Search results for: ultra-high performance fibre reinforced concrete (UHPFRC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14623

Search results for: ultra-high performance fibre reinforced concrete (UHPFRC)

7123 Simulation Of Silicon Window Layers For Solar Cells Based Sige

Authors: Boukais Meriem, B. Dennai, A. Ould-Abbas

Abstract:

The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).

Keywords: SiGe, AMPS-1D, simulation, conversion, efficiency, quantum efficiency

Procedia PDF Downloads 783
7122 CMMI Key Process Areas and FDD Practices

Authors: Rituraj Deka, Nomi Baruah

Abstract:

The development of information technology during the past few years resulted in designing of more and more complex software. The outsourcing of software development makes a higher requirement for the management of software development project. Various software enterprises follow various paths in their pursuit of excellence, applying various principles, methods and techniques along the way. The new research is proving that CMMI and Agile methodologies can benefit from using both methods within organizations with the potential to dramatically improve business performance. The paper describes a mapping between CMMI key process areas (KPAs) and Feature-Driven Development (FDD) communication perspective, so as to increase the understanding of how improvements can be made in the software development process.

Keywords: Agile, CMMI, FDD, KPAs

Procedia PDF Downloads 442
7121 Power Generation from Sewage by a Micro-Hydraulic Turbine

Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide

Abstract:

This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.

Keywords: micro-hydraulic turbine, power generation, sewage, sewer pipe

Procedia PDF Downloads 381
7120 Source Separation for Global Multispectral Satellite Images Indexing

Authors: Aymen Bouzid, Jihen Ben Smida

Abstract:

In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach.

Keywords: blind source separation, content based image retrieval, feature extraction multispectral, satellite images

Procedia PDF Downloads 387
7119 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard

Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor

Abstract:

During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.

Keywords: critical links, extreme weather events, hazard, resilience, transport network

Procedia PDF Downloads 270
7118 Numerical Investigation of Thermal Energy Storage Panel Using Nanoparticle Enhanced Phase Change Material for Micro-Satellites

Authors: Jelvin Tom Sebastian, Vinod Yeldho Baby

Abstract:

In space, electronic devices are constantly attacked with radiation, which causes certain parts to fail or behave in unpredictable ways. To advance the thermal controllability for microsatellites, we need a new approach and thermal control system that is smaller than that on conventional satellites and that demand no electric power. Heat exchange inside the microsatellites is not that easy as conventional satellites due to the smaller size. With slight mass gain and no electric power, accommodating heat using phase change materials (PCMs) is a strong candidate for solving micro satellites' thermal difficulty. In other words, PCMs can absorb or produce heat in the form of latent heat, changing their phase and minimalizing the temperature fluctuation around the phase change point. The main restriction for these systems is thermal conductivity weakness of common PCMs. As PCM is having low thermal conductivity, it increases the melting and solidification time, which is not suitable for specific application like electronic cooling. In order to increase the thermal conductivity nanoparticles are introduced. Adding the nanoparticles in base PCM increases the thermal conductivity. Increase in weight concentration increases the thermal conductivity. This paper numerically investigates the thermal energy storage panel with nanoparticle enhanced phase change material. Silver nanostructure have increased the thermal properties of the base PCM, eicosane. Different weight concentration (1, 2, 3.5, 5, 6.5, 8, 10%) of silver enhanced phase change material was considered. Both steady state and transient analysis was performed to compare the characteristics of nanoparticle enhanced phase material at different heat loads. Results showed that in steady state, the temperature near the front panel reduced and temperature on NePCM panel increased as the weight concentration increased. With the increase in thermal conductivity more heat was absorbed into the NePCM panel. In transient analysis, it was found that the effect of nanoparticle concentration on maximum temperature of the system was reduced as the melting point of the material reduced with increase in weight concentration. But for the heat load of maximum 20W, the model with NePCM did not attain the melting point temperature. Therefore it showed that the model with NePCM is capable of holding more heat load. In order to study the heat load capacity double the load is given, maximum of 40W was given as first half of the cycle and the other is given constant OW. Higher temperature was obtained comparing the other heat load. The panel maintained a constant temperature for a long duration according to the NePCM melting point. In both the analysis, the uniformity of temperature of the TESP was shown. Using Ag-NePCM it allows maintaining a constant peak temperature near the melting point. Therefore, by altering the weight concentration of the Ag-NePCM it is possible to create an optimum operating temperature required for the effective working of the electronics components.

