Search results for: phenolic acids
499 Invasion of Epithelial Cells Is Correlated with Secretion of Biosurfactant via the Type 3 Secretion System (T3SS) of Shigella flexneri
Authors: Duchel Jeanedvi Kinouani Kinavouidi, Christian Aimé Kayath, Etienne Nguimbi
Abstract:
Biosurfactants are amphipathic molecules produced by many microorganisms, usually bacteria, fungi, and yeasts. +ey possesses the property of reducing the tension of the membrane interfaces. No studies have been conducted on Shigella species showing the role of biosurfactant-like molecules (BLM) in pathogenicity. +e aim of this study is to assess the ability of Shigella environmental and clinical strains to produce BLM and investigate the involvement of biosurfactants in pathogenicity. Our study has shown that BLM is secreted in the extracellular medium with EI24 ranging from 80% to 100%. +e secretion depends on the type III secretion system (T3SS). Moreover, our results have shown that S. flexneri, S. boydii, and S. sonnei are able to interact with hydrophobic areas with 17.64%, 21.42%, and 22.22% hydrophobicity, respectively. BLM secretion is totally prevented due to the inhibition of T3SS by 100 mM benzoic and 1.5 mg/ml salicylic acids. P. aeruginosa harboring T3SS is able to produce 100% of BLM in the presence or in the absence of both T3SS inhibitors. +e secreted BLM are extractable with an organic solvent such as chloroform, and this could entirely be considered a lipopeptide or polypeptide compound. Secretion of BLM allows some Shigella strains to induce multicellular phenomena like ‘swarming.’Keywords: shigella flexneri, biosurfactant, T3SS, Lipopeptide
Procedia PDF Downloads 10498 Efficacy of Chia Seed Oil Supplemented Ice-Cream against Hypercholesterolemia
Authors: Naureen Naeem, M. S. Aslam
Abstract:
Chia seeds found to be a rich source of dietary fiber contain oil which is high in omega 6 and omega 3 fatty acids and helpful in the control of cardiovascular diseases. Owing to its spectacular significance, present research had been designed to explore its effect on cholesterol level of the individuals after consumption of chia seed oil supplemented ice cream. The project was designed in such a manner that fat of ice cream was replaced with chia seed oil in different proportions i.e., 25%, 50%, 75%, 100%. After physico-chemical and sensory evaluation of ice cream, best treatment was selected and used for efficacy trials. After baseline line study and thorough inclusion criteria 10 individuals were selected and divided into two groups. One group treated as control and the other was given chia seed oil supplemented l(50%) ice cream. Significant decrease in cholesterol level was observed in the treated group. 18% decrease in cholesterol level was observed at 40th day followed by 8% at 20th day. Similarly 20% decrease in LDL cholesterol with 14% increase in HDL cholesterol. It was recommended that further trials be conducted with sophisticated techniques to completely replace saturated fat in ice cream with unsaturated fats and to study its effect in hyperglycemia and oxidative stress.Keywords: hypercholesterolemia, chia seed oil, HDL, triglycerides
Procedia PDF Downloads 309497 Effect of Oat-Protein Peptide in Cognitive Impairment Mice via Mediating Gut-Brain Axis
Authors: Hamad Rafique
Abstract:
The bioactive peptide RDFPITWPW (RW-9) identified from oat protein has been reported to be positive in memory deficits. However, no clarity on the mechanisms responsible for the neuroprotective effects of RW-9 peptide against AD-like symptoms. Herein, it found that RW-9 intervention showed various improving effects in cognitive-behavioral tests and alleviated oxidative stress and inflammation in the scopolamine-induced mice model. The hippocampus proteomics analysis revealed the upregulation of memory-related proteins, including Grin3a, Ppp2r1b, Stat6, Pik3cd, Slc5a7, Chrm2, mainly involved in cAMP signaling, PI3K-Akt signaling, and JAK-STAT signaling pathways. The administration of RW-9 significantly upregulated the neurotransmitters, including 5-HT, DA, and Arg, in mice brains. Moreover, it regulated the serum metabolic profile and increased the expression levels of ABC transporters, biosynthesis of amino acids, and Amino acyl-tRNA biosynthesis, among others. The 16s-rRNA results illustrated that the RW-9 restored the abundance of Muribaculaceae, Lachnospiraceae, Lactobacillus, Clostridia and Bactericides. Taken together, our results suggest that the RW-9 may prevent the AD-like symptoms via modulation of the gut-serum-brain axis.Keywords: oat protein, active peptide, neuroprotective, gut-brain axis
Procedia PDF Downloads 27496 Chemical Composition and Antibacterial Activity of the Essential Oils from Bunium alpinum and Bunium incrassatum
Authors: Hayet El Kolli, Hocine Laouer
Abstract:
