Search results for: full energy peak efficiency
15334 Cardiorespiratory Fitness and the Cardiometabolic Profile in Inactive Obese Postmenopausal Women: A MONET Study
Authors: Ahmed Ghachem, Johann Colomba, Denis Prud'homme, Martin Brochu
Abstract:
Background: Inactive obese postmenopausal women, are at greater risk for metabolic complications. On the other hand, high levels of cardiorespiratory fitness (CRF) are associated with a lower risk of metabolic complications. Objective: To compare inactive obese postmenopausal women displaying ‘lower’ vs ‘higher’ levels of CRF for body composition, metabolic profile, inflammatory profile and measures of energy expenditure. Methods: 132 women (age: 57.6 ± 4.8 yrs; BMI: 32.3 ± 4.6 kg/m2; Peak VO2: 17.81 ± 3.02 ml O2•kg-1•min-1) were studied. They were first divided into tertiles based on their CRF. Then, women in the first (< 16.51 ml O2•min-1•kg-1) and second tertiles (16.51 to 19.22 ml O2•min-1•kg-1) were combined (N= 88), and compared with those in the third tertile (> 19.22 ml O2•min-1•kg-1) (N= 44). Variables of interest were: Peak VO2 (stationary bike), body composition (DXA), body fat distribution (CT scan), glucose homeostasis (fasting state and euglycemic/ hyperinsulinemic clamp), fasting lipids, resting blood pressure, inflammatory profile and energy expenditure (DLW). Results: Both CRF groups (lower= 16.0 ± 2.0 ml O2•kg-1•min-1 vs higher= 21.2 ± 1.7 ml O2•kg-1•min-1; p < 0.001) were similar for age. Significant differences were observed between groups for body composition; with lower values for body weight, BMI, fat mass and visceral fat in women with higher CRF (p between 0.001 and 0.005). Also, women with higher CRF had lower values for fasting insulin (13.4 ± 4.5 vs 15.6 ± 6.6 μU/ml; p = 0.03) and CRP levels (2.31 ± 1.97 vs 3.83 ± 3.24 mg/liter; p = 0.001); and higher values for glucose disposal (6.71 ± 1.78 vs 5.92 ± 1.67 mg/kg/min; p = 0.01). However, these differences were no longer significant after controlling for visceral adipose tissue accumulations. Finally, no significant difference was observed between groups for the other variables of interest. Conclusion: Our results suggest that, among inactive overweight/obese postmenopausal women, those with higher CRF levels have a better metabolic profile; which is caused by lower visceral fat accumulations.Keywords: cardiorespiratory fitness, metabolic profile, menopause, obesity
Procedia PDF Downloads 26615333 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies
Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof
Abstract:
Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics
Procedia PDF Downloads 14915332 Movable Airfoil Arm (MAA) and Ducting Effect to Increase the Efficiency of a Helical Turbine
Authors: Abdi Ismail, Zain Amarta, Riza Rifaldy Argaputra
Abstract:
The Helical Turbine has the highest efficiency in comparison with the other hydrokinetic turbines. However, the potential of the Helical Turbine efficiency can be further improved so that the kinetic energy of a water current can be converted into mechanical energy as much as possible. This paper explains the effects by adding a Movable Airfoil Arm (MAA) and ducting on a Helical Turbine. The first research conducted an analysis of the efficiency comparison between a Plate Arm Helical Turbine (PAHT) versus a Movable Arm Helical Turbine Airfoil (MAAHT) at various water current velocities. The first step is manufacturing a PAHT and MAAHT. The PAHT and MAAHT has these specifications (as a fixed variable): 80 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, a 10 cm blade chord and a 60o inclination angle. The MAAHT uses a NACA 0012 airfoil arm that can move downward 20o, the PAHT uses a 5 mm plate arm. At the current velocity of 0.8, 0.85 and 0.9 m/s, the PAHT respectively generates a mechanical power of 92, 117 and 91 watts (a consecutive efficiency of 16%, 17% and 11%). At the same current velocity variation, the MAAHT respectively generates 74, 60 and 43 watts (a consecutive efficiency of 13%, 9% and 5%). Therefore, PAHT has a better performance than the MAAHT. Using analysis from CFD (Computational Fluid Dynamics), the drag force of MAA is greater than the one generated by the plate arm. By using CFD analysis, the drag force that occurs on the MAA is more dominant than the lift force, therefore the MAA can be called a drag device, whereas the lift force that occurs on the helical blade is more dominant than the drag force, therefore it can be called a lift device. Thus, the lift device cannot be combined with the drag device, because the drag device will become a hindrance to the lift device rotation. The second research conducted an analysis of the efficiency comparison between a Ducted Helical Turbine (DHT) versus a Helical Turbine (HT) through experimental studies. The first step is manufacturing the DHT and HT. The Helical turbine specifications (as a fixed variable) are: 40 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, 10 cm blade chord and a 60o inclination angle. At the current speed of 0.7, 0.8, 0.9 and 1.1 m/s, the HT respectively generates a mechanical power of 72, 85, 93 and 98 watts (a consecutive efficiency of 38%, 30%, 23% and 13%). At the same current speed variation, the DHT generates a mechanical power of 82, 98, 110 and 134 watts (a consecutive efficiency of 43%, 34%, 27% and 18%), respectively. The usage of ducting causes the water current speed around the turbine to increase.Keywords: hydrokinetic turbine, helical turbine, movable airfoil arm, ducting