Keywords: carbon-fiber-reinforced polymer, micro/nano-satellite, nanoparticle phase change material, thermal energy storage

Procedia PDF Downloads 194
7117 Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System

Authors: P. S. D. Perera, S. U. Adikary

Abstract:

The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C.

Keywords: kinetics, gelation, sol-gel system, chitosan/ nHA/ Na ₂CO₃ composite

Procedia PDF Downloads 153
7116 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip

Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum

Abstract:

3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.

Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits

Procedia PDF Downloads 283
7115 Making Haste Slowly: South Africa's Transition from a Medical to a Social Model regarding Persons with Disabilities

Authors: Leoni Van Der Merwe

Abstract:

Historically, in South Africa, disability has been viewed as a dilemma of the individual. The discourse surrounding the definition of disability and applicable theories are as fluid as the differing needs of persons with disabilities within society. In 1997, the Office of the Deputy President published the White Paper on the Integrated National Disability Strategy (WPINDS) which sought to integrate disability issues in all governmental development strategies, planning and programs as well as to solidify the South African government’s stance that disability was to be considered according to the social model and not the, previously utilized, medical model of disability. The models of disability are conceptual frameworks for understanding disability and can provide some insight into why certain attitudes exist and how they are reinforced in society. Although the WPINDS was regarded as a critical milestone in the history of the disability rights struggle in South Africa; it has taken approximately twenty years for the publication of a similar document taking into account South Africa’s changing social, economic, political and technological dispensation. December 2015 marked the approval of the White Paper on the Rights of Persons with Disabilities (WPRPD) which seeks to update the WPINDS, integrate principles contained in international law instruments and endorse a mainstreaming trajectory for realizing the rights of persons with disabilities. While the WPINDS and the WPRPD were published two decades apart, both documents contain an emphasis on a transition from the medical model to the social model. Whereas, the medical model presupposes that disability is mainly a health and welfare matter and is focused on an individualistic and dependency-based approach; the social model requires a paradigm shift in the manner in which disability is constructed so as to highlight the shortcomings of society in respect of disability and to bring to the fore the capabilities of persons with disabilities. The social model has led to unmatched success in changing the perceptions surrounding disability. This article seeks to investigate the progress made in the implementation of the social model in South Africa by taking into account the effect of the diverse political and cultural landscape in promoting the historically entrenched medical model and the rise of disability activism prior to the new democratic dispensation as well as legislation, case law, policy documents and barriers in respect of persons with disabilities that are pervasive in South African society. The research paper will conclude that although numerous interventions have been identified and implemented to promote the consideration of disability within a social construct in South Africa, such interventions require increased national and international collaboration, resources and pace to ensure that the efforts made lead to sustainable results. For persons with disabilities, what remains to be seen is whether the proliferation of activism by interest groups, social awareness as well as the development of policy documents, legislation and case law will serve as the impetus to dissipate the view that disability is burden to be carried solely on the shoulders of the person with the disability.

Keywords: disability, medical model, social model, societal barriers, South Africa

Procedia PDF Downloads 363
7114 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 65
7113 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 323
7112 Influence of Temperature on Properties of MOSFETs

Authors: Azizi Cherifa, O. Benzaoui

Abstract:

The thermal aspects in the design of power circuits often deserve as much attention as pure electric components aspects as the operating temperature has a direct influence on their static and dynamic characteristics. MOSFET is fundamental in the circuits, it is the most widely used device in the current production of semiconductor components using their honorable performance. The aim of this contribution is devoted to the effect of the temperature on the properties of MOSFETs. The study enables us to calculate the drain current as function of bias in both linear and saturated modes. The effect of temperature is evaluated using a numerical simulation, using the laws of mobility and saturation velocity of carriers as a function of temperature.