Bunium in the world comprises about 50 to 100 species, mostly distributed in: Algeria, Italy, Pakistan, Iran, and South Africa. Bunium species have several uses like: Bunium persicum which is commonly used as antispasmodic, carminative, anti-obesity and lactogage. This plant have been widely used as an additive in food stuff such as in bread cooking, rice and yoghurt for its carminative, anti-dyspepsia and antispasmodic effect. The B. paucifolium oil has a wide spectrum of action against moulds, yeast and bacteria. The chemical compositions of Bunium incrassatum and Bunium alpinum essential oils were carry out by GC and GC/MS. Therefore, antibacterial activity of two oils was investigated by disk diffusion method against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1331, Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae ATCC 700603, Bacillus cereus ATCC 10876, Enterococcus faecalis ATCC 49452, Lysteria monocytogenes ATCC 15313, Citrobacter freundii ATCC 8090, Proteus mirabilis ATCC 35659. A moderate antibacterial activity was found. In conclusion, it is found that essential oils of the two species are rich in sesquiterpens and other oxygenated compounds. These compounds have been reported to show bactericidal activity and the presence of phenolic compounds makes them useful antioxidants so that results confirm some ethnopharmacologique applications of these two oils of Bunium.Keywords: Bunium alpinum, Bunium incrassatum, apiaceae, essential oil, sesquiterpens, phenols, antibacterial, antioxidant activities
Procedia PDF Downloads 371495 Protective Effect of Cow Urine against Chlorpyrifos Induced-Genotoxicity and Neurotoxicity in Albino Rats
Authors: Shelly Sharma, Pooja Chadha
Abstract:
Humans are exposed to pesticides and insecticides either directly or indirectly. Exposure to these pesticides may lead to acute toxicity to mammals and non-target organisms. Chlorpyrifos (CPF) is a broad spectrum organophosphate pesticide widely used in various countries of the world. The aim of the present study was to assess the toxicity associated with chlorpyrifos exposure and possible mitigating effect of cow urine against genotoxic and toxic effects in rat brain induced by chlorpyrifos. For this purpose LD50 was determined and rats were orally administered with 1/8th of LD50 (19mg/kg b.wt). Brain samples were taken after 24hrs, 48hrs and 72hrs of treatment. A significant increase in the % tail DNA was observed along with the increase in MDA levels of brain tissues in chlorpyrifos treated groups as compared to control. Cow urine treated groups show decrease in DNA damage and MDA levels as compared to CPF treated group. The study indicates that cow urine has ameliorative potential against neurotoxicity and genotoxicity induced by CPF. Cow urine is considered rich in vitamin A, E and volatile fatty acids which provide antioxidant potential to it. Thus, it can be used as a genoprotective agent.Keywords: comet assay, brain, cow urine, genotoxicity, toxicity
Procedia PDF Downloads 382494 Effect of Some Metal Ions on the Activity of Lipase Produced by Aspergillus Niger Cultured on Vitellaria Paradoxa Shells
Authors: Abdulhakeem Sulyman, Olukotun Zainab, Hammed Abdulquadri
Abstract:
Lipases (triacylglycerol acyl hydrolases) (EC 3.1.1.3) are class of enzymes that catalyses the hydrolysis of triglycerides to glycerol and free fatty acids. They account for up to 10% of the enzyme in the market and have a wide range of applications in biofuel production, detergent formulation, leather processing and in food and feed processing industry. This research was conducted to study the effect of some metal ions on the activity of purified lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells. Purified lipase in 12.5 mM p-NPL was incubated with different metal ions (Zn²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Na⁺, K⁺ and Mg²⁺). The final concentrations of metal ions investigated were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mM. The results obtained from the study showed that Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ ions increased the activity of lipase up to 3.0, 3.0, 1.0, and 26.0 folds respectively. Lipase activity was partially inhibited by Na⁺ and Mg²⁺ with up to 88.5% and 83.7% loss of activity respectively. Lipase activity was also inhibited by K⁺ with up to 56.7% loss in the activity as compared to in the absence of metal ions. The study concluded that lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells can be activated by the presence of Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ and inhibited by Na⁺, K⁺ and Mg²⁺.Keywords: Aspergillus niger, Vitellaria paradoxa, lipase, metal ions
Procedia PDF Downloads 150493 A Comparison of Kinetic and Mechanical Properties between Graphene Oxide (GO) and Carbon Nanotubes (CNT)-Epoxy Nanocomposites
