Search results for: genetically modified organism
2004 Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions
Authors: Suwapitch Chalongkulasak, Teerasak E-Kobon, Pramote Chumnanpuen
Abstract:
Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.Keywords: Propionibacterium acnes, Achatina fulica, peptidomes, antibacterial peptides, snail mucus
Procedia PDF Downloads 1332003 Spatial Ecology of an Endangered Amphibian Litoria Raniformis within Modified Tasmanian Landscapes
Authors: Timothy Garvey, Don Driscoll
Abstract:
Within Tasmania, the growling grass frog (Litoria raniformis) has experienced a rapid contraction in distribution. This decline is primarily attributed to habitat loss through landscape modification and improved land drainage. Reductions in seasonal water-sources have placed increasing importance on permanent water bodies for reproduction and foraging. Tasmanian agricultural and commercial forestry landscapes often feature small artificial ponds, utilized for watering livestock and fighting wildfires. Improved knowledge of how L. raniformis may be exploiting anthropogenic ponds is required for improved conservation management. We implemented telemetric tracking in order to evaluate the spatial ecology of L. raniformis (n = 20) within agricultural and managed forestry sites, with tracking conducted periodically over the breeding season (November/December, January/February, March/April). We investigated (1) potential differences in habitat utilization between agricultural and plantation sites, and (2) the post-breeding dispersal of individual frogs. Frogs were found to remain in close proximity to ponds throughout November/December, with individuals occupying vegetative depauperate water bodies beginning to disperse by January/February. Dispersing individuals traversed exposed plantation understory and agricultural pasture land in order to enter patches of native scrubland. By March/April all individuals captured at minimally vegetated ponds had retreated to adjacent scrub corridors. Animals found in ponds featuring dense riparian vegetation were not recorded to disperse. No difference in behavior was recorded between sexes. Rising temperatures coincided with increased movement by individuals towards native scrub refugia. The patterns of movement reported in this investigation emphasize the significant contribution of manmade water-bodies towards the conservation of L. raniformis within modified landscapes. The use of natural scrubland as cyclical retreats between breeding seasons also highlights the importance of the continued preservation of remnant vegetation corridors. Loss of artificial dams or buffering scrubland in heavily altered landscapes could see the breakdown of the greater L. raniformis meta-population further threatening their regional persistence.Keywords: habitat loss, modified landscapes, spatial ecology, telemetry
Procedia PDF Downloads 1172002 The Assessment of Nephrotoxic Effects of Peganum Harmala In Rat
Authors: Amal Yamani, Jaber Elgtou, Aziz Mohammed, Lazaar Jamila, Elachouri Mostafa
Abstract:
Peganum harmala used traditionally as an emenagogue and abortifacient agent in Morocco phytotherapy. Even thought its benefits effects, Peganum harmala remained severely toxic for the organism especially in strong doses. The present study was initiated to evaluate the nephrotoxic effects of aqueous extract of Peganum harmala seeds (PHS). The solution containing aqueous extract of PHS was administered orally by gavage at the dose of 2g/kg body weight during twenty days. Rats were used in this study, two groups were considered, a treated group received an extract of PHS at dose 2g/kg bodyweight and control group received an amount of tap water equivalent to the volume of the vehicle used for the dose of PHS extract. The data we collected showed that aqueous extracts of PHS administered during twenty days induced a significant changes in renal function expressed in decreases of diuresis (from 10 ± 0,58 to 5,33 ± 0,33 ml/24 hours) and the same profile for mean arterial blood pressure (from 125 ± 2,89 to 96,67 ± 6,01 mmHg). The histopathological study showed an alteration of kidney cells in treated group with regard the control group which is not affected. In conclusion: our results indicate that the aqueous extract of PHS induces toxicity may affect severely kidney function and causes renal histopathology.Keywords: peganum harmala seeds, nephrotoxic, diuresi, histpathology, kidney
Procedia PDF Downloads 2992001 An Atlantic Canadian Case of Disseminated Streptococcus equi Subspecies zooepidemicus Infection
Authors: Albert Chang, Duncan Webster
Abstract:
Streptococcus equi subspecies zooepidemicus infections in humans can be contracted through contact with domestic animals or unpasteurized dairy products. Although infection in humans is rare, the course can be fulminant. We describe the case of a 75-year-old, immunocompetent male, who developed disseminated disease with bacteremia, native aortic valve endocarditis, suppurative pericarditis with cardiac tamponade, meningitis and bilateral endopthalmitis. Despite treatment with pericardial drain placement, intravenous ceftriaxone and rifampin the patient, unfortunately, did not survive. To date, reported cases of disseminated infection by S. zooepidemicus are few. Furthermore, with the review of the literature, this case demonstrates the broadest organ system involvement reported. Of interest, previous studies have suggested an affinity of this organism for certain organ systems and this case corroborates an emerging association of S. zooepidemicus with endopthalmitis. In addition, this is the second Canadian case of documented human infection with both cases being similar in clinical features, presentation, and geographical location. A discussion regarding previous S. zooepidemicus outbreaks and the potential for zoonotic outbreaks to occur is included. In short, this case report should serve to warn clinicians regarding complications and sites of haematogenous seeding in the setting of disseminated S. zooepidemicus infections.Keywords: endopthalmitis, endocarditis, meningitis, Streptococcus equi subspecies zooepidemicus
Procedia PDF Downloads 1942000 Antimicrobial Effect of Essential Oil of Plant Schinus molle on Some Bacteria Pathogens
Authors: Mehani Mouna, Ladjel segni
Abstract:
Humans use plants for thousands of years to treat various ailments, In many developing countries, Much of the population relies on traditional doctors and their collections of medicinal plants to cure them. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The aim of our study is to determine the antimicrobial effect of essential oils of the plant Schinus molle on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The test adopted is based on the diffusion method on solid medium (Antibiogram), This method allows to determine the susceptibility or resistance of an organism according to the sample studied. Our study reveals that the essential oil of the plant Schinus molle has a different effect on the resistance of germs: For Pseudomonas aeruginosa strain is a moderately sensitive with an inhibition zone of 10 mm, Further Antirobactere, Escherichia coli and Proteus are strains that represent a high sensitivity, A zone of inhibition equal to 14.66 mm.Keywords: Essential oil, microorganism, antibiogram, shinus molle
Procedia PDF Downloads 3471999 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks
Authors: Emad A. Mohammed
Abstract:
The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.Keywords: permeability, hydraulic flow units, artificial intelligence, correlation
Procedia PDF Downloads 1361998 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst
Authors: Kamran Dastafkan, Chuan Zhao
Abstract:
Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction
Procedia PDF Downloads 1291997 Evaluation of the Skid Resistance of Asphalt Concrete Made of Local Low-Performance Aggregates Based on New Accelerated Polishing Machine
Authors: Saci Abdelhakim Ferkous, Khedoudja Soudani, Smail Haddadi
Abstract:
This paper presents the results of a laboratory experimental study that explores the skid resistance of asphalt concrete mixtures made of local low-performance aggregates by partially replacing sand with olive mill waste (OMW). OMW was mixed with aggregates using a dry process by replacing sand with contents of 5%, 7%, 10% and 15%. The mechanical performances of the mixtures were evaluated using the Marshall and Duriez tests. A modified accelerated polishing machine was used as polishing equipment, and a British pendulum tester (BPT) was used to test the skid resistance of the samples. Finally, texture parameter analysis was performed using scanning electron microscopy (SEM) and Mountains Map software to assess the effect of OMW on the friction coefficient evolution. Using a distinct road wheel for a modified version of an accelerated polishing machine, which is normally used to determine the polished stone value of aggregates, the results showed that the addition of OMW up to 10% conferred a better skid resistance in comparison to normal asphalt concrete. The presence of olive mill waste in the mixture until 15% guarantees a gain of 22%-29% in skid resistance after polishing compared with the reference mix. Indeed, from texture parameter analysis, it was observed that there was differential wear of the lightweight aggregates (OMW) compared to the other aggregates during the polishing process, which created a new surface microtexture that had new peaks and led to a good level of friction compared to the mixtures without OMW. In general, it was found that OMW is a promising modifier for asphalt mixtures with both engineering and economic merits.Keywords: skid resistance, olive mill waste, polishing resistance, accelerated polishing machine, local materials, sustainable development.