Keywords: temperature, MOSFET, mobility, transistor

Procedia PDF Downloads 336
7111 The Aspect of Animal Welfare in Garut Ram’s Event (Seni Ketangkasan Domba Garut) in Indonesia

Authors: Aliyatul Widyan, Denie Heriyadi, An An Nurmeidiansyah

Abstract:

Garut Sheep is a commodity of sheep originally from West Java Indonesia, specifically it has combination rumpung ears less than 4 cm or ngadaun hiris (4-8cm) with ngabuntut bagong, or ngabuntut beurit. West Java culture diversity one of those is the Garut Ram’s Art and Fighting Contest. Garut Ram’s Art and Fighting Contest is an activity of competitive fighting between sheep which comes from Garut. The method used is a survey method in which watching and directly interviewing the farmers who competed in the event. This activity had some aspects of animal welfare in the context of the assessment of the fighting sheep, which are health 10%, performance and body conformation called adeg-adeg 25%, courage 10%, technical field 30% called with teknik pamidangan, technical crash 25%, the health assessment is the assessment conducted during registration by showing a letter issued by related agency declaring that the sheep is eligible to compete in the event, and then when the fighting time the health also will be assessed. Adeg-adeg assessed an aspect of conformity assessment of body posture Garut ram from the physical performance is assessed on the body posture, horn, and the face. Technical of pamidangan assessed by the harmony of music and the movement of sheep to carry out the attack. Courage is assessed based on a mental condition and stamina when the fighting time, in addition to the assessments the activity has some other the component of culture and arts, such as, the audience called bobotoh, the clothes worn called pangsi, tarumpah or sandals, belts, and totopong, hats called laken, instructor of the match, and nayaga or group of people who play traditional Sundanese music to accompany this activity. Art aspect of animal welfare of this activity included the percentage of stroke technique is only around 25%, it makes the beauty of this art is not only measured by the Technical crash but also health, courage, and technique in the field has the highest mark in the assessment with 75 %, the event is certainly very different from sports such as boxing, taekwondo, karate or other martial sports which 100% only based on stroke or crash technique. Local culture value of Garut Ram’s Art and Fighting Contest results in the art of the local animal welfare.

Keywords: Garut sheep, Indonesia, the art of Garut Ram’s Art and Fighting Contest , animal welfare

Procedia PDF Downloads 292
7110 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu

Abstract:

Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame

Procedia PDF Downloads 55
7109 Modelling Strategy Planning in Multi Business Companies

Authors: Gelareh Changizi, Mahsa Khajavi, Ladan Shahhosseini

Abstract:

Corporate-level strategy, or simply ‘parent strategy’, is a topic that has received much attention since the very early days of the strategic planning field. Since the multi level enterprises have different sub enterprises which deal with different business environments, we cannot define the same strategic perspective for all of them. Therefore, the determination of a perspective to manage and deal with affiliates of such enterprises is the main challenge. The parent strategy in mother enterprises' level has been analyzed in this research. A case study has been carried to comprehensively describe the proposed model.

Keywords: parent strategy, multi-business companies, performance evaluation, lifecycle

Procedia PDF Downloads 353
7108 Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic

Authors: Jansirani Natarajan, Mickael Antoinne Joseph

Abstract:

The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.

Keywords: engagement, perception, emergency remote learning, COVID-19

Procedia PDF Downloads 40
7107 Optimization of Robot Motion Planning Using Biogeography Based Optimization (Bbo)

Authors: Jaber Nikpouri, Arsalan Amralizadeh

Abstract:

In robotics manipulators, the trajectory should be optimum, thus the torque of the robot can be minimized in order to save power. This paper includes an optimal path planning scheme for a robotic manipulator. Recently, techniques based on metaheuristics of natural computing, mainly evolutionary algorithms (EA), have been successfully applied to a large number of robotic applications. In this paper, the improved BBO algorithm is used to minimize the objective function in the presence of different obstacles. The simulation represents that the proposed optimal path planning method has satisfactory performance.

Keywords: biogeography-based optimization, path planning, obstacle detection, robotic manipulator

Procedia PDF Downloads 278
7106 Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources

Authors: Alexey P. Antropov, Alexander V. Ragutkin, Nicolay A. Yashtulov

Abstract:

The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated.

Keywords: cyclic voltammetry, electron microscopy, nanotechnology, platinum-palladium nanocomposites, porous silicon, power activity, renewable energy sources

Procedia PDF Downloads 339
7105 Octagon Shaped Wearable Antenna for Band at 4GHz

Authors: M. Khazini, M.Damou, Z. Souar

Abstract:

In this paper, octagon antenna ultra wideband (UWB) low band wearable antenna designs have been proposed for in-body to on-body communication channel of wireless. Single element antenna, dual elements, are designed and compared in free space and in body proximity. Conformal design has been focused. Liquid crystal polymer (LCP) is a material that has gained attention as a potential high-performance microwave substrate and packaging material. This investigation uses several methods to determine the electrical properties of LCP for millimeter-wave frequencies.