Authors: Marina Borgert Moraes, Gilmar Patrocinio Thim
Abstract:
It is still unknown how the presence of nanoparticles such as graphene oxide (GO) or carbon nanotubes (CNT) influence the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA as well as mechanical tests. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80 °C + 2h 120 °C; 3h 80 °C + 2h 120 °C; 5h 80 °C) and samples with different times at constant temperature (120 °C). Mechanical tests were performed according to ASTM D638 and D790. Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites, and the GO reinforced samples had a slightly bigger improvement compared to functionalized CNT.Keywords: carbon nanotube, epoxy resin, graphene oxide, nanocomposite
Procedia PDF Downloads 262492 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities
Authors: Elmineh Tsegahun Gedif
Abstract:
Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs
Procedia PDF Downloads 111491 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification
Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih
Abstract:
Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.Keywords: methanol, palm oil, simulation, transesterification, triolein
Procedia PDF Downloads 320490 Effects of Selected Plant-Derived Nutraceuticals on the Quality and Shelf-Life Stability of Frankfurter Type Sausages during Storage
Authors: Kazem Alirezalu, Javad Hesari, Zabihollah Nemati, Boukaga Farmani
Abstract:
The application of natural plant extracts which are rich in promising antioxidants and antimicrobial ingredients in the production of frankfurter-type sausages addresses consumer demands for healthier, more functional meat products. The effects of olive leaves, green tea and Urtica dioica L. extracts on physicochemical, microbiological and sensory characteristic of frankfurter-type sausage were investigated during 45 days of storage at 4 °C. The results revealed that pH and phenolic compounds decreased significantly (P < 0.05) in all samples during storage. Sausages containing 500 ppm green tea extract (1.78 mg/kg) showed the lowest TBARS values compared to olive leaves (2.01 mg/kg), Urtica dioica L. (2.26 mg/kg) extracts and control (2.74 mg/kg). Plant extracts significantly (P < 0.05) reduced the count of total mesophilic bacteria, yeast and mold by at least 2 log cycles (CFU/g) than those of control samples. Sensory characteristics of texture showed no difference (P > 0.05) between sausage samples, but sausage containing Urtica dioica L. extract had the highest score regarding flavor, freshness odor, and overall acceptability. Based on the results, sausage containing plant extracts could have a significant impact on antimicrobial activity, antioxidant capacity, sensory score, and shelf life stability of frankfurter-type sausage.Keywords: antimicrobial, antioxidant, frankfurter-type sausage, green tea, olive oil, shelf life, Urtica dioica L.
Procedia PDF Downloads 190489 Isolation of New C₁₅ Acetogenins from the Red Alga Laurencia obtusa
Authors: Nahed O. Bawakid, Walied M. Alarif
Abstract:
With regard to the uniqueness of the red algae of the genus Laurencia as the source of C₁₅-acetogenins, along with the diversity of biological applications; the acetogenin content of the Red Sea L. obtusa was investigated. Fractionation and purification of the CH₂Cl₂/MeOH extract were done by applying several chromatographic techniques, including column and preparative thin-layer chromatography; followed by a series of ¹H nuclear magnetic resonance measurements to give rise of some interesting notes. A new rare chloroallene-based C₁₅ acetogenin, laurentusenin (1) along with a new furan ring containing C₁₅ acetogenin, laurenfuresenin (2), were isolated from the red alga L. obtusa. Comparing 1D and 2D NMR, MS, UV and IR spectral data for the new isolated compounds with the reported bromoallene containing acetogenins spectral data was played the crucial role for characterization of their hemical structures. The apoptosis induced by these two compounds was demonstrated by DNA fragmentation assay and microscopic observation. These observations suggest that (1) and (2) may be involved in regulation of programmed death in the initiation and propagation of inflammatory responses. The isolated metabolite (1) showed unusual substituted allene side chain, while (2) inserted furan ring as a new acetogenin nucleus.Keywords: cyclic enyne, anti-inflammatory, fatty acids, marine algae, halogenations
Procedia PDF Downloads 151488 Biogas Production from Pistachio (Pistacia vera L.) Processing Waste
Authors: İ. Çelik, Goksel Demirer
Abstract:
