Search results for: green biocides
1367 Biodeterioration of Historic Parks of UK by Algae
Authors: Syeda Fatima Manzelat
Abstract:
This chapter investigates the biodeterioration of parks in the UK caused by lichens, focusing on Campbell Park and Great Linford Manor Park in Milton Keynes. The study first isolates and identifies potent biodeteriogens responsible for potential biodeterioration in these parks, enumerating and recording different classes and genera of lichens known for their biodeteriorative properties. It then examines the implications of lichens on biodeterioration at historic sites within these parks, considering impacts on historic structures, the environment, and associated health risks. Conservation strategies and preventive measures are discussed before concluding.Lichens, characterized by their symbiotic association between a fungus and an alga, thrive on various surfaces including building materials, soil, rock, wood, and trees. The fungal component provides structure and protection, while the algal partner performs photosynthesis. Lichens collected from the park sites, such as Xanthoria, Cladonia, and Arthonia, were observed affecting the historic walls, objects, and trees. Their biodeteriorative impacts were visible to the naked eye, contributing to aesthetic and structural damage. The study highlights the role of lichens as bioindicators of pollution, sensitive to changes in air quality. The presence and diversity of lichens provide insights into the air quality and pollution levels in the parks. However, lichens also pose health risks, with certain species causing respiratory issues, allergies, skin irritation, and other toxic effects in humans and animals. Conservation strategies discussed include regular monitoring, biological and chemical control methods, physical removal, and preventive cleaning. The study emphasizes the importance of a multifaceted, multidisciplinary approach to managing lichen-induced biodeterioration. Future management practices could involve advanced techniques such as eco-friendly biocides and self-cleaning materials to effectively control lichen growth and preserve historic structures. In conclusion, this chapter underscores the dual role of lichens as agents of biodeterioration and indicators of environmental quality. Comprehensive conservation management approaches, encompassing monitoring, targeted interventions, and advanced conservation methods, are essential for preserving the historic and natural integrity of parks like Campbell Park and Great Linford Manor Park.Keywords: biodeterioration, historic parks, algae, UK
Procedia PDF Downloads 321366 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities
Authors: Elmineh Tsegahun Gedif
Abstract:
Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs
Procedia PDF Downloads 1111365 Bringing the Confidence Intervals into Choropleth Mortality Map: An Example of Tainan, Taiwan
Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu
Abstract:
Background: Choropleth mortality map is commonly used to identify areas with higher mortality risk. However, the use of choropleth map alone might result in the misinterpretation of differences in mortality rates between areas. Two areas with different color shades might not actually have a significant difference in mortality rates. The mortality rates estimated for an area with a small population would be less stable. We suggest of bringing the 95% confidence intervals (CI) into the choropleth mortality map to help users interpret the areal mortality rate difference more properly. Method: In the first choropleth mortality map, we used only three color to indicate standardized mortality ratio (SMR) for each district in Tainan, Taiwan. The red color denotes that the SMR of that district was significantly higher than the Tainan average; on the contrary, the green color suggests that the SMR of that district was significantly lower than the Tainan average. The yellow color indicates that the SMR of that district was not statistically significantly different from the Tainan average. In the second choropleth mortality map, we used traditional sequential color scheme (color ramp) for different SMR in 37 districts in Tainan City with bar chart of each SMR with 95% CI in which the users could examine if the line of 95% CI of SMR of two districts overlapped (nonsignificant difference). Results: The all-causes SMR of each district in Tainan for 2008 to 2013 ranged from 0.77 (95% CI 0.75 to 0.80) in East District to 1.39 Beimen (95% CI 1.25 to 1.52). In the first choropleth mortality map, only 16 of 37 districts had red color and 8 districts had green color. For different causes of death, the number of districts with red color differed. In the first choropleth mortality map we added a bar chart with line of 95% CI of SMR in each district, in which the users could visualize the SMR differences between districts. Conclusion: Through the use of 95% CI the users could interpret the aral mortality differences more properly.Keywords: choropleth map, small area variation, standardized mortality ratio (SMR), Taiwan
Procedia PDF Downloads 3251364 Monodisperse Hallow Sandwich MOF for the Catalytic Oxidation of Benzene at Room Temperature
Authors: Srinivasapriyan Vijayan
Abstract:
Phenol is one of the most vital chemical in industry. Nowadays, phenol production is based upon the three-step cumene process, which involves a hazardous cumene hydroperoxide intermediate and produces nearly equimolar amounts of acetone as a coproduct. An attractive route in phenol production is the direct one-step selective hydroxylation of benzene using eco-friendly oxidants such as O2, N2O, and H2O2. In particular, the direct hydroxylation of benzene to form phenol with O2 has recently attracted extensive research attention because this process is green clean and eco-friendly. However, most of the catalytic systems involving O2 have a low rate of hydroxylation because the direct introduction of hydroxyl functionality into benzene is challenging. Almost all the developed catalytic systems require an elevated temperature and suffer from low conversion because of the notoriously low reactivity of aromatic C–H bonds. Moreover, increased reactivity of phenol relative to benzene makes the selective oxidation of benzene to phenol very difficult, especially under heating conditions. Hollow spheres, a very fascinating class of materials with good permeation and low density, highly monodisperse MOF hollow sandwich spheres have been rationally synthesized using monodisperse polystyrene (PS) nanoparticles as templates through a versatile step-by-step self-assembly strategy. So, our findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis. Because it is easy post-reaction separation, its cheap, green and recyclable.Keywords: benzene hydroxylation, Fe-based metal organic frameworks, molecular oxygen, phenol