Keywords: ultra wideband, wearable antenna, slot antenna, liquid crystal polymer (LCP), CST studio

Procedia PDF Downloads 342
7104 Model Predictive Controller for Pasteurization Process

Authors: Tesfaye Alamirew Dessie

Abstract:

Our study focuses on developing a Model Predictive Controller (MPC) and evaluating it against a traditional PID for a pasteurization process. Utilizing system identification from the experimental data, the dynamics of the pasteurization process were calculated. Using best fit with data validation, residual, and stability analysis, the quality of several model architectures was evaluated. The validation data fit the auto-regressive with exogenous input (ARX322) model of the pasteurization process by roughly 80.37 percent. The ARX322 model structure was used to create MPC and PID control techniques. After comparing controller performance based on settling time, overshoot percentage, and stability analysis, it was found that MPC controllers outperform PID for those parameters.

Keywords: MPC, PID, ARX, pasteurization

Procedia PDF Downloads 145
7103 Reduction of Nitrogen Monoxide with Carbon Monoxide from Gas Streams by 10% wt. Cu-Ce-Fe-Co/Activated Carbon

Authors: K. L. Pan, M. B. Chang

Abstract:

Nitrogen oxides (NOₓ) is regarded as one of the most important air pollutants. It not only causes adverse environmental effects but also harms human lungs and respiratory system. As a post-combustion treatment, selective catalytic reduction (SCR) possess the highest NO removal efficiency ( ≥ 85%), which is considered as the most effective technique for removing NO from gas streams. However, injection of reducing agent such as NH₃ is requested, and it is costly and may cause secondary pollution. Reduction of NO with carbon monoxide (CO) as reducing agent has been previously investigated. In this process, the key step involves the NO adsorption and dissociation. Also, the high performance mainly relies on the amounts of oxygen vacancy on catalyst surface and redox ability of catalyst, because oxygen vacancy can activate the N-O bond to promote its dissociation. Additionally, perfect redox ability can promote the adsorption of NO and oxidation of CO. Typically, noble metals such as iridium (Ir), platinum (Pt), and palladium (Pd) are used as catalyst for the reduction of NO with CO; however, high cost has limited their applications. Recently, transition metal oxides have been investigated for the reduction of NO with CO, especially CuₓOy, CoₓOy, Fe₂O₃, and MnOₓ are considered as effective catalysts. However, deactivation is inevitable as oxygen (O₂) exists in the gas streams because active sites (oxygen vacancies) of catalyst are occupied by O₂. In this study, Cu-Ce-Fe-Co is prepared and supported on activated carbon by impregnation method to form 10% wt. Cu-Ce-Fe-Co/activated carbon catalyst. Generally, addition of activated carbon on catalyst can bring several advantages: (1) NO can be effectively adsorbed by interaction between catalyst and activated carbon, resulting in the improvement of NO removal, (2) direct NO decomposition may be achieved over carbon associated with catalyst, and (3) reduction of NO could be enhanced by a reducing agent over carbon-supported catalyst. Therefore, 10% wt. Cu-Ce-Fe-Co/activated carbon may have better performance for reduction of NO with CO. Experimental results indicate that NO conversion achieved with 10% wt. Cu-Ce-Fe-Co/activated carbon reaches 83% at 150°C with 300 ppm NO and 10,000 ppm CO. As temperature is further increased to 200°C, 100% NO conversion could be achieved, implying that 10% wt. Cu-Ce-Fe-Co/activated carbon prepared has good activity for the reduction of NO with CO. In order to investigate the effect of O₂ on reduction of NO with CO, 1-5% O₂ are introduced into the system. The results indicate that NO conversions still maintain at ≥ 90% with 1-5% O₂ conditions at 200°C. It is worth noting that effect of O₂ on reduction of NO with CO could be significantly improved as carbon is used as support. It is inferred that carbon support can react with O₂ to produce CO₂ as O₂ exists in the gas streams. Overall, 10% wt. Cu-Ce-Fe-Co/activated carbon is demonstrated with good potential for reduction of NO with CO, and possible mechanisms will be elucidated in this paper.