Procedia PDF Downloads 37115331 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene
Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell
Abstract:
Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter
Procedia PDF Downloads 31015330 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 2115329 An Adder with Novel PMOS and NMOS for Ultra Low Power Applications in Deep Submicron Technology
Authors: Ch. Ashok Babu, J. V. R. Ravindra, K. Lalkishore
Abstract:
Power has became a burning issue in modern VLSI design. As the technology advances especially below 45nm, technology of leakage power became a big problem apart of the dynamic power. This paper presents a full adder with novel PMOS and NMOS which consume less power compare to conventional full adder, DTMOS full adder. This paper shows different types of adders and their power consumption, area, and delay. All the experiments have been carried out using Cadence® Virtuoso® design lay out editor which shows power consumption of different types of adders.Keywords: average power, leakage power, delay, DTMOS, PDP
Procedia PDF Downloads 39015328 Diagnostic Investigation of Aircraft Performance at Different Winglet Cant Angles
Authors: M. Dinesh, V. Kenny Mark, Dharni Vasudhevan Venkatesan, B. Santhosh Kumar, R. Sree Radesh, V. R. Sanal Kumar
Abstract:
Comprehensive numerical studies have been carried out to examine the best aerodynamic performance of subsonic aircraft at different winglet cant angles using a validated 3D k-ω SST model. In the parametric analytical studies, NACA series of airfoils are selected. Basic design of the winglet is selected from the literature and flow features of the entire wing including the winglet tip effects have been examined with different cant angles varying from 150 to 600 at different angles of attack up to 140. We have observed, among the cases considered in this study that a case with 150 cant angle the aerodynamics performance of the subsonic aircraft during takeoff was found better up to an angle of attack of 2.80 and further its performance got diminished at higher angles of attack. Analyses further revealed that increasing the winglet cant angle from 150 to 600 at higher angles of attack could negate the performance deterioration and additionally it could enhance the peak CL/CD on the order of 3.5%. The investigated concept of variable-cant-angle winglets appears to be a promising alternative for improving the aerodynamic efficiency of aircraft.Keywords: aerodynamic efficiency, cant angle, drag reduction, flexible winglets
Procedia PDF Downloads 52415327 Hydrology and Hydraulics Analysis of Aremenie Earthen Dam, Ethiopia
Authors: Azazhu Wassie
Abstract:
This study tried to analyze the impact of the hydrologic and hydraulic parameters (catchment area, rainfall intensity, and runoff coefficient) on the referenced study area. The study was conducted in June 2023. The Aremenie River Dam has 30 years of record, which is reasonably sufficient data. It is a matter of common experience that, due to the failure of an instrument or the absence of a gauged river, the rainfall record at quite a number of stations is incomplete. From the analysis, the 50-year return period design flood is 62.685 m³/s at 1.2 hr peak time. This implies that for this watershed, the peak flood rate per km² area of the watershed is about this value, which ensures that high rainfall in the area can generate a higher rate of runoff per km² of the generating catchment. The Aremenie Rivers carry a large amount of sediment along with water. These sediments are deposited in the reservoir upstream of the dam because of the reduction in velocity. Sediment reduces the available capacity of the reservoir with continuous sedimentation; the useful life of the reservoir goes on decreasing.Keywords: dam design, peak flood, rainfall, reservoir capacity, runoff
Procedia PDF Downloads 3615326 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes
Abstract:
Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process
Procedia PDF Downloads 7215325 Effect of Core Stability Exercises on Balance between Trunk Muscles in Healthy Adult Subjects
Authors: Amir A. Beltagi, Ahmed R. Abdelbaki
Abstract:
Background: Core stability training has recently attracted attention for optimizing performance and improving muscle balance for healthy and unhealthy individuals. The purpose of this study was to investigate the effect of beginner’s core stability exercises on the trunk flexors’/extensors’ peak torque ratio and trunk flexors’ and extensors’ peak torques. Methods: Thirty five healthy individuals, randomly assigned into two groups; experimental (group I) and control (group II), participated in the study. Group I involved 20 participants (10 male & 10 female) with mean ±SD age, weight, and height of 20.7±2.4 years, 66.5±12.1 kg and 166.7±7.8 cm respectively. Group II involved 15 participants (6 male & 9 female) with mean ±SD age, weight, and height of 20.3±0.61 years, 68.57±12.2 kg and 164.28 ±7.59 cm respectively. Data were collected using the Biodex Isokinetic system. The participants were tested twice; before and after a 6-week period during which the experimental group performed a core stability training program. Findings: Statistical analysis using the 2x2 Mixed Design ANOVA revealed that there were no significant differences in the trunk flexors’/extensors’ peak torque ratio between the ‘pre’ and ‘post’ tests for either group (p > 0.025). Moreover, there were no significant differences in the trunk flexors’/extensors’ ratios between both groups at either test (p > 0.025). Meanwhile, the 2x2 Mixed Design MANOVA revealed that there were significant differences in the trunk flexors’ and extensors’ peak torques between the ‘pre’ and ‘post’ tests for group I (p < 0.025), while there were no significant differences inbetween for group II (p > 0.025). Moreover, there were no significant differences between both groups for the tested muscles’ peak torques at either test except for that of the trunk flexors at the ‘post’ test only (p < 0.025). Interpretation: The improvement in muscle performance indicated by the increase in the trunk flexors’ and extensors’ peak torques in the experimental group recommends including core stability training in the exercise programs that aim to improve muscle performance.Keywords: core stability, isokinetic, trunk muscles, muscle balance
Procedia PDF Downloads 31315324 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case
Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa RodríGuez
Abstract:
Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including Exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67 %. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85, 59, 87, and 29 %, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09 % for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determinates the sustainability of the process.Keywords: exergy analysis, life cycle assessment (LCA), renewability, sustainability
Procedia PDF Downloads 21415323 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 12715322 Energy Security and Sustainable Development: Challenges and Prospects
Authors: Abhimanyu Behera
Abstract:
Over the past few years, energy security and sustainable development have moved rapidly into the global agenda. There are two main reasons: first, the impact of high and often volatile energy prices; second, concerns over environmental sustainability particularly about the global climate. Both issues are critically important in which impressive economic growth has boosted the demand for energy and put corresponding strains on the environment. Energy security is a broad concept that focuses on energy availability and pricing. Specifically, it refers to the ability of the energy supply system i.e. suppliers, transporters, distributors and regulatory, financial and R&D institutions to deliver the amount of competitively priced energy that customers demand, within accepted standards of reliability, timeliness, quality, safety. Traditionally, energy security has been defined in the context of the geopolitical risks to external oil supplies but today it is encompassing all energy forms, all the external and internal links bringing the energy to the final consumer, and all the many ways energy supplies can be disrupted including equipment malfunctions, system design flaws, operator errors, malicious computer activities, deficient market and regulatory frameworks, corporate financial problems, labour actions, severe weather and natural events, aggressive acts (e.g. war, terrorism and sabotage), and geopolitical disruptions. In practice, the most challenging disruptions are those linked to: 1) extreme weather events; 2) mismatched electricity supply and demand; 3) regulatory failures; and 4) concentration of oil and gas resources in certain regions of the world. However, insecure energy supplies inhibit development by raising energy costs and imposing expensive cuts in services when disruptions actually occur. The energy supply sector can best advance sustainable development by producing and delivering secure and environmentally-friendly sources of energy and by increasing the efficiency of energy use. With this objective, this paper seeks to highlight the significance of energy security and sustainable development in today’s world. Moreover, it critically overhauls the major challenges towards sustainability of energy security and what are the major policies are taken to overcome these challenges by Government is lucidly explicated in this paper.Keywords: energy, policies, security, sustainability