Procedia PDF Downloads 561996 3D Printing of Dual Tablets: Modified Multiple Release Profiles for Personalized Medicine
Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek
Abstract:
Additive manufacturing technologies producing drug dosage forms aimed at personalized medicine applications are promising strategies with several advantages over the conventional production methods. One of the emerging technologies is 3D printing which reduces manufacturing steps and thus allows a significant drop in expenses. A decrease in material consumption is also a highly impactful benefit as the tested drugs are frequently expensive substances. In addition, 3D printed dosage forms enable increased patient compliance and prevent misdosing as the dosage forms are carefully designed according to the patient’s needs. The incorporation of multiple drugs into a single dosage form further increases the degree of personalization. Our research focuses on the development of 3D printed tablets incorporating multiple drugs (candesartan, losartan) and thermoplastic polymers (e.g., KlucelTM HPC EF). The filaments, an essential feed material for 3D printing,wereproduced via hot-melt extrusion. Subsequently, the extruded filaments of various formulations were 3D printed into tablets using an FDM 3D printer. Then, we have assessed the influence of the internal structure of 3D printed tablets and formulation on dissolution behaviour by obtaining the dissolution profiles of drugs present in the 3D printed tablets. In conclusion, we have developed tablets containing multiple drugs providing modified release profiles. The 3D printing experiments demonstrate the high tunability of 3D printing as each tablet compartment is constructed with a different formulation. Overall, the results suggest that the 3D printing technology is a promising manufacturing approach to dual tablet preparation for personalized medicine.Keywords: 3D printing, drug delivery, hot-melt extrusion, dissolution kinetics
Procedia PDF Downloads 1681995 Molecular Evolutionary Relationships Between O-Antigens of Enteric Bacteria
Authors: Yuriy A. Knirel
Abstract:
Enteric bacteria Escherichia coli is the predominant facultative anaerobe of the colonic flora, and some specific serotypes are associated with enteritis, hemorrhagic colitis, and hemolytic uremic syndrome. Shigella spp. are human pathogens that cause diarrhea and bacillary dysentery (shigellosis). They are in effect E. coli with a specific mode of pathogenicity. Strains of Salmonella enterica are responsible for a food-borne infection (salmonellosis), and specific serotypes cause typhoid fever and paratyphoid fever. All these bacteria are closely related in respect to structure and genetics of the lipopolysaccharide, including the O-polysaccharide part (O‑antigen). Being exposed to the bacterial cell surface, the O antigen is subject to intense selection by the host immune system and bacteriophages giving rise to diverse O‑antigen forms and providing the basis for typing of bacteria. The O-antigen forms of many bacteria are unique, but some are structurally and genetically related to others. The sequenced O-antigen gene clusters between conserved galF and gnd genes were analyzed taking into account the O-antigen structures established by us and others for all S. enterica and Shigella and most E. coli O-serogroups. Multiple genetic mechanisms of diversification of the O-antigen forms, such as lateral gene transfer and mutations, were elucidated and are summarized in the present paper. They include acquisition or inactivation of genes for sugar synthesis or transfer or recombination of O-antigen gene clusters or their parts. The data obtained contribute to our understanding of the origins of the O‑antigen diversity, shed light on molecular evolutionary relationships between the O-antigens of enteric bacteria, and open a way for studies of the role of gene polymorphism in pathogenicity.Keywords: enteric bacteria, O-antigen gene cluster, polysaccharide biosynthesis, polysaccharide structure
Procedia PDF Downloads 1421994 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties
Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa
Abstract:
Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensingKeywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing
Procedia PDF Downloads 1221993 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites
Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal
Abstract:
Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures
Procedia PDF Downloads 2741992 Clinical and Radiological Outcome in 300 Patients with Non-Aneurysmal Sah
Authors: Ranjith Menon, Abathar Aladi, Hans-Christean Nahser, Maneesh Bhojak, Sacha Nevin, Paul Eldridge
Abstract:
Background: Spontaneous subarachnoid haemorrhage (SAH) accounts for approximately 5% of all strokes. Patients with spontaneous SAH (as shown by CT or lumbar puncture) undergo investigations to identify or exclude an underlying structural cause, typically cerebral aneurysm. However in 10 - 20% of cases, no structural cause is found. This includes more than one imaging modality (intracranial MRA, CTA, 4DCTA and/or DSA) and in some spinal MRI. Objective: To determine; 1) If an underlying structural or vascular cause can be identified in non-aneurysmal SAH patients by comparing different imaging modalities at presentation and at follow-up. 2) If MRI spine in patients with non-aneurysmal SAH reveals an underlying SAH cause. 3)The functional outcome at discharge. Results: We performed a retrospective analysis of all non-traumatic SAH patients admitted to the Walton centre from January 2009 to December 2015. There were 1457 patients with non-traumatic SAH admitted to the Walton centre of whom 21.8% (n=300) patients were diagnosed with non-aneurysmal SAH. Males were 65.6% and females were 43.3%. The presenting symptoms were sudden onset headache (93.6%), the focal neurological deficit (12%), loss of consciousness (10.6%) and others (6%). About 285 patients received 2 modalities of imaging (CTA & DSA), 192 received 3 modalities of imaging (CTA, MRA & DSA) and 137 received MRI spine (51/137 whole spine). The modified Rankin Score at discharge were: mRS 0 = 292 (97.33%), mRS 1-2 = 6, mRS 6 = 1 (cardiac arrest in IHD patient) and unknown in 1. Follow-up imaging at 3 to 6 months in 190 (63.3%) patients did not identify an underlying cause. Conclusion: This retrospective analysis concludes that non-aneurysmal SAH has a good functional outcome. A single imaging modality (CTA (4DCTA) or MRA or DSA) was adequate to exclude an underlying cause of SAH and a delayed imaging failed to identify a cause. Routinely performing MRI spine in this group of patients appears not to be necessary according to this evidence.Keywords: stroke, non-aneurysmal subarachnoid haemorrhage, neuroimaging, modified rankin score
Procedia PDF Downloads 2681991 Thermolysin Entrapment in a Gold Nanoparticles/Polymer Composite: Construction of an Efficient Biosensor for Ochratoxin a Detection
Authors: Fatma Dridi, Mouna Marrakchi, Mohammed Gargouri, Alvaro Garcia Cruz, Sergei V. Dzyadevych, Francis Vocanson, Joëlle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde
Abstract:
An original method has been successfully developed for the immobilization of thermolysin onto gold interdigitated electrodes for the detection of ochratoxin A (OTA) in olive oil samples. A mix of polyvinyl alcohol (PVA), polyethylenimine (PEI) and gold nanoparticles (AuNPs) was used. Cross-linking sensors chip was made by using a saturated glutaraldehyde (GA) vapor atmosphere in order to render the two polymers water stable. Performance of AuNPs/ (PVA/PEI) modified electrode was compared to a traditional immobilized enzymatic method using bovine serum albumin (BSA). Atomic force microscopy (AFM) experiments were employed to provide a useful insight into the structure and morphology of the immobilized thermolysin composite membranes. The enzyme immobilization method influence the topography and the texture of the deposited layer. Biosensors optimization and analytical characteristics properties were studied. Under optimal conditions AuNPs/ (PVA/PEI) modified electrode showed a higher increment in sensitivity. A 700 enhancement factor could be achieved with a detection limit of 1 nM. The newly designed OTA biosensors showed a long-term stability and good reproducibility. The relevance of the method was evaluated using commercial doped olive oil samples. No pretreatment of the sample was needed for testing and no matrix effect was observed. Recovery values were close to 100% demonstrating the suitability of the proposed method for OTA screening in olive oil.Keywords: thermolysin, A. ochratoxin , polyvinyl alcohol, polyethylenimine, gold nanoparticles, olive oil
Procedia PDF Downloads 5901990 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid
Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang
Abstract:
Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal
Procedia PDF Downloads 771989 RNAseq Reveals Hypervirulence-Specific Host Responses to M. tuberculosis Infection