Procedia PDF Downloads 2141363 Management of Urine Recovery at the Building Level
Authors: Joao Almeida, Ana Azevedo, Myriam Kanoun-Boule, Maria Ines Santos, Antonio Tadeu
Abstract:
The effects of the increasing expansion of cities and climate changes have encouraged European countries and regions to adopt nature-based solutions with ability to mitigate environmental issues and improve life in cities. Among these strategies, green roofs and urban gardens have been considered ingenious solutions, since they have the desirable potential to improve air quality, prevent floods, reduce the heat island effect and restore biodiversity in cities. However, an additional consumption of fresh water and mineral nutrients is necessary to sustain larger green urban areas. This communication discusses the main technical features of a new system to manage urine recovery at the building level and its application in green roofs. The depletion of critical nutrients like phosphorus constitutes an emergency. In turn, their elimination through urine is one of the principal causes for their loss. Thus, urine recovery in buildings may offer numerous advantages, constituting a valuable fertilizer abundantly available in cities and reducing the load on wastewater treatment plants. Although several urine-diverting toilets have been developed for this purpose and some experiments using urine directly in agriculture have already been carried out in Europe, several challenges have emerged with this practice concerning collection, sanitization, storage and application of urine in buildings. To our best knowledge, current buildings are not designed to receive these systems and integrated solutions with ability to self-manage the whole process of urine recovery, including separation, maturation and storage phases, are not known. Additionally, if from a hygiene point of view human urine may be considered a relatively safe fertilizer, the risk of disease transmission needs to be carefully analysed. A reduction in microorganisms can be achieved by storing the urine in closed tanks. However, several factors may affect this process, which may result in a higher survival rate for some pathogens. In this work, urine effluent was collected under real conditions, stored in closed containers and kept in climatic chambers under variable conditions simulating cold, temperate and tropical climates. These samples were subjected to a first physicochemical and microbiological control, which was repeated over time. The results obtained so far suggest that maturation conditions were reached for all the three temperatures and that a storage period of less than three months is required to achieve a strong depletion of microorganisms. The authors are grateful for the Project WashOne (POCI-01-0247-FEDER-017461) funded by the Operational Program for Competitiveness and Internationalization (POCI) of Portugal 2020, with the support of the European Regional Development Fund (FEDER).Keywords: sustainable green roofs and urban gardens, urban nutrient cycle, urine-based fertilizers, urine recovery in buildings
Procedia PDF Downloads 1661362 Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil
Authors: Kirstin Burger, Paul Watts, Nicole Vorster
Abstract:
Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca.Keywords: bio-based compounds, plasticizer, tensile strength, microbiological inhibition , synthesis
Procedia PDF Downloads 1861361 System Transformation: Transitioning towards Low Carbon, Resource Efficient, and Circular Economy for Global Sustainability
Authors: Anthony Halog
Abstract:
In the coming decades the world that we know today will be drastically transformed. Population and economic growth, particularly in developing countries, are radically changing the demand for food and natural resources. Due to the transformations caused by these megatrends, especially economic growth which is rapidly expanding the middle class and changing consumption patterns worldwide, it is expected that this will result to an increase of approximately 40 percent in the demand for food, water, energy and other resources in the next decades. To fulfill this demand in a sustainable and efficient manner while avoiding food and water scarcity as well as environmental catastrophes in the near future, some industries, particularly the ones involved in food and energy production, have to drastically change its current production systems towards circular and green economy. In Australia, the agri-food industry has played a very important role in the scenario described above. It is one of the major food exporters in the world, supplying fast growing international markets in Asia and the Middle East. Though the Australian food supply chains are economically and technologically developed, it has been facing enduring challenges about its international competitiveness and environmental burdens caused by its production processes. An integrated framework for sustainability assessment is needed to precisely identify inefficiencies and environmental impacts created during food production processes. This research proposes a combination of industrial ecology and systems science based methods and tools intending to develop a novel and useful methodological framework for life cycle sustainability analysis of the agri-food industry. The presentation highlights circular economy paradigm aiming to implement sustainable industrial processes to transform the current industrial model of agri-food supply chains. The results are expected to support government policy makers, business decision makers and other stakeholders involved in agri-food-energy production system in pursuit of green and circular economy. The framework will assist future life cycle and integrated sustainability analysis and eco-redesign of food and other industrial systems.Keywords: circular economy, eco-efficiency, agri-food systems, green economy, life cycle sustainability assessment
Procedia PDF Downloads 2811360 Morpho-Anatomical Responses of Leaf Lettuce (Lactuca sativa L.) Grown with Different Colored Plastic Mulch
Authors: Edmar N. Franquera, Renato C. Mabesa, Rene Rafael C. Espino, Edralina P. Serrano, Eduardo P. Paningbatan Jr.