Procedia PDF Downloads 39015321 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex
Authors: Li Zhu, Binghua Wang, Yong Sun
Abstract:
China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.Keywords: agritourism complex, energy planning, energy demand simulation, hierarchical structure model
Procedia PDF Downloads 19415320 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings
Authors: Michalis Michael, Mauro Overend
Abstract:
Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort
Procedia PDF Downloads 6515319 Technology Valuation of Unconventional Gas R&D Project Using Real Option Approach
Authors: Young Yoon, Jinsoo Kim
Abstract:
The adoption of information and communication technologies (ICT) in all industry is growing under industry 4.0. Many oil companies also are increasingly adopting ICT to improve the efficiency of existing operations, take more accurate and quicker decision making and reduce entire cost by optimization. It is true that ICT is playing an important role in the process of unconventional oil and gas development and companies must take advantage of ICT to gain competitive advantage. In this study, real option approach has been applied to Unconventional gas R&D project to evaluate ICT of them. Many unconventional gas reserves such as shale gas and coal-bed methane(CBM) has developed due to technological improvement and high energy price. There are many uncertainties in unconventional development on the three stage(Exploration, Development, Production). The traditional quantitative benefits-cost method, such as net present value(NPV) is not sufficient for capturing ICT value. We attempted to evaluate the ICT valuation by applying the compound option model; the model is applied to real CBM project case, showing how it consider uncertainties. Variables are treated as uncertain and a Monte Carlo simulation is performed to consider variables effect. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).Keywords: information and communication technologies, R&D, real option, unconventional gas
Procedia PDF Downloads 23015318 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts
Authors: Nuray Güy, Mahmut Özacar
Abstract:
Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS
Procedia PDF Downloads 28415317 Impact of a Biopesticide Formulated an Entomopathogenic Fungus Metarhizium Anisopliae et Abstracts of Two Different Plants Sage (Salvia officinalis) and American Paper (Schinus molle) on Aphis Fabae (Homoptera - Aphididae)
Authors: Hicham Abidallah
Abstract:
In this work we realized a formulation of an entomopathogenic fungus Metarhizium anisopliae with a dose of 1,7 x 105 spores/ml, and aqueous abstracts of two different plants sage (Salvia officinalis) and American paper (Schinus molle) with they’re full dose and half dose, on a black bean aphid populations (Aphis fabae) on a bean crop planted in pots at semi-controlled conditions. Five formulations were achieved (Met, Fd, F1/2d, Sd et S1/2d) and tested on six blocks each one contained six pots. This study revealed that four (04) formulations exercised an influence over black bean aphid (Met, Fd, F1/2d, Sd), of which Metarhizium marked the most elevated and aggressive toxicity with an efficiency of 99,24%, however, sage formulation with the half dose (S1/2d ) marked a weak toxicity with an efficiency of 18%. Test of Metarhizium anisopliae on bees didn’t show toxicity, and no mortality has been marked, and no trace of green Muscardine observed.Keywords: Metarhizium anisopliae, salvia officinalis, Schinus molle, Aphis fabae, efficiency degree
Procedia PDF Downloads 37215316 Solving the Overheating on the Top Floor of Energy Efficient Houses: The Envelope Improvement
Authors: Sormeh Sharifi, Wasim Saman, Alemu Alemu, David Whaley
Abstract:
Although various energy rating schemes and compulsory building codes are using around the world, there are increasing reports on overheating in energy efficient dwellings. Given that the cooling demand of buildings is rising globally because of the climate change, it is more likely that the overheating issue will be observed more. This paper studied the summer indoor temperature in eight air-conditioned multi-level houses in Adelaide which have complied with the Australian Nationwide Houses Energy Rating Scheme (NatHERS) minimum energy performance of 7.5 stars. Through monitored temperature, this study explores that overheating is experienced on 75.5% of top floors during cooling periods while the air-conditioners were running. This paper found that the energy efficiency regulations have significantly improved thermal comfort in low floors, but not on top floors, and the energy-efficient house is not necessarily adapted with the air temperature fluctuations particularly on top floors. Based on the results, this study suggests that the envelope of top floors for multi-level houses in South Australian context need new criteria to make the top floor more heat resistance in order to: preventing the overheating, reducing the summer pick electricity demand and providing thermal comfort. Some methods are used to improve the envelope of the eight case studies. The results demonstrate that improving roofs was the most effective part of the top floors envelope in terms of reducing the overheating.Keywords: building code, climate change, energy-efficient building, energy rating, overheating, thermal comfort