Turkey is the third largest producer of pistachio (Pistacia vera L.) after Iran and United States. Harvested pistachio nuts are covered with organic hull which is removed by de-hulling process. Most of the pistachio by-products which are produced during de-hulling process are considered as agricultural waste and often mixed with soil, to a lesser extent are used as feedstuff by local livestock farmers and a small portion is used as herbal medicine. Due to its high organic and phenolic content as well as high solids concentration, pistachio processing wastes create significant waste management problems unless they are properly managed. However, there is not a well-established waste management method compensating the waste generated during the processing of pistachios. This study investigated the anaerobic treatability and biogas generation potential of pistachio hull waste. The effect of pre-treatment on biogas generation potential was investigated. For this purpose, Biochemical Methane Potential (BMP) Assays were conducted for two Chemical Oxygen Demand (COD) concentrations of 22 and 33 g tCOD l-1 at the absence and presence of chemical and thermal pre-treatment methods. The results revealed anaerobic digestion of the pistachio de-hulling wastes and subsequent biogas production as a renewable energy source are possible. The observed percent COD removal and methane yield values of the pre-treated pistachio de-hulling waste samples were significantly higher than the raw pistachio de-hulling waste. The highest methane yield was observed as 213.4 ml CH4/g COD.Keywords: pistachio de-hulling waste, biogas, renewable energy, pre-treatment
Procedia PDF Downloads 215487 Interaction of Glycolipid S-TGA-1 with Bacteriorhodopsin and Its Functional Role
Authors: Masataka Inada, Masanao Kinoshita, Nobuaki Matsumori
Abstract:
It has been demonstrated that lipid molecules in biological membranes are responsible for the functionalization and structuration of membrane proteins. However, it is still unclear how the interaction of lipid molecules with membrane proteins is correlated with the function of the membrane proteins. Here we first developed an evaluation method for the interaction between membrane proteins and lipid molecules via surface plasmon resonance (SPR) analysis. Bacteriorhodopsin (bR), which was obtained by the culture of halobacteria, was used as a membrane protein. We prepared SPR sensor chips covered with self-assembled monolayer containing mercaptocarboxylic acids, and immobilized bR onto them. Then, we evaluated the interactions with various lipids that have different structures. As a result, the halobacterium-specific glycolipid S-TGA-1 was found to have much higher affinity with bRs than other lipids. This is probably due to not only hydrophobic and electrostatic interactions but also hydrogen bonds with sugar moieties in the glycolipid. Next, we analyzed the roles of the lipid in the structuration and functionalization of bR. CD analysis showed that S-TGA-1 could promote trimerization of bR monomers more efficiently than any other lipids. Flash photolysis further indicated that bR trimers formed by S-TGA-1 reproduced the photocyclic activity of bR in purple membrane, halobacterium-membrane. These results suggest that S-TGA-1 promotes trimerization of bR through strong interactions and consequently fulfills the bR’s function efficiently.Keywords: membrane protein, lipid, interaction, bacteriorhodopsin, glycolipid
Procedia PDF Downloads 253486 Assessment of Hemostatic Activity of the Aqueous Extract of Leaves of Marrubium vulgare L.: A Mediterranean Lamiaceae Algeria
Authors: Nabil Ghedadba, Abdessemed Samira, Leila Hambaba, Sidi Mohamed Ould Mokhtar, Nassima Fercha, Houas Bousselsela
Abstract:
The overall objective of this study was to evaluate in vitro the hemostatic activity of secondary metabolites (polyphenols, flavonoids, and tannins) of Marrubium vulgare leaves, aromatic plant widely used in traditional medicine for the treatment of asthma, cough, diabetes (by its effect on the pancreas to secrete insulin), heart disease, fever has a high efficiency as against inflammation. Qualitative analysis of the aqueous extract (AQE) by thin layer chromatography revealed the presence of quercetin, kaempferol and rutin. Quantification of total phenols by Folin Ciocalteu method and flavonoids by AlCl3 method gave high values with AQE: 175±0.80 mg GAE per 100g of the dry matter, 23.86±0.36 mg QE per 100g of dry matter. Moreover, the assay of condensed tannins by the vanillin method showed that AQE contains the highest value: 16.55±0.03 mg e-catechin per 100 g of dry matter. Assessment of hemostatic activity by the plasma recalcification method (time of Howell) has allowed us to discover the surprising dose dependent anticoagulant effect of AQE lyophilized from leaves of M. vulgare. A positive linear correlation between the two parameters studied: the content of condensed tannins and hemostatic activity (r=0.96) were used to highlight a possible role of these compounds that are potent vasoconstrictor activity in hemostatic. From these results we can see that Marrubium vulgre could be used for the treatment of health.Keywords: Marrubium vulgare L., aqueous extract, phenolic compounds dosing, hemostatic activity, condensed tannins