Keywords: nitrogen oxides (NOₓ), carbon monoxide (CO), reduction of NO with CO, carbon material, catalysis

Procedia PDF Downloads 239
7102 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines

Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.

Abstract:

The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.

Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy

Procedia PDF Downloads 133
7101 Performance Tests of Wood Glues on Different Wood Species Used in Wood Workshops: Morogoro Tanzania

Authors: Japhet N. Mwambusi

Abstract:

High tropical forests deforestation for solid wood furniture industry is among of climate change contributing agents. This pressure indirectly is caused by furniture joints failure due to poor gluing technology based on improper use of different glues to different wood species which lead to low quality and weak wood-glue joints. This study was carried in order to run performance tests of wood glues on different wood species used in wood workshops: Morogoro Tanzania whereby three popular wood species of C. lusitanica, T. glandis and E. maidenii were tested against five glues of Woodfix, Bullbond, Ponal, Fevicol and Coral found in the market. The findings were necessary on developing a guideline for proper glue selection for a particular wood species joining. Random sampling was employed to interview carpenters while conducting a survey on the background of carpenters like their education level and to determine factors that influence their glues choice. Monsanto Tensiometer was used to determine bonding strength of identified wood glues to different wood species in use under British Standard of testing wood shear strength (BS EN 205) procedures. Data obtained from interviewing carpenters were analyzed through Statistical Package of Social Science software (SPSS) to allow the comparison of different data while laboratory data were compiled, related and compared by the use of MS Excel worksheet software as well as Analysis of Variance (ANOVA). Results revealed that among all five wood glues tested in the laboratory to three different wood species, Coral performed much better with the average shear strength 4.18 N/mm2, 3.23 N/mm2 and 5.42 N/mm2 for Cypress, Teak and Eucalyptus respectively. This displays that for a strong joint to be formed to all tree wood species for soft wood and hard wood, Coral has a first priority in use. The developed table of guideline from this research can be useful to carpenters on proper glue selection to a particular wood species so as to meet glue-bond strength. This will secure furniture market as well as reduce pressure to the forests for furniture production because of the strong existing furniture due to their strong joints. Indeed, this can be a good strategy on reducing climate change speed in tropics which result from high deforestation of trees for furniture production.

Keywords: climate change, deforestation, gluing technology, joint failure, wood-glue, wood species

Procedia PDF Downloads 226
7100 Covid-19 Lockdown Experience of Elderly Female as Reflected in Their Artwork

Authors: Liat Shamri-Zeevi, Neta Ram-Vlasov

Abstract:

Today the world as a whole is attempting to cope with the COVID-19, which has affected all facets of personal and social life from country-wide confinement to maintaining social distance and taking protective measures to maintain hygiene. One of the populations faced with the most severe restrictions is seniors. Various studies have shown that creativity plays a crucial role in dealing with crisis events. Painting - regardless of media - allows for emotional and cognitive processing of these situations, and enables the expression of experiences in a tangible creative way that conveys and endows meaning to the artwork. The current study was conducted in Israel immediately after a 6-week lockdown. It was designed to specifically examine the impact of the COVID-19 pandemic on the quality of life of elderly women as reflected in their artworks. The sample was composed of 21 Israeli women aged 60-90, in good mental health (without diagnosed dementia or Alzheimer's), all of whom were Hebrew-speaking, and retired with an extended family, who indicated that they painted and had engaged in artwork on an ongoing basis throughout the lockdown (from March 12 to May 30, 2020). The participants' artworks were collected, and a semi-structured in-depth interview was conducted that lasted one to two hours. The participants were asked about their feelings during the pandemic and the artworks they produced during this time, and completed a questionnaire on well-being and mental health. The initial analysis of the interviews and artworks revealed themes related to the specific role of each piece of artwork. The first theme included notions that the artwork was an activity and a framework for doing, which supported positive emotions, and provided a sense of vitality during the closure. Most of the participants painted images of nature and growth which were ascribed concrete and symbolic meaning. The second theme was that the artwork enabled the processing of difficult and /or conflicting emotions related to the situation, including anxiety about death and loneliness that were symbolically expressed in the artworks, such as images of the Corona virus and the respiratory machines. The third theme suggested that the time and space prompted by the lockdown gave the participants time for a gathering together of the self, and freed up time for creative activities. Many participants stated that they painted more and more frequently during the Corona lockdown. At the conference, additional themes and findings will be presented.