Procedia PDF Downloads 22015315 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems
Authors: Amirhossein Khazali, Mohsen Kalantar
Abstract:
Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation
Procedia PDF Downloads 57615314 Hot Carrier Photocurrent as a Candidate for an Intrinsic Loss in a Single Junction Solar Cell
Authors: Jonas Gradauskas, Oleksandr Masalskyi, Ihor Zharchenko
Abstract:
The advancement in improving the efficiency of conventional solar cells toward the Shockley-Queisser limit seems to be slowing down or reaching a point of saturation. The challenges hindering the reduction of this efficiency gap can be categorized into extrinsic and intrinsic losses, with the former being theoretically avoidable. Among the five intrinsic losses, two — the below-Eg loss (resulting from non-absorption of photons with energy below the semiconductor bandgap) and thermalization loss —contribute to approximately 55% of the overall lost fraction of solar radiation at energy bandgap values corresponding to silicon and gallium arsenide. Efforts to minimize the disparity between theoretically predicted and experimentally achieved efficiencies in solar cells necessitate the integration of innovative physical concepts. Hot carriers (HC) present a contemporary approach to addressing this challenge. The significance of hot carriers in photovoltaics is not fully understood. Although their excessive energy is thought to indirectly impact a cell's performance through thermalization loss — where the excess energy heats the lattice, leading to efficiency loss — evidence suggests the presence of hot carriers in solar cells. Despite their exceptionally brief lifespan, tangible benefits arise from their existence. The study highlights direct experimental evidence of hot carrier effect induced by both below- and above-bandgap radiation in a singlejunction solar cell. Photocurrent flowing across silicon and GaAs p-n junctions is analyzed. The photoresponse consists, on the whole, of three components caused by electron-hole pair generation, hot carriers, and lattice heating. The last two components counteract the conventional electron-hole generation-caused current required for successful solar cell operation. Also, a model of the temperature coefficient of the voltage change of the current–voltage characteristic is used to obtain the hot carrier temperature. The distribution of cold and hot carriers is analyzed with regard to the potential barrier height of the p-n junction. These discoveries contribute to a better understanding of hot carrier phenomena in photovoltaic devices and are likely to prompt a reevaluation of intrinsic losses in solar cells.Keywords: solar cell, hot carriers, intrinsic losses, efficiency, photocurrent
Procedia PDF Downloads 6715313 Design of an Energy Efficient Electric Auto Rickshaw
Authors: Muhammad Asghar, Aamer Iqbal Bhatti, Qadeer Ahmed, Tahir Izhar
Abstract:
Three wheeler auto Rickshaw, often termed as ‘auto rickshaw’ is very common in Pakistan and is considered as the most affordable means of transportation to the local people. Problems caused by the gasoline engine on the environment and people, the researchers and the automotive industry have turned to the hybrid electric vehicles and electrical powered vehicle. The research in this paper explains the design of energy efficient Electric auto Rickshaw. An electric auto rickshaw is being developed at Center for Energy Research and Development, (Lahore), which is running on the roads of Lahore city. Energy storage capacity of batteries is at least 25 times heavier than fossil fuel and having volume 10 times in comparison to fuel, resulting an increase of the Rickshaw weight. A set of specifications is derived according to the mobility requirements of the electric auto rickshaw. The design choices considering the power-train and component selection are explained in detail. It was concluded that electric auto rickshaw has many advantages and benefits over the conventional auto rickshaw. It is cleaner and much more energy efficient but limited to the distance it can travel before recharging of battery. In addition, a brief future view of the battery technology is given.Keywords: conventional auto rickshaw, energy efficiency, electric auto rickshaw, internal combustion engine, environment
Procedia PDF Downloads 29015312 Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units
Authors: Florian Misoc, Cyril Okhio, Joshua Tolbert, Nick Carlin, Thomas Ramey
Abstract:
This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined.Keywords: stirling engine, solar-thermal, power inverter, alternator
Procedia PDF Downloads 27915311 Optimization of the Performance of a Solar Concentrator System with a Cavity Receiver Using the Genetic Algorithm
Authors: Foozhan Gharehkhani