Authors: Gina Leisching, Ray-Dean Pietersen, Carel Van Heerden, Paul Van Helden, Ian Wiid, Bienyameen Baker
Abstract:
The distinguishing factors that characterize the host response to infection with virulent Mycobacterium tuberculosis (M.tb) are largely confounding. We present an infection study with two genetically closely related M.tb strains that have vastly different pathogenic characteristics. The early host response to infection with these detergent-free cultured strains was analyzed through RNAseq in an attempt to provide information on the subtleties which may ultimately contribute to the virulent phenotype. Murine bone marrow-derived macrophages (BMDMs) were infected with either a hyper- (R5527) or hypovirulent (R1507) Beijing M. tuberculosis clinical isolate. RNAseq revealed 69 differentially expressed host genes in BMDMs during comparison of these two transcriptomes. Pathway analysis revealed activation of the stress-induced and growth inhibitory Gadd45 signaling pathway in hypervirulent infected BMDMs. Upstream regulators of interferon activation such as and IRF3 and IRF7 were predicted to be upregulated in hypovirulent-infected BMDMs. Additional analysis of the host immune response through ELISA and qPCR included the use of human THP-1 macrophages where a robust proinflammatory response was observed after infection with the hypervirulent strain. RNAseq revealed two early-response genes (IER3 and SAA3) and two host-defence genes (OASL1 and SLPI) that were significantly upregulated by the hypervirulent strain. The role of these genes under M.tb infection conditions are largely unknown but here we provide validation of their presence with use of qPCR and Western blot. Further analysis into their biological role under infection with virulent M.tb is required.Keywords: host-response, Mycobacterium tuberculosis, RNAseq, virulence
Procedia PDF Downloads 2101988 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI
Authors: Ananya Ananya, Karthik Rao
Abstract:
Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net
Procedia PDF Downloads 2611987 Soil-Less Misting System: A Technology for Hybrid Seed Production in Tomato (Lycopersicon esculentum Mill.).
Authors: K. D. Rajatha, S. Rajendra Prasad, N. Nethra
Abstract:
Aeroponics is one of the advanced techniques to cultivate plants without soil with minimal water and nutrient consumption. This is the technology which could bring the vertical growth in agriculture. It is an eco-friendly approach widely used for commercial cultivation of vegetables to obtain the supreme quality and yield. In this context, to harvest potentiality of the technology, an experiment was designed to evaluate the suitability of the aeroponics method over the conventional method for hybrid seed production of tomato. The experiment was carried out under Completely Randomized Design with Factorial (FCRD) concept with three replications during the year 2017-18 at UAS, GKVK Bengaluru. Nutrients and pH were standardized; among the six different nutrient solutions, the crop performance was better in Hoagland’s solution with pH between 5.5-7. The results of the present study revealed that between TAG1F and TAG2F parental lines, TAG1F performed better in both the methods of seed production. Among the methods, aeroponics showed better performance for the quality parameters except for plant spread, due to better availability of nutrients and aeration, huge root biomass in aeroponics. Aeroponics method showed significantly higher plant length (124.9 cm), plant growth rate (0.669), seedling survival rate (100%), early flowering (27.5 days), highest fruit weight (121.5 g), 100 seed weight (0.373 g) and total seed yield plant⁻¹ (11.68 g) compared to the conventional method. By providing the best environment for plant growth, the genetically best possible plant could be grown, thus complete potentiality of the plant could be harvested. Hence, aeroponics could be a promising tool for quality and healthy hybrid seed production throughout the year within protected cultivation.Keywords: aeroponics, Hoagland’s solution, hybrid seed production, Lycopersicon esculentum
Procedia PDF Downloads 1021986 Surface Modified Polyamidoamine Dendrimer with Gallic Acid Overcomes Drug Resistance in Colon Cancer Cells HCT-116
Authors: Khushbu Priyadarshi, Chandramani Pathak
Abstract:
Cancer cells can develop resistance to conventional therapies especially chemotherapeutic drugs. Resistance to chemotherapy is another challenge in cancer therapeutics. Therefore, it is important to address this issue. Gallic acid (GA) is a natural plant compound that exhibits various biological properties including anti-proliferative, anti-inflammatory, anti-oxidant and anti-bacterial. Despite of the wide spectrum biological properties GA has cytotoxic response and low bioavailability. To overcome this problem, GA was conjugated with the Polyamidoamine(PAMAM) dendrimer for improving the bioavailability and efficient delivery in drug-resistant HCT-116 Colon Cancer cells. Gallic acid was covalently linked to 4.0 G PAMAM dendrimer. PAMAM dendrimer is well established nanocarrier but has cytotoxicity due to presence of amphiphilic nature of amino group. In our study we have modified surface of PAMAM dendrimer with Gallic acid and examine their anti-proliferative effects in drug-resistant HCT-116 cells. Further, drug-resistant colon cancer cells were established and thereafter treated with different concentration of PAMAM-GA to examine their anti-proliferative potential. Our results show that PAMAM-GA conjugate induces apoptotic cell death in HCT-116 and drug-resistant cells observed by Annexin-PI staining. In addition, it also shows that multidrug-resistant drug transporter P-gp protein expression was downregulated with increasing the concentration of GA conjugate. After that we also observed the significant difference in Rh123 efflux and accumulation in drug sensitive and drug-resistant cancer cells. Thus, our study suggests that conjugation of anti-cancer agents with PAMAM could improve drug resistant property and cytotoxic response to treatment of cancer.Keywords: drug resistance, gallic acid, PAMAM dendrimer, P-glycoprotein
Procedia PDF Downloads 1491985 Statistical Analysis and Optimization of a Process for CO2 Capture
Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi
Abstract:
CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor
Procedia PDF Downloads 2871984 Emergence of Vancomycin Resistant and Methcillin Resistant Staphylococus aureus in Patients with Different Clinical Manifestations in Khartoum State, Sudan
Authors: Maimona A. E. Elimam, Suhair Rehan, Miskelyemen A. Elmekki, Mogahid M. Elhassan
Abstract:
Staphylococcus aureus (Staph. aureus), a major cause of potentially life-threatening infections acquired in healthcare and community settings, has developed resistance to most classes of antimicrobial agents as determined by the dramatic increase. The present study aimed to determine the prevalence of MRSA, and VRSA in patients with different clinical manifestations in Khartoum state. The study population (n, 426) were males and females with different age categories, suffering either from wound infections (105), ear infections (121), or UTI (101), in addition to nasal carriers of medical staff (100). Cultures, Gram staining, and other biochemical tests were performed for conventional identification. Modified Kirby-Bauer disk diffusion method was applied and DNA was extracted from MRSA and VRSA isolates and PCR was then performed for amplification of arc, mecA, VanA, and VanB genes. The results confirmed the existence of Staph. aureus in 49/426 (11.5%) cases among which MRSA were isolated from 34/49 (69.4%) when modified Kirby-Bauer disk diffusion method was applied. Ten out of these 34 MRSA were confirmed as VRSA by cultures on BHI agar containing 6μg/ml vancomycin according to NCCLS criteria. PCR revealed that out of the 34 MRSA isolates, 26 were mecA positive (76.5%) while 8 (23.5%) were arcC positive. No vanA or VanB genes were detected. Molecular method confirmed the results for MRSA through the presence of either arcC or mecA genes while it failed to approve the occurrence of VRSA since neither VanA or VanB genes were detected. Thus, VRSA may be attributed to other factors.Keywords: antibiotic resistance, Staphylococcus aureus, VRSA, MRSA, Khartoum, Sudan
Procedia PDF Downloads 4341983 Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass
Authors: Alireza Arab, Morteza Elsa, Amirhossein Moghanian
Abstract:
In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on in vitro bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO2–(36-x)CaO–4P2O5–(x)Li2O and 60SiO2–(36-x)CaO–4P2O5–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant Staphylococcus aureus bacteria. To do so, CaO was substituted with Li2O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li2O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li2O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 1081982 Characterization of Biocomposites Based on Mussel Shell Wastes
Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk
Abstract:
Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties
Procedia PDF Downloads 3141981 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks
Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox
Abstract:
miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network
Procedia PDF Downloads 5101980 A Primary Care Diagnosis of Middle-Aged Men with Oral Cancer Who Underwent Extensive Resection and Flap Repair: A Case Report
Authors: Ching-Yi Huang, Pi-Fen Cheng, Hui-Zhu Chen, Shi Ting Huang, Heng-Hua Wang
Abstract:
This is a case of oral cancer after extensive resection and modified right lateral neck lymph node dissection followed by reconstruction with a skin flap. The nursing period lasted From September 25 to October 3, 2017, through observation, interview, physical assessment, and medical record review, the author identified the following nursing problems: acute pain, impaired oral mucous membrane, and body image change. During the nursing period, the author provided individual and overall nursing care and established mutual trust through the use of empathy. Author listened and eased the patient's physical indisposition, such as wound pain, we use medications and acupuncture massage to relieve pain. However, for oral mucosa change caused by surgery, provide continuous and complete oral care and oral exercise training to improve oral mucosal healing and restore swallowing function. In the body-image changes, guided him to express his feeling after the body-image change, and enhanced support and from the family, and encouraged him to attend head and neck cancer survivor alliance which allowed the patient to accept the altered body image and reaffirm self-worth. Hopefully, through sharing this nursing experience will help to the nursing care quality of nursing care for oral cancer patients after extensive resection and modified right lateral neck lymph node dissection followed by reconstruction with a skin flap.Keywords: oral cancer, acute pain, impaired oral mucous membrane, body image change
Procedia PDF Downloads 1871979 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva
Authors: Sevde Altuntas, Fatih Buyukserin
Abstract:
Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy
Procedia PDF Downloads 2911978 Effects of Matrix Properties on Surfactant Enhanced Oil Recovery in Fractured Reservoirs
Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsæter
Abstract:
The properties of rocks have effects on efficiency of surfactant. One objective of this study is to analyze the effects of rock properties (permeability, porosity, initial water saturation) on surfactant spontaneous imbibition at laboratory scale. The other objective is to evaluate existing upscaling methods and establish a modified upscaling method. A core is put in a container that is full of surfactant solution. Assume there is no space between the bottom of the core and the container. The core is modelled as a cuboid matrix with a length of 3.5 cm, a width of 3.5 cm, and a height of 5 cm. The initial matrix, brine and oil properties are set as the properties of Ekofisk Field. The simulation results of matrix permeability show that the oil recovery rate has a strong positive linear relationship with matrix permeability. Higher oil recovery is obtained from the matrix with higher permeability. One existing upscaling method is verified by this model. The study on matrix porosity shows that the relationship between oil recovery rate and matrix porosity is a negative power function. However, the relationship between ultimate oil recovery and matrix porosity is a positive power function. The initial water saturation of matrix has negative linear relationships with ultimate oil recovery and enhanced oil recovery. However, the relationship between oil recovery and initial water saturation is more complicated with the imbibition time because of the transition of dominating force from capillary force to gravity force. Modified upscaling methods are established. The work here could be used as a reference for the surfactant application in fractured reservoirs. And the description of the relationships between properties of matrix and the oil recovery rate and ultimate oil recovery helps to improve upscaling methods.Keywords: initial water saturation, permeability, porosity, surfactant EOR
Procedia PDF Downloads 1621977 Bioprospecting for Indigenous Ruderal Plants with Potentials for Phytoremediation of Soil Heavy Metals in the Southern Guinea Savanna of North Western Nigeria