Abstract:
The potential of growing lettuce with different colored plastic mulch silver (control), red, orange, yellow and green was evaluated using two lettuce varieties, Looseleaf and Romaine. The experiment was laid out on split plot design following the Randomized Complete Block Design. The Looseleaf variety had better performance in terms of plant fresh weight, leaf fresh weight, leaf dry weight, root length, plant height and yield. However, better response was observed in Romaine in terms of leaf diameter, leaf length, root dry weight and root fresh weight. The color of the mulch reflected different qualities of light and hence the quality of absorbed light by the lettuce plants. A higher Far red and red ratio (FR:R) was obtained from green plastic mulch which was followed by the red plastic mulch. The different colored plastic mulch affected the growth and developmental responses of leaf lettuce morphological and leaf anatomical characteristics. Data in all growth morphological and yield parameters showed that those grown with red plastic mulch had better response and had longer stomates than those lettuce grown with the other colored plastic mulch. The soil temperature 10 cm below the plastic mulch was significantly influenced by the color of the mulch. The red plastic mulch had the highest soil temperature recorded while the lowest soil temperature recorded was within the yellow plastic mulch.Keywords: anatomical, lettuce, morpholological, plastic mulch
Procedia PDF Downloads 5431359 Electricity Market Reforms Towards Clean Energy Transition andnd Their Impact in India
Authors: Tarun Kumar Dalakoti, Debajyoti Majumder, Aditya Prasad Das, Samir Chandra Saxena
Abstract:
India’s ambitious target to achieve a 50 percent share of energy from non-fossil fuels and the 500-gigawatt (GW) renewable energy capacity before the deadline of 2030, coupled with the global pursuit of sustainable development, will compel the nation to embark on a rapid clean energy transition. As a result, electricity market reforms will emerge as critical policy instruments to facilitate this transition and achieve ambitious environmental targets. This paper will present a comprehensive analysis of the various electricity market reforms to be introduced in the Indian Electricity sector to facilitate the integration of clean energy sources and will assess their impact on the overall energy landscape. The first section of this paper will delve into the policy mechanisms to be introduced by the Government of India and the Central Electricity Regulatory Commission to promote clean energy deployment. These mechanisms include extensive provisions for the integration of renewables in the Indian Electricity Grid Code, 2023. The section will also cover the projection of RE Generation as highlighted in the National Electricity Plan, 2023. It will discuss the introduction of Green Energy Market segments, the waiver of Inter-State Transmission System (ISTS) charges for inter-state sale of solar and wind power, the notification of Promoting Renewable Energy through Green Energy Open Access Rules, and the bundling of conventional generating stations with renewable energy sources. The second section will evaluate the tangible impact of these electricity market reforms. By drawing on empirical studies and real-world case examples, the paper will assess the penetration rate of renewable energy sources in India’s electricity markets, the decline of conventional fuel-based generation, and the consequent reduction in carbon emissions. Furthermore, it will explore the influence of these reforms on electricity prices, the impact on various market segments due to the introduction of green contracts, and grid stability. The paper will also discuss the operational challenges to be faced due to the surge of RE Generation sources as a result of the implementation of the above-mentioned electricity market reforms, including grid integration issues, intermittency concerns with renewable energy sources, and the need for increasing grid resilience for future high RE in generation mix scenarios. In conclusion, this paper will emphasize that electricity market reforms will be pivotal in accelerating the global transition towards clean energy systems. It will underscore the importance of a holistic approach that combines effective policy design, robust regulatory frameworks, and active participation from market actors. Through a comprehensive examination of the impact of these reforms, the paper will shed light on the significance of India’s sustained commitment to a cleaner, more sustainable energy future.Keywords: renewables, Indian electricity grid code, national electricity plan, green energy market
Procedia PDF Downloads 421358 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece
Authors: Eleni Giouli
Abstract:
Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.Keywords: adult skills, distance learning, education, lifelong learning
Procedia PDF Downloads 1371357 Heat: A Healthy Eating Programme
Authors: Osagbai Joshua Eriki, Ngozi Agunwamba, Alice Hill, Lorna Almond, Maniya Duffy, Devashini Naidoo, David Ho, Raman Deo
Abstract:
Aims: To evaluate the baseline eating pattern in a psychiatric hospital through quantifying purchases of food and drink items at the hospital shop and to implement a traffic light healthy eating labeling system. Method: A electronic till with reporting capabilities was purchased. A two-week period of baseline data collection was conducted. Thereafter, a system for labeling items based on the nutritional value of the food items at the hospital shop was implemented. Green labeling represented the items with the lowest calories and red the most. Further data was collated on the number and types of items purchased by patients according to the category, and the initial effectiveness of the system was evaluated. Result: Despite the implementation of the traffic light system, the red category had the highest number of items purchased by patients, highlighting the importance of promoting healthy eating choices. However, the study also showed that the system was effective in promoting healthy options, as the number of items purchased from the green category increased during the study period. Conclusion: The implementation of a traffic light labeling system for items sold at the hospital shop offers a promising approach to promoting healthy eating habits and choices. This is likely to contribute to a toolkit of measures when considering the multifactorial challenges that obesity and weight issues pose for long-stay psychiatric inpatientsKeywords: mental health, nutrition, food, healthy
Procedia PDF Downloads 991356 Initiative Strategies on How to Increase Value Add of the Recycling Business
Authors: Yananda Siraphatthada
Abstract:
The current study was the succession of a previous study on value added of recycling business management. Its aims are to 1) explore conditions on how to increasing value add of Thai recycling business, and 2) exam the implementation of the 3-staged plan (short, medium, and long term), suggested by the former study, to increase value added of the recycling business as immediate mechanisms to accelerate government operation. Quantitative and qualitative methods were utilized in this research. A qualitative research consisted of in-depth interviews and focus group discussions. Responses were obtained from owners of the waste separation plants, and recycle shops, as well as officers in relevant governmental agencies. They were randomly selected via Quota Sampling. Data was analyzed via content analysis. The sample used for quantitative method consisted of 1,274 licensed recycling operators in eight provinces. The operators were randomly stratified via sampling method. Data were analyzed via descriptive statistics frequency, percentage, average (mean), and standard deviation. The study recommended three-staged plan: short, medium, and long terms. The plan included the development of logistics, the provision of quality market/plants, the amendment of recycling rules/regulation, the restructuring recycling business, the establishment of green-purchasing recycling center, support for the campaigns run by the International Green Purchasing Network (IGPN), conferences/workshops as a public forum to share insights among experts/concern people.Keywords: strategies, value added, recycle, business
Procedia PDF Downloads 2441355 Education for Sustainable Development and the Eco School Initiative in Two Primary Schools in The North East of England
Authors: Athanasia Chatzifotiou, Karen Tait
Abstract:
Eco-school is an international initiative that offers schools the opportunity to develop practices on education for sustainable development (EfSD). Such practices need to focus on nine areas, namely: energy, water, biodiversity, school grounds, healthy living, transport, litter, waste and global citizenship. Acquiring the green flag status is the ultimate stage (silver and bronze are the other two) that is awarded by a committee external to the school and it lasts for two years. Our project focused on two such primary schools that had acquired the green flag status. The aim of our project is to describe the schools’ approach of becoming an eco-school, the practitioners’ role in promoting the values and principles of such endeavors, thus identifying the impact of EfSD. We chose the eco-schools initiative as it gives a clear and straightforward way to identify a school with an interest in EfSD. The project is important because even though EfSD attracts high attention in rhetoric, there is evidence indicating that EfSD may be neglected in practice. This paper presents part of a bigger project that aims to compare how primary schools and early years settings have approached EfSD via the eco-school initiative in the North East of England. This is a qualitative project that used a case study design to focus on the practices of two particular primary schools to gain a green flag status. A semi-structured interview was used with the lead teachers/practitioners of the schools; an audit was also conducted as part of a tour of the schools’ premises highlighting the initiatives, curriculum work, projects undertaken as well as resources available to school. A content analysis of the interview transcripts was conducted with the creation of response categories and response narratives by the two researchers first working individually and then collaboratively; the findings of the project reflected issues that concerned: a) pupils’ cognitive, physical and socio-emotional development, b) the wider community and c) the lead practitioners’ role and status in school. In relation to EfSD, our findings indicated that its impact upon these two eco-schools was rather minimal; a mismatch was identified between the eco-school practices and a holistic understanding of issues that EfSD aims to achieve. This mismatch between eco-school practices and EfSD is discussed with regard to: a) pupils’ understanding of the sustainability dimension in the topics they addressed; and b) teachers’ knowledge of sustainability and willingness to keep on such work in schools.Keywords: eco-schools, environment, primary schools, sustainability education
Procedia PDF Downloads 2461354 Balancing Act: Political Dynamics of Economic and Climatological Security in the Politics of the Middle East
Authors: Zahra Bakhtiari
Abstract:
Middle East countries confront a multitude of main environmental challenges which are inevitable. The unstable economic and political structure which dominates numerous middle East countries makes it difficult to react effectively to unfavorable climate change impacts. This study applies a qualitative methodology and relies on secondary literature aimed to investigate how countries in the Middle East are balancing economic security and climatic security in terms of budgeting, infrastructure investment, political engagement (domestically through discourses or internationally in terms of participation in international organizations or bargaining, etc.) There has been provided an outline of innovative measures in both economic and environmental fields that are in progress in the Middle East countries and what capacity they have for economic development and environmental adaptation, as well as what has already been performed. The primary outcome is that countries that rely more on infrastructure investment such as negative emissions technologies (NET) through green social capital enterprises and political engagement, especially nationally determined contributions (NDCs) commitments and United Nations Framework Convention on Climate Change (UNFCCC), experience more economic and climatological security balance in the Middle East. Since implementing these measures is not the same in all countries in the region, we see different levels of balance between climate security and economic security. The overall suggestion is that the collaboration of both the bottom-up and top-down approaches helps create strategic environmental strategies which are in line with the economic circumstances of each country and creates the desired balance.Keywords: climate change, economic growth, sustainability, the Middle East, green economy, renewable energy
Procedia PDF Downloads 811353 Characterization and Quantification of Relatives Amounts of Phosphorylated Glucosyl Residues in C6 and C3 Position in Banana Starch Granules by 31P-NMR
Authors: Renata Shitakubo, Hanyu Yangcheng, Jay-lin Jane, Fernanda Peroni Okita, Beatriz Cordenunsi
Abstract:
In the degradation transitory starch model, the enzymatic activity of glucan/water dikinase (GWD) and phosphoglucan/water dikinase (PWD) are essential for the granule degradation. GWD and PWD phosphorylate glucose molecules in the positions C6 and C3, respectively, in the amylopectin chains. This action is essential to allow that β-amylase degrade starch granules without previous action of α-amylase. During banana starch degradation, as part of banana ripening, both α- and β-amylases activities and proteins were already detected and, it is also known that there is a GWD and PWD protein bounded to the starch granule. Therefore, the aim of this study was to quantify both Gluc-6P and Gluc-3P in order to estimate the importance of the GWD-PWD-β-amylase pathway in banana starch degradation. Starch granules were isolated as described by Peroni-Okita et al (Carbohydrate Polymers, 81:291-299, 2010), from banana fruit at different stages of ripening, green (20.7%), intermediate (18.2%) and ripe (6.2%). Total phosphorus content was determinate following the Smith and Caruso method (1964). Gluc-6P and Gluc-3P quantifications were performed as described by Lim et al (Cereal Chemistry, 71(5):488-493, 1994). Total phosphorous content in green banana starch is found as 0.009%, intermediary banana starch 0.006% and ripe banana starch 0.004%, both by the colorimetric method and 31P-NMR. The NMR analysis showed the phosphorus content in C6 and C3. The results by NMR indicate that the amylopectin is phosphorylate by GWD and PWD before the bananas become ripen. Since both the total content of phosphorus and phosphorylated glucose molecules at positions C3 and C6 decrease with the starch degradation, it can be concluded that this phosphorylation occurs only in the surface of the starch granule and before the fruit be harvested.Keywords: starch, GWD, PWD, 31P-NMR
Procedia PDF Downloads 4551352 The Relationship between Procurement Strategies and Sustainability Outcomes: A Systematic Literature Review
Authors: Cathy T. Mpanga Kowet, Aghaegbuna Obinna U. Ozumba
Abstract:
This study examined and identified the inconsistencies, relationships, gaps and recurring themes in literature regarding the relationship between procurement strategies employed in the construction projects for sustainable buildings and realization of sustainability goals. A systematic literature review of studies on the relationship between various procurement strategies and attainment of sustainability outcomes was conducted. Using specific terms, papers published between 2002 and 2018 were identified and screened according to an inclusion and exclusion criteria. Current findings reveal that, although the attainment of sustainability goals is achievable with both traditional and contemporary procurement strategies, only projects delivered using modern procurement strategies are capable of meeting and exceeding targeted sustainability objectives. However, traditional procurement strategy remains the preferred method for most green building construction projects. The results suggest implications for decision makers in considering the impact of selected procurement strategies on targeted sustainability goals, in the early stages of sustainable building construction projects. The study shows that there is a gap between the reported appropriate procurement strategies and what is being practiced currently. Theoretically, the study expands on the literature on adoption and diffusion of contemporary procurement strategies, by consolidating existing studies to highlight the current gaps. While the study is at the literature review stage, deductions will serve as basis for field work involving empirical data.Keywords: green buildings construction, procurement method, procurement strategy, sustainability objectives, sustainability outcomes
Procedia PDF Downloads 1721351 Low-Temperature Fabrication of Reaction Bonded Composites, Based on Sic and (Sic+B4C) Mixture, Infiltrated with Si-Al Alloy
