density, and cost. As for understanding and visualization, the companies are turning toward the virtual vehicle to test their design in software which is known as a simulation in the loop (SIL). In this project, in addition to the electric vehicle (EV) technology, we are adding a dynamo with the vehicle for regenerative braking. Traditionally the principle of dynamos is used in lighting the purpose of the bicycle. Here by using the same mechanism, we are running the vehicle as well as charging the vehicle from system-level simulation to the model in the loop and then to the Hardware in Loop (HIL) by using model-based development.

Keywords: electric vehicle, simulation in the loop (SIL), model in loop (MIL), hardware in loop (HIL), dynamos, model-based development (MBD), permanent magnet synchronous motor (PMSM), current control (CC), field-oriented control (FOC), regenerative braking

Procedia PDF Downloads 110
544 Cystic Ganglionosis in Child: Rare Entity

Authors: Jatinder Pal Singh, Harpreet Singh, Gagandeep Singh Digra, Mandeep Kaur Sidhu, Pawan Kumar

Abstract:

Introduction: Ganglion cyst is a benign condition in which there is a cystic lesion in relation to a joint or a tendon sheath arising from myxoid degeneration of fibrous connective tissue. These can be unilocular or multilocular. In rare cases, there may be multiple ganglion cysts, known as cystic ganglionosis. They can occur at any age but are commonly seen in adults. Clinically they may be asymptomatic or present as swelling or mass effect in adjacent structures. These are common in extremities such as hands and feet. Case Presentation: 11-year-old female child presented with slowly progressive painless swelling of her right hand since the age of 4. Antenatal and perinatal history was unremarkable. Her family history was negative. She denies fever, malaise, morning stiffness, weight loss, fatigue, restriction of joint movements, or any sensory and motor deficit. Lab parameters were negative for inflammatory or infectious etiology. No other joint or extremity involvement was present. On physical examination, the swelling was present on the dorsum and palmer aspect of the right hand and wrist. They were non-tender on palpation without any motor or sensory deficit. MRI hand revealed multiple well-defined fluid signal intensity cystic appearing lesions in periarticular/intraarticular locations in relation to distal radio-ulnar, radio-carpal, intercarpal, carpometacarpal, metacarpophalangeal and interphalangeal joints as well as peritendinous location around flexor tendons more so in the region of wrist, palm, 1st and 5th digit and along extensor tendons in the region of wrist, largest one noted along flexor pollicis longus tendon in thenar region and along 1st digit measuring approx. 4.6 x 1.2 x 1.2 centimeter. Pressure erosions and bone remodelling were noted in the bases of the 2nd to 5th metacarpals, capitate, trapezoid, the distal shaft of 1st metacarpal, and proximal phalanx of 1st digit. Marrow edema was noted in the base and proximal shaft of the 4th metacarpal and proximal shaft of the 3rd metacarpal – likely stress or pressure related. The patient was advised of aspiration, but the family refused the procedure. Therefore the patient was kept on conservative treatment. Conclusion: Cystic ganglionosis is a rare condition with very few cases reported in the medical literature. Its prevalence and association are not known because of the rarity of this condition. It should be considered as an important differential in patients presenting with soft tissue swelling in extremities. Treatment option includes conservative management, aspiration, and surgery. Aspiration has a high recurrence rate. Although surgery has a low recurrence rate, it carries a high rate of complications. Imaging with MRI is essential for confirmation of the cystic nature of lesions and their relation with the joint capsules or tendons. This helps in differentiating from other soft tissue lesions and presurgical planning.

Keywords: radiology, rare, cystic ganglionosis, child

Procedia PDF Downloads 70
543 The Effects of Menstrual Phase on Upper and Lower Body Anaerobic Performance in College-Aged Women

Authors: Kelsey Scanlon

Abstract:

Introduction: With the rate of female collegiate and professional athletes on the rise in recent decades, fluctuations in physical performance in relation to the menstrual cycle is an important area of study. PURPOSE: The purpose of this research was to compare differences in upper and lower body maximal anaerobic capacities across a single menstrual cycle. Methode: Participants (n=11) met a total of four times; once for familiarization and again on day 1 of menses (follicular phase), day 14 (ovulation), and day 21 (luteal phase) respectively. Upper body power was assessed using a bench press weight of ~50% of the participant’s predetermined 1-repetition maximum (1-RM) on a ballistic measurement system and variables included peak force (N), mean force (N), peak power (W), mean power (W), and peak velocity (m/s). Lower body power output was collected using a standard Wingate test. The variables of interest were anaerobic capacity (w/kg), peak power (W), mean power (W), fatigue index (W/s), and total work (J). Result: Statistical significance was not observed (p > 0.05) in any of the aforementioned variables after completing multiple one ways of analyses of variances (ANOVAs) with repeated measures on time. Conclusion: Within the parameters of this research, neither female upper nor lower body power output differed across the menstrual cycle when analyzed using 50% of one repetition (1RM) maximal bench press and the 30-second maximal effort cycle ergometer Wingate test. Therefore, researchers should not alter their subject populations due to the incorrect assumption that power output may be influenced by the menstrual cycle.

Keywords: anaerobic, athlete, female, power

Procedia PDF Downloads 145
542 The Influence of Human Movement on the Formation of Adaptive Architecture

Authors: Rania Raouf Sedky

Abstract:

Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.

Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity

Procedia PDF Downloads 148
541 Sustainable Design for Building Envelope in Hot Climates: A Case Study for the Role of the Dome as a Component of an Envelope in Heat Exchange

Authors: Akeel Noori Almulla Hwaish

Abstract:

Architectural design is influenced by the actual thermal behaviour of building components, and this in turn depends not only on their steady and periodic thermal characteristics, but also on exposure effects, orientation, surface colour, and climatic fluctuations at the given location. Design data and environmental parameters should be produced in an accurate way for specified locations, so that architects and engineers can confidently apply them in their design calculations that enable precise evaluation of the influence of various parameters relating to each component of the envelope, which indicates overall thermal performance of building. The present paper will be carried out with an objective of thermal behaviour assessment and characteristics of the opaque and transparent parts of one of the very unique components used as a symbolic distinguished element of building envelope, its thermal behaviour under the impact of solar temperatures, and its role in heat exchange related to a specific U-value of specified construction materials alternatives. The research method will consider the specified Hot-Dry weather and new mosque in Baghdad, Iraq as a case study. Also, data will be presented in light of the criteria of indoor thermal comfort in terms of design parameters and thermal assessment for a“model dome”. Design alternatives and considerations of energy conservation, will be discussed as well using comparative computer simulations. Findings will be incorporated to outline the conclusions clarifying the important role of the dome in heat exchange of the whole building envelope for approaching an indoor thermal comfort level and further research in the future.

Keywords: building envelope, sustainable design, dome impact, hot-climates, heat exchange

Procedia PDF Downloads 467
540 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 34
539 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 136
538 Examination of the Self-Expression Model with Reference to Luxury Watches with Particular Regard of the Buying-Reasons

Authors: Christopher Benedikt Jakob

Abstract:

Human beings are intrigued by luxury watches for decades. It is fascinating that customers pay an enormous amount of money for specific wristwatch models. It is fascinating that customers of the luxury watch industry accept a yearly price increase. This behavior increases their desirability even more. Luxury watches are perceived as status symbols, but they are additionally accepted as a currency without the disadvantage of currency fluctuations. It is obvious that the symbolic value is more important as the functional value with reference to the buying-reasons as regards luxury watches. Nowadays human beings do not need a wristwatch to read the time. Tablets, notebooks, smartphones, the watch in the car and watches on public places are used to inform people about the current time. This is one of the reasons why there is a trend that people do not wear wristwatches anymore. Due to these facts, this study has the intention to give answers to the question why people invest an enormous amount of money on the consumption of luxury watches and why those watches are seen as a status symbol. The study examines why the luxury watch industry records significant growth rates. The self-expression model is used as an appropriate methodology to find reasons why human beings purchase specific luxury watches. This evaluative approach further discusses if human beings are aware of their current self and their ideal self and how they express them. Furthermore, the research critically evaluates the people’s social self and their ideal social self. One of the goals is to identify if customers know why they like specific luxury watches and dislike others although they have the same quality and cost comparable prices.

Keywords: luxury watch, brand awareness, buying-behaviour, consumer, self-expression

Procedia PDF Downloads 156
537 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control

Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi

Abstract:

In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.