Authors: Sunday Paul Bako, Augustine Uwanekwu Ezealor, Yahuza Tanimu
Abstract:
In a study to evaluate the response of indigenous ruderal plants to the metal deposition regime imposed by anthropogenic modification in the Southern Guinea Savanna of north Western Nigeria during the dry and wet seasons, herbaceous plants and samples of soils were collected in three 5m by 5m quadrats laid around the environs of the Kaduna Refinery and Petrochemical Company and the banks of River Kaduna. Heavy metal concentration (Cd, Ni, Cr, Cu, Fe, Mn and Zn) in soil and plant samples was determined using Energy Dispersive X-ray Fluorescence. Concentrations of heavy metals in soils were generally observed to be higher during the wet season in both locations although the differences were not statistically significant (P > 0.05). Concentrations of Cd, Zn, Cr, Cu and Ni in all the plants observed were found to be below levels described as phytotoxic to plants. However, above ‘normal’ concentrations of Cr was observed in most of the plant species sampled. The concentrations of Cr, Cu, Ni and Zn in soils around the KRPC and RKB were found to be above the acceptable limits. Although no hyper accumulator plant species was encountered in this study, twenty (20) plant species were identified to have high bioconcentration (BCF > 1.0) of Cd and Cu, which indicated tolerance of these plants to excessive or phytotoxic concentrations of these metals. In addition, they generally produce high above ground biomass, due to rapid vegetative growth. These are likely species for phytoextraction. Elevated concentration of metals in both soil and plant materials may cause a decrease in biodiversity due to direct toxicity. There are also risks to humans and other animals due to bioaccumulation across the food chain. There are further possibilities of further evaluating and genetically improving metal tolerance traits in some of these plant species in relation to their potential use in phytoremediation programmes in metal polluted sites.Keywords: bioprospecting, phytoremediation, heavy metals, Nigeria
Procedia PDF Downloads 2841976 Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage
Authors: N. Valderrama, W. Albarracín, N. Algecira
Abstract:
It was studied the effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, ΔE increased whereas water resistance, swelling index, L*, and hue angle decreased.Keywords: chitosan, food additives, modified films, polymers
Procedia PDF Downloads 3661975 Consequences of Some Remediative Techniques Used in Sewaged Soil Bioremediation on Indigenous Microbial Activity
Authors: E. M. Hoballah, M. Saber, A. Turky, N. Awad, A. M. Zaghloul
Abstract:
Remediation of cultivated sewage soils in Egypt become an important aspect in last decade for having healthy crops and saving the human health. In this respect, a greenhouse experiment was conducted where contaminated sewage soil was treated with modified forms of 2% bentonite (T1), 2% kaolinite (T2), 1% bentonite+1% kaolinite (T3), 2% probentonite (T4), 2% prokaolinite (T5), 1% bentonite + 0.5% kaolinite + 0.5% rock phosphate (RP) (T6), 2% iron oxide (T7) and 1% iron oxide + 1% RP (T8). These materials were applied as remediative materials. Untreated soil was also used as a control. All soil samples were incubated for 2 months at 25°C at field capacity throughout the whole experiment. Carbon dioxide (CO2) efflux from both treated and untreated soils as a biomass indicator was measured through the incubation time and kinetic parameters of the best fitted models used to describe the phenomena were taken to evaluate the succession of sewaged soils remediation. The obtained results indicated that according to the kinetic parameters of used models, CO2 effluxes from remediated soils was significantly decreased compared to control treatment with variation in rate values according to type of remediation material applied. In addition, analyzed microbial biomass parameter showed that Ni and Zn were the most potential toxic elements (PTEs) that influenced the decreasing order of microbial activity in untreated soil. Meanwhile, Ni was the only influenced pollutant in treated soils. Although all applied materials significantly decreased the hazards of PTEs in treated soil, modified bentonite was the best treatment compared to other used materials. This work discussed different mechanisms taking place between applied materials and PTEs founded in the studied sewage soil.Keywords: remediation, potential toxic elements, soil biomass, sewage
Procedia PDF Downloads 228