Authors: Helen Dilman, Eyal Oz, Shmuel Hayun, Nahum Frage
Abstract:
The conventional approach for manufacturing silicon carbide and boron carbide reaction bonded composites is based on infiltrating a ceramic porous preform with molten silicon. The relatively high melting temperature of the silicon infiltrating medium is a drawback of the process. The present contribution is concerned with an approach that allows obtaining reaction bonded composites by pressure-less infiltration at a significantly lower (850-1000oC) temperature range. This approach was applied for the fabrication of fully dense SiC/(Si-Al) and (SiC+B4C)/(Si-Al) composites. The key feature of the approach is based on using Si alloys with low melting temperature and the Mg-vapor atmosphere, under which an adequate wetting between ceramics and liquid alloys for the infiltration process is achieved. In the first set of the experiments ceramic performs compacted from multimodal SiC powders (with the green density of about 27 vol. %) without free carbon addition were infiltrated by Si-20%Al alloy at 950oC. In the second set, 19 vol. % of a fine boron carbide powder was added to SiC powders as a source of carbon. The green density of the SiC-B4C preforms was about 23-25 vol. %. In both cases, successful infiltration was achieved and the composites were fully dense. The density of the composites was about 3g/cm3. For the SiC based composites the hardness value was 750±150HV, Young modulus-280GPa and bending strength-240±30MPa. These values for (SiC-B4C)/(Si-Al) composites (1460±200HV, 317GPa and 360±20MPa) were significantly higher due to the formation of novel ceramics phases. Microstructural characteristics of the composites and their phase composition will be discussed.Keywords: boron carbide, composites, infiltration, low temperatures, silicon carbide
Procedia PDF Downloads 5471350 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection
Procedia PDF Downloads 631349 Design, Control and Implementation of 3.5 kW Bi-Directional Energy Harvester for Intelligent Green Energy Management System
Authors: P. Ramesh, Aby Joseph, Arya G. Lal, U. S. Aji
Abstract:
Integration of distributed green renewable energy sources in addition with battery energy storage is an inevitable requirement in a smart grid environment. To achieve this, an Intelligent Green Energy Management System (i-GEMS) needs to be incorporated to ensure coordinated operation between supply and load demand based on the hierarchy of Renewable Energy Sources (RES), battery energy storage and distribution grid. A bi-directional energy harvester is an integral component facilitating Intelligent Green Energy Management System (i-GEMS) and it is required to meet the technical challenges mentioned as follows: (1) capability for bi-directional mode of operation (buck/boost) (2) reduction of circuit parasitic to suppress voltage spikes (3) converter startup problem (4) high frequency magnetics (5) higher power density (6) mode transition issues during battery charging and discharging. This paper is focused to address the above mentioned issues and targeted to design, develop and implement a bi-directional energy harvester with galvanic isolation. In this work, the hardware architecture for bi-directional energy harvester rated 3.5 kW is developed with Isolated Full Bridge Boost Converter (IFBBC) as well as Dual Active Bridge (DAB) Converter configuration using modular power electronics hardware which is identical for both solar PV array and battery energy storage. In IFBBC converter, the current fed full bridge circuit is enabled and voltage fed full bridge circuit is disabled through Pulse Width Modulation (PWM) pulses for boost mode of operation and vice-versa for buck mode of operation. In DAB converter, all the switches are in active state so as to adjust the phase shift angle between primary full bridge and secondary full bridge which in turn decides the power flow directions depending on modes (boost/buck) of operation. Here, the control algorithm is developed to ensure the regulation of the common DC link voltage and maximum power extraction from the renewable energy sources depending on the selected mode (buck/boost) of operation. The circuit analysis and simulation study are conducted using PSIM 9.0 in three scenarios which are - 1.IFBBC with passive clamp, 2. IFBBC with active clamp, 3. DAB converter. In this work, a common hardware prototype for bi-directional energy harvester with 3.5 kW rating is built for IFBBC and DAB converter configurations. The power circuit is equipped with right choice of MOSFETs, gate drivers with galvanic isolation, high frequency transformer, filter capacitors, and filter boost inductor. The experiment was conducted for IFBBC converter with passive clamp under boost mode and the prototype confirmed the simulation results showing the measured efficiency as 88% at 2.5 kW output power. The digital controller hardware platform is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the bi-directional energy harvester is written in C language and developed using code composer studio. The comprehensive analyses of the power circuit design, control strategy for battery charging/discharging under buck/boost modes and comparative performance evaluation using simulation and experimental results will be presented.Keywords: bi-directional energy harvester, dual active bridge, isolated full bridge boost converter, intelligent green energy management system, maximum power point tracking, renewable energy sources
Procedia PDF Downloads 1401348 Comparative Study of Properties of Iranian Historical Gardens by Focusing on Climate
Authors: Malihe Ahmadi
Abstract:
Nowadays, stress, tension and neural problems are among the most important concerns of the present age. The environment plays key role on improving mental health and reducing stress of citizens. Establishing balance and appropriate relationship between city and natural environment is of the most important approaches of present century. Type of approach and logical planning for urban green spaces as one of the basic sections of integration with nature, not only plays key role on quality and efficiency of comprehensive urban planning; but also it increases the system of distributing social activities and happiness and lively property of urban environments that leads to permanent urban development. The main purpose of recovering urban identity is considering culture, history and human life style in past. This is a documentary-library research that evaluates the historical properties of Iranian gardens in compliance with climate condition. Results of this research reveal that in addition to following Iranian gardens from common principles of land lot, structure of flowers and plants, water, specific buildings during different ages, the role of climate at different urban areas is among the basics of determining method of designing green spaces and different buildings located at diverse areas i.e. Iranian gardens are a space for merging natural and artificial elements that has inseparable connection with semantic principles and guarantees different functions. Some of the necessities of designing present urban gardens are including: recognition and recreation.Keywords: historical gardens, climate, properties of Iranian gardens, Iran
Procedia PDF Downloads 3971347 Growing Sorghum Varieties with Potential of Fodder and Biofuel Crops, with Potential of Two Harvest in One Year
Authors: Farah Jafarpisheh, John Hutson, Howard Fallowfield
Abstract:
Growing Sorghum varieties, with the potential of the animal food source, by using the treated wastewater from High Rate Algae Ponds (HRAPs) is an attractive subject. For the first time, in South Australia, Sorghum Earthnote variety one (SE1) has been grown using the wastewater from HRAPs. In this study, after the first harvest, the roots left in the soil. After a short period of time, sorghum started to regrow again, which can increase the value of planting sorghum by using the wastewater. This study demonstrates the higher amount of green biomass with the potential of animal food source after the second harvest. Different parameters, including height(mm), number of leaves and tiller, Brix percentage, fresh and dry leaf weight(g), total top fresh weight(g), stem and seed dry and fresh weight(g) have been measured in the field after first and second harvest. The results demonstrated the higher height, number of tiller, and diameter after the second harvest. Number of leaves and leaves fresh weight and total top weight increased by 6 and 10 times, respectively. Brix percentage increased by 2 times. In the first harvest, no seeds harvested, while in the second harvest, 134 g seeds harvested. This sorghum variety (SE1) showed the acceptable green biomass, especially after the second harvest. This property will add to the value of sorghum in this condition, as it will not need extra fertilizer and labor work for seed planting.Keywords: energy, high rate algae ponds, HRAPs, Sorghum, waste water
Procedia PDF Downloads 1151346 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles
Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach
Abstract:
Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots
Procedia PDF Downloads 841345 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology
Procedia PDF Downloads 621344 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings
Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay
Abstract:
The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy
Procedia PDF Downloads 1231343 Research on the Efficiency and Driving Elements of Manufacturing Transformation and Upgrading in the Context of Digitization
Authors: Chen Zhang; Qiang Wang
Abstract:
With the rapid development of the new generation of digital technology, various industries have created more and more value by using digital technology, accelerating the digital transformation of various industries. The economic form of human society has evolved with the progress of technology, and in this context, the power conversion, transformation and upgrading of the manufacturing industry in terms of quality, efficiency and energy change has become a top priority. Based on the digitalization background, this paper analyzes the transformation and upgrading efficiency of the manufacturing industry and evaluates the impact of the driving factors, which have very important theoretical and practical significance. This paper utilizes qualitative research methods, entropy methods, data envelopment analysis methods and econometric models to explore the transformation and upgrading efficiency of manufacturing enterprises and driving factors. The study shows that the transformation and upgrading efficiency of the manufacturing industry shows a steady increase, and regions rich in natural resources and social resources provide certain resources for transformation and upgrading. The ability of scientific and technological innovation has been improved, but there is still much room for progress in the transformation of scientific and technological innovation achievements. Most manufacturing industries pay more attention to green manufacturing and sustainable development. In addition, based on the existing problems, this paper puts forward suggestions for improving infrastructure construction, developing the technological innovation capacity of enterprises, green production and sustainable development.Keywords: digitization, manufacturing firms, transformation and upgrading, efficiency, driving factors
Procedia PDF Downloads 661342 Biodegradable Polymeric Composites of Polylactide and Epoxidized Natural Rubber
Authors: Masek A., Diakowska K., Zaborski M.