Keywords: impedance control, control system, robots, interaction

Procedia PDF Downloads 422
536 Evaluation of an Air Energy Recovery System in Greenhouse Fed by an Axial Air Extractor

Authors: Eugueni Romantchik, Gilbero Lopez, Diego Terrazas

Abstract:

The residual wind energy recovery from axial air extractors in greenhouses represents a constant source of clean energy production, which reduces production costs by reducing energy consumption costs. The objective of this work is to design, build and evaluate a residual wind energy recovery system. This system consists of a wind turbine placed at an optimal distance, a cone in the air discharge and a mechanism to vary the blades angle of the wind turbine. The system energy balance was analyzed, measuring the main energy parameters such as voltage, amperage, air velocities and angular speeds of the rotors. Tests were carried in a greenhouse with extractor Multifan 130 (1.2 kW, 550 rpm and 1.3 m of diameter) without cone and with cone, with the wind turbine (3 blades with 1.2 m in diameter). The implementation of the system allowed recovering up to 55% of the motor's energy. With the cone installed, the electric energy recovered was increased by 10%. Experimentally, it was shown that changing in 3 degrees the original angle of the wind turbine blades, the angular velocity increases 17.7%.

Keywords: air energy, exhaust fan, greenhouse, wind turbine

Procedia PDF Downloads 158
535 InP Nanocrystals Core and Surface Electronic Structure from Ab Initio Calculations

Authors: Hamad R. Jappor, Zeyad Adnan Saleh, Mudar A. Abdulsattar

Abstract:

The ab initio restricted Hartree-Fock method is used to simulate the electronic structure of indium phosphide (InP) nanocrystals (NCs) (216-738 atoms) with sizes ranging up to about 2.5 nm in diameter. The calculations are divided into two parts, surface, and core. The oxygenated (001)-(1×1) facet that expands with larger sizes of nanocrystals is investigated to determine the rule of the surface in nanocrystals electronic structure. Results show that lattice constant and ionicity of the core part show decreasing order as nanocrystals grow up in size. The smallest investigated nanocrystal is 1.6% larger in lattice constant and 131.05% larger in ionicity than the converged value of largest investigated nanocrystal. Increasing nanocrystals size also resulted in an increase of core cohesive energy (absolute value), increase of core energy gap, and increase of core valence. The surface states are found mostly non-degenerated because of the effect of surface discontinuity and oxygen atoms. Valence bandwidth is wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence bandwidth and cohesive energy of core part of nanocrystals duo to shape variation. The present work suggests the addition of ionicity and lattice constant to the quantities that are affected by quantum confinement phenomenon. The method of the present model has threefold results; it can be used to approach the electronic structure of crystals bulk, surface, and nanocrystals.

Keywords: InP, nanocrystals core, ionicity, Hartree-Fock method, large unit cell

Procedia PDF Downloads 393
534 Numerical Investigation of a Spiral Bladed Tidal Turbine

Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry

Abstract:

From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.

Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability

Procedia PDF Downloads 115
533 Development of Adaptive Proportional-Integral-Derivative Feeding Mechanism for Robotic Additive Manufacturing System

Authors: Andy Alubaidy

Abstract:

In this work, a robotic additive manufacturing system (RAMS) that is capable of three-dimensional (3D) printing in six degrees of freedom (DOF) with very high accuracy and virtually on any surface has been designed and built. One of the major shortcomings in existing 3D printer technology is the limitation to three DOF, which results in prolonged fabrication time. Depending on the techniques used, it usually takes at least two hours to print small objects and several hours for larger objects. Another drawback is the size of the printed objects, which is constrained by the physical dimensions of most low-cost 3D printers, which are typically small. In such cases, large objects are produced by dividing them into smaller components that fit the printer’s workable area. They are then glued, bonded or otherwise attached to create the required object. Another shortcoming is material constraints and the need to fabricate a single part using different materials. With the flexibility of a six-DOF robot, the RAMS has been designed to overcome these problems. A feeding mechanism using an adaptive Proportional-Integral-Derivative (PID) controller is utilized along with a national instrument compactRIO (NI cRIO), an ABB robot, and off-the-shelf sensors. The RAMS have the ability to 3D print virtually anywhere in six degrees of freedom with very high accuracy. It is equipped with an ABB IRB 120 robot to achieve this level of accuracy. In order to convert computer-aided design (CAD) files to digital format that is acceptable to the robot, Hypertherm Robotic Software Inc.’s state-of-the-art slicing software called “ADDMAN” is used. ADDMAN is capable of converting any CAD file into RAPID code (the programing language for ABB robots). The robot uses the generated code to perform the 3D printing. To control the entire process, National Instrument (NI) compactRIO (cRio 9074), is connected and communicated with the robot and a feeding mechanism that is designed and fabricated. The feeding mechanism consists of two major parts, cold-end and hot-end. The cold-end consists of what is conventionally known as an extruder. Typically, a stepper-motor is used to control the push on the material, however, for optimum control, a DC motor is used instead. The hot-end consists of a melt-zone, nozzle, and heat-brake. The melt zone ensures a thorough melting effect and consistent output from the nozzle. Nozzles are made of brass for thermo-conductivity while the melt-zone is comprised of a heating block and a ceramic heating cartridge to transfer heat to the block. The heat-brake ensures that there is no heat creep-up effect as this would swell the material and prevent consistent extrusion. A control system embedded in the cRio is developed using NI Labview which utilizes adaptive PID to govern the heating cartridge in conjunction with a thermistor. The thermistor sends temperature feedback to the cRio, which will issue heat increase or decrease based on the system output. Since different materials have different melting points, our system will allow us to adjust the temperature and vary the material.

Keywords: robotic, additive manufacturing, PID controller, cRIO, 3D printing

Procedia PDF Downloads 212
532 Design and Implementation of Automated Car Anti-Collision System Device Using Distance Sensor

Authors: Mehrab Masayeed Habib, Tasneem Sanjana, Ahmed Amin Rumel

Abstract:

Automated car anti-collision system is a trending technology of science. A car anti-collision system is an automobile safety system. The aim of this paper was to describe designing a car anti-collision system device to reduce the severity of an accident. The purpose of this device is to prevent collision among cars and objects to reduce the accidental death of human. This project gives an overview of secure & smooth journey of car as well as the certainty of human life. This system is controlled by microcontroller PIC. Sharp distance sensor is used to detect any object within the danger range. A crystal oscillator is used to produce the oscillation and generates the clock pulse of the microcontroller. An LCD is used to give information about the safe distance and a buzzer is used as alarm. An actuator is used as automatic break and inside the actuator; there is a motor driver that runs the actuator. For coding ‘microC PRO for PIC’ was used and ’Proteus Design Suite version 8 Software’ was used for simulation.

Keywords: sharp distance sensor, microcontroller, MicroC PRO for PIC, proteus, actuator, automobile anti-collision system

Procedia PDF Downloads 467
531 Tales of Two Cities: 'Motor City' Detroit and 'King Cotton' Manchester: Transatlantic Transmissions and Transformations, Flows of Communications, Commercial and Cultural Connections

Authors: Dominic Sagar

Abstract:

Manchester ‘King Cotton’, the first truly industrial city of the nineteenth century, passing on the baton to Detroit ‘Motor City’, is the first truly modern city. We are exploring the tales of the two cities, their rise and fall and subsequent post-industrial decline, their transitions and transformations, whilst alongside paralleling their corresponding, commercial, cultural, industrial and even agricultural, artistic and musical transactions and connections. The paper will briefly contextualize how technologies of the industrial age and modern age have been instrumental in the development of these cities and other similar cities including New York. However, the main focus of the study will be the present and more importantly the future, how globalisation and the advancements of digital technologies and industries have shaped the cities developments from AlanTuring and the making of the first programmable computer to the effect of digitalisation and digital initiatives. Manchester now has a thriving creative digital infrastructure of Digilabs, FabLabs, MadLabs and hubs, the study will reference the Smart Project and the Manchester Digital Development Association whilst paralleling similar digital and creative industrial initiatives now starting to happen in Detroit. The paper will explore other topics including the need to allow for zones of experimentation, areas to play, think and create in order develop and instigate new initiatives and ideas of production, carrying on the tradition of influential inventions throughout the history of these key cities. Other topics will be briefly touched on, such as urban farming, citing the Biospheric foundation in Manchester and other similar projects in Detroit. However, the main thread will focus on the music industries and how they are contributing to the regeneration of cities. Musically and artistically, Manchester and Detroit have been closely connected by the flow and transmission of information and transfer of ideas via ‘cars and trains and boats and planes’ through to the new ‘super highway’. From Detroit to Manchester often via New York and Liverpool and back again, these musical and artistic connections and flows have greatly affected and influenced both cities and the advancement of technology are still connecting the cities. In summary two hugely important industrial cities, subsequently both experienced massive decline in fortunes, having had their large industrial hearts ripped out, ravaged leaving dying industrial carcasses and car crashes of despair, dereliction, desolation and post-industrial wastelands vacated by a massive exodus of the cities’ inhabitants. To examine the affinity, similarity and differences between Manchester & Detroit, from their industrial importance to their post-industrial decline and their current transmutations, transformations, transient transgressions, cities in transition; contrasting how they have dealt with these problems and how they can learn from each other. With a view to framing these topics with regard to how various communities have shaped these cities and the creative industries and design [the new cotton/car manufacturing industries] are reinventing post-industrial cities, to speculate on future development of these themes in relation to Globalisation, digitalisation and how cities can function to develop solutions to communal living in cities of the future.