Keywords: Corona virus, artwork, quality of life of elderly

Procedia PDF Downloads 127
7099 Modeling Acceptability of a Personalized and Contextualized Radio Embedded in Vehicles

Authors: Ludivine Gueho, Sylvain Fleury, Eric Jamet

Abstract:

Driver distraction is known to be a major contributing factor of car accidents. Since many years, constructors have been designing embedded technologies to face this problem and reduce distraction. Being able to predict user acceptance would further be helpful in the development process to build appropriate systems. The present research aims at modelling the acceptability of a specific system, an innovative personalized and contextualized embedded radio, through an online survey of 202 people in France that assessed the psychological variables determining intentions to use the system. The questionnaire instantiated the dimensions of the extended version of the UTAUT acceptability model. Because of the specific features of the system assessed, we added 4 dimensions: perceived security, anxiety, trust and privacy concerns. Results showed that hedonic motivation, i.e., the fun or pleasure derived from using a technology, and performance expectancy, i.e., the degree to which individuals believe that the characteristics of the system meet their needs, are the most important dimensions in determining behavioral intentions about the innovative radio. To a lesser extent, social influence, i.e., the degree to which individuals think they can use the system while respecting their social group’s norms and while giving a positive image of themselves, had an effect on behavioral intentions. Moreover, trust, that is, the positive belief about the perceived reliability of, dependability of, and confidence in a person, object or process, had a significant effect, mediated by performance expectancy. In an applicative way, the present research reveals that, to be accepted, in-car embedded new technology has to address individual needs, for instance by facilitating the driving activity or by providing useful information. If it shows hedonic qualities by being entertaining, pretty or comfortable, this may improve the intentions to use it. Therefore, it is clearly important to include reflection about user experience in the design process. Finally, the users have to be reassured on the system’s reliability. For example, improving the transparency of the system by providing information about the system functioning, could improve trust. These results bring some highlights on determinant of acceptance of an in-vehicle technology and are useful for constructors to design acceptable systems.

Keywords: acceptability, innovative embedded radio, structural equation, user-centric evaluation, UTAUT

Procedia PDF Downloads 257
7098 Feature Extraction and Classification Based on the Bayes Test for Minimum Error

Authors: Nasar Aldian Ambark Shashoa

Abstract:

Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.

Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach

Procedia PDF Downloads 510
7097 Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6

Authors: Yaser Miaji, Mohammed Aloryani

Abstract:

The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm.

Keywords: traffic classification, IPv6, internet, application categorization

Procedia PDF Downloads 543
7096 Using Blackboard to Enhance Academic Writing Classes

Authors: Laurence Craven

Abstract:

Academic writing is one of the most important class a freshman will take, as it provides the skill needed to formulate an academic essay in any discipline. Written assignments are the most common form of assessment in higher education and thus it is of paramount importance for students to master the skill of academic writing. This presentation aims to give practitioners multiple ways to enhance their academic writing classes using the Blackboard environment, with a view to improving student performance. The presentation will include ways to improve assessment and give corrective feedback. It will also provide ideas on how to increase variety in teaching lessons, assigning homework and on organizing materials.

Keywords: academic writing, assessment, e-learning, technology

Procedia PDF Downloads 335
7095 Extended Kalman Filter Based Direct Torque Control of Permanent Magnet Synchronous Motor

Authors: Liang Qin, Hanan M. D. Habbi

Abstract:

A robust sensorless speed for permanent magnet synchronous motor (PMSM) has been presented for estimation of stator flux components and rotor speed based on The Extended Kalman Filter (EKF). The model of PMSM and its EKF models are modeled in Matlab /Sirnulink environment. The proposed EKF speed estimation method is also proved insensitive to the PMSM parameter variations. Simulation results demonstrate a good performance and robustness.

Keywords: DTC, Extended Kalman Filter (EKF), PMSM, sensorless control, anti-windup PI

Procedia PDF Downloads 648
7094 Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems

Authors: Malika Elkyal

Abstract:

We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.

Keywords: parallel methods, asynchronous mode, multisplitting, differential algebraic equations

Procedia PDF Downloads 543