Abstract:
Polymeric materials have found their use almost in every branch of industry worldwide. Most of them constitute so-called “petropolymers" obtained from crude oil. However literature information sounds a warning that its global sources are running out. Thus, it seems that one should search for polymeric materials from renewable raw materials belonging to the group of green polymers. Therefore on account of environmental protection and the issue of sustainable technologies, nowadays greater and greater achievements have been observed in the field of green technology using engineering sciences to develop composite materials. The main aim of this study was to research what is the influence of biofillers on the properties. We used biofillers like : cellulose with different length of fiber, cellulose UFC100, silica and montmorillonite. In our research, we reported on biodegradable composites exhibitingspecificity properties by melt blending of polylactide (PLA), one of the commercially available biodegradable material, and epoxidized natural rubber (ENR) containing 50 mol.%epoxy group. Blending hydrophilic natural polymers and aliphatic polyesters is of significant interest, since it could lead to the development of a new range of biodegradable polymeric materials. We research the degradation of composites on the basis epoxidized natural rubber and poly(lactide). The addition of biofillers caused far-reaching degradation processes. The greatest resistance to biodegradation showed a montmorillonite-based mixtures, the smallest inflated cellulose fibers of varying length.The final aim in the present study is to use ENR and poly(lactide) to design composite from renewable resources with controlled degradation.Keywords: renewable resources, biopolymer, degradation, polylactide
Procedia PDF Downloads 3761341 Attitudes of Resort Hotel Managers toward Climate Change Adaptation and Mitigation Practices, Bishoftu, Ethiopia
Authors: Mohammed Aman Kassim
Abstract:
This study explored the attitudes of hotel managers toward climate change adaption and mitigation practices in resort hotels located in Bishoftu town, Ethiopia. Weak resource management in the area causes serious environmental problems. So sustainable way forward is needed for the destination in order to reduce environmental damage. Six resorts were selected out of twelve resort hotels in Bishoftu City by using the systematic sampling method, and a total of fifty-six managers were taken for the study. The data analyzed came from self-administered questionnaires, site observation, and a short face-to-face interview with general managers. The results showed that 99% of hotel managers possess positive attitudes toward climate change adaptation and mitigation practices. But they did not show a high commitment to adopting all adaptation and mitigation practices in their hotel’s actions and day-to-day operation. Key adoption influencing factors identified were: owners' commitment toward sustainability, the applicability of government rules and regulations, and incentives for good achievement. The findings also revealed that the attitudes of resort hotel managers toward climate change adaption and mitigation practices are more significantly influenced by their social factors, such as level of education and age, in this study. The study demonstrated that in order to increase managers' commitment and hotels become green: government led-education and training programs, green certification actions, and application of government environmental regulation are important.Keywords: climate change, climate change adaptation and mitigation practices, environmental attitude, resort hotels
Procedia PDF Downloads 1021340 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel
Abstract:
Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia
Procedia PDF Downloads 3781339 Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor
Authors: Habtamu Anagaw Muluneh, Gebregziabher Kahsay, Tamiru Negussie
Abstract:
Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings.Keywords: spin triplet superconductivity, Green’s function, condensation energy, density of state, specific heat, magnetization
Procedia PDF Downloads 211338 Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method
Authors: Ali A. Ukasha, Majdi F. Elbireki, Mohammad F. Abdullah
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression and salt and peppers attacks, bitplanes decomposition, Arnold transform, color image, wavelet transform, lossless image encryption
Procedia PDF Downloads 518