Procedia PDF Downloads 242485 Untargeted Small Metabolite Identification from Thermally Treated Tualang Honey
Authors: Lee Suan Chua
Abstract:
This study investigated the effects of thermal treatment on Tualang honey sample in terms of honey colour and heat-induced small metabolites. The heating process was carried out in a temperature controlled water batch at 90 °C for 4 hours. The honey samples were put in cylinder tubes with the dimension of 1 cm diameter and 10 cm length for homogenous heat transfer. The results found that the thermal treatment produced not only hydroxylmethylfurfural, but also other harmful substances such as phthalic anhydride and radiolytic byproducts. The degradation of honey protein was reported due to the detection of free amino acids such as cysteine and phenylalanine in heat-treated honey samples. Sugar dehydration also occurred because fragmented di-galactose was identified based on the presence of characteristic ions in the mass fragmentation pattern. The honey colour was found getting darker as the heating duration was increased up to 4 hours. Approximately, 60 mm PFund of increment was noticed for the honey colour with the colour change rate of 14.8 mm PFund per hour. Based on the principal component analysis, the chemical profile of Tualang honey was significantly altered after 2 hours of heating at 90 °C.Keywords: honey colour, hydroxylmethylfurfural, thermal treatment, tualang honey
Procedia PDF Downloads 376484 Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage
Authors: Sajid Maqsood, Aysha Al Rashedi, Aisha Abushelaibi, Kusaimah Manheem
Abstract:
Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves.Keywords: natural antioxidants, lipid oxidation, quality, camel meat
Procedia PDF Downloads 434483 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach
Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino
Abstract:
The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3 0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.
Procedia PDF Downloads 42482 Novel Phenolic Biopolyether with Potential Therapeutic Effect
Authors: V.Barbakadze, L.Gogilashvili, L.Amiranashvili, M.Merlani, K.Mulkijanyan
Abstract:
The high-molecular fractions from the several species of two genera (Symphytum and Anchusa) of Boraginaceae family Symphytum asperum, S. caucasicum, S. officinale, and Anchusa italica were isolated. According to IR, 13C and 1H NMR, 2D heteronuclear 1H/13C HSQC spectral data and 1D NOE experiment, the main structural element of these preparations was found to be a regularly substituted polyoxyethylene, namely poly[3-(3,4-dihydroxyenyl)glyceric acid] (PDPGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene]. Such caffeic acid-derived biopolymer to our knowledge has not been known and has been identified for the first time. This compound represents a new class of natural polyethers with a residue of 3-(3,4-dihydroxyphenyl)glyceric acid as the repeating unit. Most of the carboxylic groups of PDPGA from A. italica unlike the polymer of S. asperum, S. caucasicum, and S. officinale are methylated. The 2D DOSY experiment gave the similar diffusion coefficient for the methylated and non-methylated signals of A. italica PDPGA. Both sets of signals fell in the same horizontal. This would imply a similar molecular weight for methylated and non-methylated polymers. This was further evidenced by graphic representations of the intensity decay of the 1H signals of aromatic H-2″ and H-1 at δ 7.16 and 5.24 and that of the methoxy group at δ 3.85. These three signals essentially showed the same curve shape. According to results of in vitro and in vivo experiments PDPGA of S.asperum and S.caucasicum could be considered as potential anti-inflammatory, wound healing and anti-cancer therapeutic agent.Keywords: caffeic acid-derived polyether, poly[3-(3, 4-dihydroxyphenyl)glyceric acid], poly[oxy-1-carboxy-2-(3, 4-dihydroxyphenyl)ethylene], symphytum, anchusa
Procedia PDF Downloads 403481 Molecular Cloning of CSP2s, PBP1 and PBP2 Genes of Rhyzopertha dominica
Authors: Suliman A. I. Ali, Mory Mandiana Diakite, Saqib Ali, Man-Qun Wang
Abstract:
Lesser grain borer, Rhyzopertha dominica, is a causing damages of stored grains all tropical and subtropical area in the global, according to the information of antenna cDNA library of R. dominica, three olfactory protein genes, including R.domica CSPs2, R.domica PBPs1, R.domica PBPs2 genes (GenBank accessions are KJ186798.1, KJ186830.1, KJ186831.1 separately.), were successfully cloned. For sequencing and phylogenetic analysis, R.domica CSPs1 and R.domica CSPs2 belonged to Minus-C CSPs showed that have 4 conserved cysteine residues, while R.domica PBPs1 and R.domica PBPs2 showed conserved amino acids in all PBPs six conserved cysteine residues. The results of transcription expression level of PBPs1 and PBPs2 of R. dominica showed that the expression level of R.domnica PBP2 is much higher than that of R.domnica PBP1. The variation transcription level at the different developmental time suggested the PBP1, and PBP2 had their particular job in searching food sources, mates and oviposition sites.Keywords: Rhyzopertha dominica, CSPs, PBPs, molecular cloning
Procedia PDF Downloads 147480 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment
Authors: Iryna P. Dzieciuch, Michael D. Putman
Abstract:
Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin
Procedia PDF Downloads 162479 Effect of Preparation Temperature on Producing Graphene Oxide by Chemical Oxidation Approach
Authors: Rashad Al-Gaashani, Muataz A. Atieh
Abstract:
In this study, the effect of preparation temperature, namely room temperature (RT), 40, 60, and 85°C, on producing of high-quality graphene oxide (GO) has been investigated. GO samples have been prepared by chemical oxidation of graphite via a safe improved chemical technique using a blend of two deferent acids: sulphuric acid (H₂SO₄) and phosphoric acid (H₃PO₄) with volume ratio 4:1, respectively. potassium permanganate (KMnO₄) and hydrogen peroxide (H₂O₂) were applied as oxidizing agents. In this work, sodium nitrate (NaNO₃) was excluded, so the emission of hazardous explosive gases such as NO₂ and N₂O₂ was shunned. Ice and oil baths were used to carefully control the temperature. Several characterization instruments including X-Ray diffraction, transmission electron microscopy, scanning electron microscopy, electron dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to study and compare the synthesized samples. The results indicated that GO can be prepared at RT with graphite oxide, and the purity of GO increased with rising of the solvent temperature. Optical properties of GO samples were studied using UV-vis absorption spectra.Keywords: chemical method, graphite, graphene oxide, optical properties
Procedia PDF Downloads 163478 Influence of Synergistic/Antagonistic Mixtures of Oligomeric Stabilizers on the Biodegradation of γ-Sterilized Polyolefins
Authors: Sameh A. S. Thabit Alariqi
Abstract:
Our previous studies aimed to investigate the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments at different doses and γ-dose rates. It was concluded from the previous studies that the pretreatment of γ-irradiation can accelerate the biodegradation of neat polymer matrix in biotic conditions significantly. A similar work was carried out to study the stabilization of γ-sterilized polyolefins using different mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and hydroperoxide decomposers. Results were discussed by comparing the stabilizing efficiency, combination and consumption of stabilizers and the synergistic and antagonistic effects was explained through the interaction between the stabilizers. In this attempt, we have aimed to study the influence of the synergistic and antagonistic mixtures of oligomeric stabilizers on the biodegradation of the γ-irradiated polyolefins in composting and microbial culture. Neat and stabilized films of EP copolymer irradiated under γ-radiation and incubated in compost and fungal culture environments. The changes in functional groups, surface morphology, mechanical properties and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM, instron, and viscometric measurements respectively. Results were discussed by comparing the effect of different stabilizers, stabilizers mixtures on the biodegradation of the γ-irradiated polyolefins. It was found that the biodegradation significantly depends on the components of stabilization system, mobility, interaction, and consumption of stabilizers.Keywords: biodegradation, γ-irradiation, polyolefins, stabilization
Procedia PDF Downloads 388477 Characterization of an Isopropanol-Butanol Clostridium
Authors: Chen Zhang, Fengxue Xin, Jianzhong He
Abstract:
A unique Clostridium beijerinckii species strain BGS1 was obtained from grass land samples, which is capable of producing 8.43g/L butanol and 3.21 isopropanol from 60g/L glucose while generating 4.68g/L volatile fatty acids (VFAs) from 30g/L xylan. The concentration of isopropanol produced by culture BGS1 is ~15% higher than previously reported wild-type Clostridium beijerinckii under similar conditions. Compared to traditional Acetone-Butanol-Ethanol (ABE) fermentation species, culture BGS1 only generates negligible amount of ethanol and acetone, but produces butanol and isopropanol as biosolvent end-products which are pure alcohols and more economical than ABE. More importantly, culture BGS1 can consume acetone to produce isopropanol, e.g., 1.84g/L isopropanol from 0.81g/L acetone in 60g/L glucose medium containing 6.15g/L acetone. The analysis of BGS1 draft genome annotated by RAST server demonstrates that no ethanol production is caused by the lack of pyruvate decarboxylase gene – related to ethanol production. In addition, an alcohol dehydrogenase (adhe gene) was found in BGS1 which could be a potential gene responsible for isopropanol-generation. This is the first report on Isopropanol-Butanol (IB) fermentation by wild-type Clostridium strain and its application for isopropanol and butanol production.Keywords: acetone conversion, butanol, clostridium, isopropanol
Procedia PDF Downloads 292476 The Possibility of Increase UFA in Milk by Adding of Canola Seed in Holstein Dairy Cow Diets
Authors: H. Mansoori Yarahmadi, A. Aghazadeh, K. Nazeradl
Abstract:
This study was done to evaluate the effects of feeding canola seed for enrichment of UFA and milk performance of early lactation dairy cows. Twelve multi parous Holstein cows (635.3±18 kg BW and 36±9 DIM) were assigned to 1 of 3 treatments: 1- Control (CON) without canola seed, 2- 7.5% raw canola seed (CUT), and 3- 7.5% Heat-treated canola seed (CHT) of the total ration. Diets contained same crude protein, but varied in net energy. Diets were composed by basis of corn silage and alfalfa. Cows were milked twice daily for 4 wk. The inclusion of canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from CHT cows had greater proportions of UFA and MUFA (P < 0.05). Feeding CUT increased PUFA without significant difference. Milk fat from CHT had a greater proportion of C18 UFA and tended to have a higher proportion of other UFA. FCM milk yields, milk fat and protein percentages and total yield of these components were similar between treatments. Milk urea nitrogen was lower in cows fed CON and CHT. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without adverse affecting milk yield or milk composition.Keywords: canola seed, fatty acid, dairy cow, milk
Procedia PDF Downloads 598475 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path
Authors: Farzaneh Ziaee, Mohammad Ziaee
Abstract:
N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization
Procedia PDF Downloads 192474 Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger
Authors: Jwan J. Abdullah, Greetham Darren, Gregory A, Tucker, Chenyu Du
Abstract:
Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei.Keywords: SSF, enzyme hydrolysis, municipal solid waste (MSW), optimizing conditions, enzyme hydrolysis
Procedia PDF Downloads 555473 Molecular Docking and Synthesis of Nitrogen-Containing Bisphosphonates
Authors: S. Ghalem, M. Mesmoudi, I. Daoudand, H. Allali
Abstract:
The nitrogen-containing bisphosphonates (N-BPs) are well established as the treatments of choice for disorders of excessive bone resorption, myeloma and bone metastases, and osteoporosis. They inhibit farnesyl pyrophosphate synthase (FFPS), a key enzyme in the mevalonate pathway, resulting in inhibition of the prenylation of small GTP-binding proteins in osteoclasts and disruption of their cytoskeleton, adhesion/spreading, and invasion of cancer cells. A very few examples for synthesis of α-amino bisphosphonates based on several amino acids are known from the literature. In the present work, esters of aminoacid react with ketophsophonate (or their analog acid or acyl) to afford the desired products, α-iminophosphonates. The reaction of imine with dimethyl phosphate in the presence of catalytic amount of I2 give ester of α-aminobisphosphonate as sole product in good yield. Finally, we used computational docking methods to predict how several α-aminobisphosphonates bind to FPPS and how R and X influence. Pamidronate, β-aminobisphosphonate already marketed, was used as reference. These results are of interest since they represent a new and simple way to sythesize α-aminobisphosphonates with a free COOH group increased by R2 functionalisable and opening up the possibility of using the molecular docking to facilitate the design of other, novel FFPS inhibitors.Keywords: drug research, cancer, α-amino bisphosphonates, molecular docking
Procedia PDF Downloads 271472 Elaboration and Investigation of the New Ecologically Clean Friction Composite Materials on the Basis of Nanoporous Raw Materials
Authors: Lia Gventsadze, Elguja Kutelia, David Gventsadze
Abstract:
The purpose of the article is to show the possibility for the development of a new generation, eco-friendly (asbestos free) nano-porous friction materials on the basis of Georgian raw materials, along with the determination of technological parameters for their production, as well as the optimization of tribological properties and the investigation of structural aspects of wear peculiarities of elaborated materials using the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) methods. The study investigated the tribological properties of the polymer friction materials on the basis of the phenol-formaldehyde resin using the porous diatomite filler modified by silane with the aim to improve the thermal stability, while the composition was modified by iron phosphate, technical carbon and basalt fibre. As a result of testing the stable values of friction factor (0.3-0,45) were reached, both in dry and wet friction conditions, the friction working parameters (friction factor and wear stability) remained stable up to 500 OC temperatures, the wear stability of gray cast-iron disk increased 3-4 times, the soundless operation of materials without squeaking were achieved. Herewith it was proved that small amount of ingredients (5-6) are enough to compose the nano-porous friction materials. The study explains the mechanism of the action of nano-porous composition base brake lining materials and its tribological efficiency on the basis of the triple phase model of the tribo-pair.Keywords: brake lining, friction coefficient, wear, nanoporous composite, phenolic resin
Procedia PDF Downloads 393471 Phytochemical Screening and Identification of Anti-Biological Activity Properties of Pelargonium graveolens
Authors: Anupalli Roja Rani, Saraswathi Jaggali
Abstract:
Rose-scented geranium (Pelargonium graveolens L’Hér.) is an erect, much-branched shrub. It is indigenous to various parts of southern Africa, and it is often called Geranium. Pelargonium species are widely used by traditional healers in the areas of Southern Africa by Sotho, Xhosa, Khoi-San and Zulus for its curative and palliative effects in the treatment of diarrhea, dysentery, fever, respiratory tract infections, liver complaints, wounds, gastroenteritis, haemorrhage, kidney and bladder disorders. We have used Plant materials for extracting active compounds from analytical grades of solvents methanol, ethyl acetate, chloroform and water by a soxhlet apparatus. The phytochemical screening reveals that extracts of Pelargonium graveolens contains alkaloids, glycosides, steroids, tannins, saponins and phenols in ethyl acetate solvent. The antioxidant activity was determined using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method and the total phenolic content in the extracts was determined by the Folin–Ciocalteu method. Due to the presence of different phytochemical compounds in Pelargonium the anti-microbial activity against different micro-organisms like E.coli, Streptococcus, Klebsiella and Bacillus. Fractionation of plant extract was performed by column chromatography and was confirmed with HPLC analysis, NMR and FTIR spectroscopy for the compound identification in different organic solvent extracts.Keywords: Pelargonium graveolens L’Hér, DPPH, micro-organisms, HPLC analysis, NMR, FTIR spectroscopy
Procedia PDF Downloads 500470 Development and Characterization of a Film Based on Hydroxypropyl Methyl Cellulose Incorporated by a Phenolic Extract of Fennel and Reinforced by Magnesium Oxide: In Vivo - in Vitro
Authors: Mazouzi Nourdjihane, K. Boutemak, A. Haddad, Y. Chegreouche
Abstract:
In the last decades, biodegradable polymers have been considered as one of the most popular options for the delivery of drugs and various conventional doses. The film forming system (FFS) can be used in topical, transdermal, ophthalmic, oral and gastric applications. Recently this system has focused on improving drug delivery, which can promote drug release. In this context, the aim of this study is to create polymeric film-forming systems for the stomach and to evaluate and test their gastroprotective effects, comparing the effects of changes in composition on film characteristics. It uses a plant-derived polyphenol extract extracted from fennel to demonstrate anti-inflammatory activity in the film. The films are made from hydroxypropyl methylcellulose polymer and different types of plastic, glycerol and polyethylene glycol. The ffs properties show that MgO-glycerol-reinforced hydroxypropylmethylcellulose (HPMC-MgO-Gly) is better than that based on MgO-PEG-reinforced hydroxypropylmethylcellulose (HPMC-MgO-PEG). It is durable, has a faster drying time and allows for maximum recovery. Water vapor strength and blowing speed and other additions show another advantage of HPMC-MgO-Gly compared to HPMC-MgO-PEG, indicating good adhesion between the support (top) and film production. In this study, the gastroprotective effect of fennel phenol extract was found, showing that this plant material has a gastroprotective effect on ulcers and that the film can absorb the active substance.Keywords: film formin system, hydroxypropyl methylcellulose, magnesium oxide, in vivo
Procedia PDF Downloads 66