Abstract:
The use of solar energy as a sustainable renewable energy source has gained significant attention in recent years. Solar concentrating systems (CSP), which direct solar radiation onto a receiver, are an effective means of producing high-temperature thermal energy. Cavity receivers, known for their high thermal efficiency and reduced heat losses, are particularly noteworthy in these systems. Optimizing their design can enhance energy efficiency and reduce costs. This study leverages the genetic algorithm, a powerful optimization tool inspired by natural evolution, to optimize the performance of a solar concentrator system with a cavity receiver, aiming for a more efficient and cost-effective design. In this study, a system consisting of a solar concentrator and a cavity receiver was analyzed. The concentrator was designed as a parabolic dish, and the receiver had a cylindrical cavity with a helical structure. The primary parameters were defined as the cavity diameter (D), the receiver height (h), and the helical pipe diameter (d). Initially, the system was optimized to achieve the maximum heat flux, and the optimal parameter values along with the maximum heat flux were obtained. Subsequently, a multi-objective optimization approach was applied, aiming to maximize the heat flux while minimizing the system construction cost. The optimization process was conducted using the genetic algorithm implemented in MATLAB with precise execution. The results of this study revealed that the optimal dimensions of the receiver, including the cavity diameter (D), receiver height (h), and helical pipe diameter (d), were determined to be 0.142 m, 0.1385 m, and 0.011 m, respectively. This optimization resulted in improvements of 3% in the cavity diameter, 8% in the height, and 5% in the helical pipe diameter. Furthermore, the results indicated that the primary focus of this research was the accurate thermal modeling of the solar collection system. The simulations and the obtained results demonstrated that the optimization applied to this system maximized its thermal performance and elevated its energy efficiency to a desirable level. Moreover, this study successfully modeled and controlled effective temperature variations at different angles of solar irradiation, highlighting significant improvements in system efficiency. The significance of this research lies in leveraging solar energy as one of the prominent renewable energy sources, playing a key role in replacing fossil fuels. Considering the environmental and economic challenges associated with the excessive use of fossil resources—such as increased greenhouse gas emissions, environmental degradation, and the depletion of fossil energy reserves—developing technologies related to renewable energy has become a vital priority. Among these, solar concentrating systems, capable of achieving high temperatures, are particularly important for industrial and heating applications. This research aims to optimize the performance of such systems through precise design and simulation, making a significant contribution to the advancement of advanced technologies and the efficient utilization of solar energy in Iran, thereby addressing the country's future energy needs effectively.Keywords: cavity receiver, genetic algorithm, optimization, solar concentrator system performance
Procedia PDF Downloads 1015310 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials
Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre
Abstract:
More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage
Procedia PDF Downloads 13815309 Wave Energy: Efficient Conversion of the Big Waves
Authors: Md. Moniruzzaman
Abstract:
The energy of ocean waves across a large part of the earth is inexhaustible. The whole world will benefit if this endless energy can be used in an easy way. The coastal countries will easily be able to meet their own energy needs. The purpose of this article is to use the infinite energy of the ocean wave in a simple way. i.e. a method of efficient use of wave energy. The paper starts by discussing various forces acting on a floating object and, afterward, about the method. And then a calculation for a 73.39MW hydropower from the tidal wave. Used some sketches/pictures. Finally, the conclusion states the possibilities and advantages.Keywords: anchor, electricity, floating object, pump, ship city, wave energy
Procedia PDF Downloads 8615308 Daylightophil Approach towards High-Performance Architecture for Hybrid-Optimization of Visual Comfort and Daylight Factor in BSk
Authors: Mohammadjavad Mahdavinejad, Hadi Yazdi
Abstract:
The greatest influence we have from the world is shaped through the visual form, thus light is an inseparable element in human life. The use of daylight in visual perception and environment readability is an important issue for users. With regard to the hazards of greenhouse gas emissions from fossil fuels, and in line with the attitudes on the reduction of energy consumption, the correct use of daylight results in lower levels of energy consumed by artificial lighting, heating and cooling systems. Windows are usually the starting points for analysis and simulations to achieve visual comfort and energy optimization; therefore, attention should be paid to the orientation of buildings to minimize electrical energy and maximize the use of daylight. In this paper, by using the Design Builder Software, the effect of the orientation of an 18m2(3m*6m) room with 3m height in city of Tehran has been investigated considering the design constraint limitations. In these simulations, the dimensions of the building have been changed with one degree and the window is located on the smaller face (3m*3m) of the building with 80% ratio. The results indicate that the orientation of building has a lot to do with energy efficiency to meet high-performance architecture and planning goals and objectives.Keywords: daylight, window, orientation, energy consumption, design builder
Procedia PDF Downloads 23415307 Illuminating the Policies Affecting Energy Security in Malaysia’s Electricity Sector
Authors: Hussain Ali Bekhet, Endang Jati Mat Sahid
Abstract:
For the past few decades, the Malaysian economy has expanded at an impressive pace, whilst, the Malaysian population has registered a relatively high growth rate. These factors had driven the growth of final energy demand. The ballooning energy demand coupled with the country’s limited indigenous energy resources have resulted in an increased of the country’s net import. Therefore, acknowledging the precarious position of the country’s energy self-sufficiency, this study has identified three main concerns regarding energy security, namely; over-dependence on fossil fuel, increasing energy import dependency, and increasing energy consumption per capita. This paper discusses the recent energy demand and supply trends, highlights the policies that are affecting energy security in Malaysia and suggests strategic options towards achieving energy security. The paper suggested that diversifying energy sources, reducing carbon content of energy, efficient utilization of energy and facilitating low-carbon industries could further enhance the effectiveness of the measures as the introduction of policies and initiatives will be more holistic.Keywords: electricity, energy policy, energy security, Malaysia
Procedia PDF Downloads 30715306 Comparative Study of Mechanical and Physiological Gait Efficiency Following Anterior Cruciate Ligament Reconstruction
Authors: Radwa E. Sweif, Amira A. A. Abdallah
Abstract:
Background: Evaluation of gait efficiency is used to examine energy consumption especially in patients with movement disorders. Hypothesis/Purpose: This study compared the physiological and mechanical measures of gait efficiency between patients with ACL reconstruction (ACLR) and healthy controls and correlated among these measures. Methods: Seventeen patients with ACLR and sixteen healthy controls with mean ± SD age 23.06±4.76 vs 24.85±6.47 years, height 173.93±6.54 vs 175.64±7.37cm, and weight 74.25±12.1 vs 76.52±10.14 kg, respectively, participated in the study. The patients were operated on six months prior to testing. They should have completed their accelerated rehabilitation program during this period. A 3D motion analysis system was used for collecting the mechanical measures (Biomechanical Efficiency Quotient (BEQ), the maximum degree of knee internal rotation during stance phase and speed of walking). The physiological measures (Physiological Cost Index (PCI) and Rate of Perceived Exertion (RPE)) were collected after performing the 6- minute walking test. Results: MANOVA showed that the maximum degree of knee internal rotation, PCI, and RPE increased and the speed decreased significantly (p<0.05) in the patients compared with the controls with no significant difference for the BEQ. Finally, there were significant (p<0.05) positive correlations between each of the PCI & RPE and each of the BEQ, speed of walking and the maximum degree of knee internal rotation in each group. Conclusion: It was concluded that there are alterations in both mechanical and physiological measures of gait efficiency in patients with ACLR after being rehabilitated, clarifying the need for performing additional endurance as well as knee stability training programs. Moreover, the positive correlations indicate that using either of the mechanical or physiological measures for evaluating gait efficiency is acceptable.Keywords: ACL reconstruction, mechanical, physiological, gait efficiency
Procedia PDF Downloads 43815305 Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study
Authors: Walid Chakroun, Sorour Alotaibi, Nesreen Ghaddar, Kamel Ghali
Abstract:
This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 °C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 °C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 °C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants’ thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.Keywords: PMV, thermal comfort, thermal environment, thermal sensation
Procedia PDF Downloads 261