Keywords: cultural capital, digital developments, musical initiatives, zones of experimentation

Procedia PDF Downloads 188
530 Integrating Cost-Benefit Assessment and Contract Design to Support Industrial Symbiosis Deployment

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) is the realization of Industrial Ecology (I.E) principles in production systems in function. I.S consists in the use of waste materials, fatal energy, recirculated utilities and infrastructure/service sharing as resources for production. Environmental benefits can be achieved from resource conservation but economic profitability is required by the participating actors. I.S indeed involves several actors with their own objectives and resources so that each one must be satisfied by ex-ante arrangements to commit toward I.S execution (investments and transactions). Following the Resource-Based View of transactions we build a modular framework to assess global I.S profitability and to specify each actor’s contributions to costs and benefits in line with their resource endowments and performance requirements formulations. I.S projects specificities implied by the need for customization (asset specificity, non-homogeneity) induce the use of long-term contracts for transactions following Transaction costs economics arguments. Thus we propose first a taxonomy of costs and value drivers for I.S and an assignment to each actor of I.S specific risks that we identified as load profiles mismatch, quality problems and value fluctuations. Then appropriate contractual guidelines (pricing, cost sharing and warranties) that support mutual profitability are derived from the detailed identification of contributions by the cost-benefits model. This analytical framework helps identifying what points to focus on when bargaining over contracting for transactions and investments. Our methodology is applied to I.S archetypes raised from a literature survey on eco-industrial parks initiatives and practitioners interviews.

Keywords: contracts, cost-benefit analysis, industrial symbiosis, risks

Procedia PDF Downloads 336
529 Myoelectric Analysis for the Assessment of Muscle Functions and Fatigue Monitoring of Upper Extremity for Stroke Patients Performing Robot-Assisted Bilateral Training

Authors: Hsiao-Lung Chan, Ching-Yi Wu, Yan-Zou Lin, Yo Chiao, Ya-Ju Chang

Abstract:

Robot-assisted bilateral arm training has demonstrated useful to improve motor control in stroke patients and save human resources. In clinics, the efficiency of this treatment is mostly performed by comparing functional scales before and after rehabilitation. However, most of these assessments are based on behavior evaluation. The underlying improvement of muscle activation and coordination is unknown. Moreover, stroke patients are easier to have muscle fatigue under robot-assisted rehabilitation due to the weakness of muscles. This safety issue is still less studied. In this study, EMG analysis was applied during training. Our preliminary results showed the co-contraction index and co-contraction area index can delineate the improved muscle coordination of biceps brachii vs. flexor carpiradialis. Moreover, the smoothed, normalized cycle-by-cycle median frequency of left and right extensor carpiradialis decreased as the training progress, implying the occurrence of muscle fatigue.

Keywords: robot-assisted rehabilitation, strokes, muscle coordination, muscle fatigue

Procedia PDF Downloads 472
528 FRATSAN: A New Software for Fractal Analysis of Signals

Authors: Hamidreza Namazi

Abstract:

Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.

Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 462
527 The Log S-fbm Nested Factor Model

Authors: Othmane Zarhali, Cécilia Aubrun, Emmanuel Bacry, Jean-Philippe Bouchaud, Jean-François Muzy

Abstract:

The Nested factor model was introduced by Bouchaud and al., where the asset return fluctuations are explained by common factors representing the market economic sectors and residuals (noises) sharing with the factors a common dominant volatility mode in addition to the idiosyncratic mode proper to each residual. This construction infers that the factors-residuals log volatilities are correlated. Here, we consider the case of a single factor where the only dominant common mode is a S-fbm process (introduced by Peng, Bacry and Muzy) with Hurst exponent H around 0.11 and the residuals having in addition to the previous common mode idiosyncratic components with Hurst exponents H around 0. The reason for considering this configuration is twofold: preserve the Nested factor model’s characteristics introduced by Bouchaud and al. and propose a framework through which the stylized fact reported by Peng and al. is reproduced, where it has been observed that the Hurst exponents of stock indices are large as compared to those of individual stocks. In this work, we show that the Log S-fbm Nested factor model’s construction leads to a Hurst exponent of single stocks being the ones of the idiosyncratic volatility modes and the Hurst exponent of the index being the one of the common volatility modes. Furthermore, we propose a statistical procedure to estimate the Hurst factor exponent from the stock returns dynamics together with theoretical guarantees, with good results in the limit where the number of stocks N goes to infinity. Last but not least, we show that the factor can be seen as an index constructed from the single stocks weighted by specific coefficients.

Keywords: hurst exponent, log S-fbm model, nested factor model, small intermittency approximation

Procedia PDF Downloads 34
526 Performance Evaluation and Comparison between the Empirical Mode Decomposition, Wavelet Analysis, and Singular Spectrum Analysis Applied to the Time Series Analysis in Atmospheric Science

Authors: Olivier Delage, Hassan Bencherif, Alain Bourdier

Abstract:

Signal decomposition approaches represent an important step in time series analysis, providing useful knowledge and insight into the data and underlying dynamics characteristics while also facilitating tasks such as noise removal and feature extraction. As most of observational time series are nonlinear and nonstationary, resulting of several physical processes interaction at different time scales, experimental time series have fluctuations at all time scales and requires the development of specific signal decomposition techniques. Most commonly used techniques are data driven, enabling to obtain well-behaved signal components without making any prior-assumptions on input data. Among the most popular time series decomposition techniques, most cited in the literature, are the empirical mode decomposition and its variants, the empirical wavelet transform and singular spectrum analysis. With increasing popularity and utility of these methods in wide ranging applications, it is imperative to gain a good understanding and insight into the operation of these algorithms. In this work, we describe all of the techniques mentioned above as well as their ability to denoise signals, to capture trends, to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the underlying dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and compared

Keywords: denoising, empirical mode decomposition, singular spectrum analysis, time series, underlying dynamics, wavelet analysis

Procedia PDF Downloads 101
525 Stator Short-Circuits Fault Diagnosis in Induction Motors Using Extended Park’s Vector Approach through the Discrete Wavelet Transform

Authors: K. Yahia, A. Ghoggal, A. Titaouine, S. E. Zouzou, F. Benchabane

Abstract:

This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.

Keywords: Induction Motors (IMs), Inter-turn Short-Circuits Diagnosis, Discrete Wavelet Transform (DWT), Current Park’s Vector Modulus (CPVM)

Procedia PDF Downloads 553
524 Optimizing Skill Development in Golf Putting: An Investigation of Blocked, Random, and Increasing Practice Schedules

Authors: John White

Abstract:

This study investigated the effects of practice schedules on learning and performance in golf putting, specifically focusing on the impact of increasing contextual interference (CI). University students (n=7) were randomly assigned to blocked, random, or increasing practice schedules. During acquisition, participants performed 135 putting trials using different weighted golf balls. The blocked group followed a specific sequence of ball weights, while the random group practiced with the balls in a random order. The increasing group started with a blocked schedule, transitioned to a serial schedule, and concluded with a random schedule. Retention and transfer tests were conducted 24 hours later. The results indicated that high levels of CI (random practice) were more beneficial for learning than low levels of CI (blocked practice). The increasing practice schedule, incorporating blocked, serial, and random practice, demonstrated advantages over traditional blocked and random schedules. Additionally, EEG was used to explore the neurophysiological effects of the increasing practice schedule.

Keywords: skill acquisition, motor control, learning, contextual interference

Procedia PDF Downloads 87