Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26

Search results for: PMSM

26 SVM-DTC Using for PMSM Speed Tracking Control

Authors: Kendouci Khedidja, Mazari Benyounes, Benhadria Mohamed Rachid, Dadi Rachida

Abstract:

In recent years, direct torque control (DTC) has become an alternative to the well-known vector control especially for permanent magnet synchronous motor (PMSM). However, it presents a problem of field linkage and torque ripple. In order to solve this problem, the conventional DTC is combined with space vector pulse width modulation (SVPWM). This control theory has achieved great success in the control of PMSM. That has become a hotspot for resolving. The main objective of this paper gives us an introduction of the DTC and SVPWM-DTC control theory of PMSM which has been simulating on each part of the system via Matlab/Simulink based on the mathematical modeling. Moreover, the outcome of the simulation proved that the improved SVPWM- DTC of PMSM has a good dynamic and static performance.

Keywords: PMSM, DTC, SVM, speed control

Procedia PDF Downloads 250
25 Extended Kalman Filter Based Direct Torque Control of Permanent Magnet Synchronous Motor

Authors: Liang Qin, Hanan M. D. Habbi

Abstract:

A robust sensorless speed for permanent magnet synchronous motor (PMSM) has been presented for estimation of stator flux components and rotor speed based on The Extended Kalman Filter (EKF). The model of PMSM and its EKF models are modeled in Matlab /Sirnulink environment. The proposed EKF speed estimation method is also proved insensitive to the PMSM parameter variations. Simulation results demonstrate a good performance and robustness.

Keywords: DTC, Extended Kalman Filter (EKF), PMSM, sensorless control, anti-windup PI

Procedia PDF Downloads 544
24 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

Authors: N. Yogal, C. Lehrmann

Abstract:

The use of Permanent magnet (PM) is increasing in the Permanent magnet synchronous machines (PMSM) to fulfill the requirement of high efficiency machines in modern industry. PMSM is widely used in industrial application, wind power plant and automotive industry. Since the PMSM are used in different environment condition, the long-term effect of NdFeB-based magnets at high temperatures and corrosion behavior has to be studied due to irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in the climatic chamber has been presented. The magnetic moment and magnetic field of the magnet were studied experimentally.

Keywords: permanent magnet (PM), NdFeB, corrosion behavior, temperature effect, Permanent magnet synchronous machine (PMSM)

Procedia PDF Downloads 283
23 ELectromagnetic-Thermal Coupled Analysis of PMSM with Cooling Channel

Authors: Hyun-Woo Jun, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee

Abstract:

The paper presents the electromagnetic-thermal flow coupled analysis of permanent magnet synchronous motor (PMSM) which has cooling channel in stator core for forced air cooling. Unlike the general PMSM design, to achieve ohmic loss reduction for high efficiency, cooling channel actively used in the stator core. Equivalent thermal network model was made to analyze the effect of the formation of the additional flow path in the core. According to the shape and position changing of the channel design, electromagnetic-thermal coupled analysis results were reviewed.

Keywords: coupled problems, electric motors, equivalent circuits, fluid flow, thermal analysis

Procedia PDF Downloads 480
22 A Study on the Effect of Rib Structure in Spoke-Type PMSM

Authors: Hyun-Soo Seol, In-Gun Kim, Hyun Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Rotor of Spoke-Type PMSM is divided into permanent magnet and rotor core. Moreover, rotor core is composed of pole-piece, Bridge and rib. Piece between the permanent magnet N and S poles is pole-piece. Bridge and rib hold pole-piece. In the case of pole-piece and bridge, it is essential structure of Spoke-Type PMSM. However, Rib can be selected by the designer depending on the operating conditions and constraints. If rib is present in the rotor, rib which acts in the leak path generates a leakage flux. Although the leakage flux reduces the torque in low speed, it expands speed range in high speed. So, there is a relationship of trade off. Viewed from the standpoint of permanent magnet demagnetization, since the magnetic flux by the stator winding leaks to the rib, it is an advantage. In addition, rib affects the safety factor of the rotor. For application required high speed operation, since the securing the safety factor of the rotor is important, rib structure is advantageous. On the other hand, in the case of the application that does not require high speed operation, it is desirable to increase the output power by designing without rib. In this paper, Effects on rib structure is analyzed in detail and this paper provides designer with information about rotor design of spoke-type PMSM according to rib structure.

Keywords: spoke-Type PMSM, rotor shape, rib, operation range

Procedia PDF Downloads 276
21 Performance Analysis of Permanent Magnet Synchronous Motor Using Direct Torque Control Based ANFIS Controller for Electric Vehicle

Authors: Marulasiddappa H. B., Pushparajesh Viswanathan

Abstract:

Day by day, the uses of internal combustion engines (ICE) are deteriorating because of pollution and less fuel availability. In the present scenario, the electric vehicle (EV) plays a major role in the place of an ICE vehicle. The performance of EVs can be improved by the proper selection of electric motors. Initially, EV preferred induction motors for traction purposes, but due to complexity in controlling induction motor, permanent magnet synchronous motor (PMSM) is replacing induction motor in EV due to its advantages. Direct torque control (DTC) is one of the known techniques for PMSM drive in EV to control the torque and speed. However, the presence of torque ripple is the main drawback of this technique. Many control strategies are followed to reduce the torque ripples in PMSM. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) controller technique is proposed to reduce torque ripples and settling time. Here the performance parameters like torque, speed and settling time are compared between conventional proportional-integral (PI) controller with ANFIS controller.

Keywords: direct torque control, electric vehicle, torque ripple, PMSM

Procedia PDF Downloads 22
20 Comparison of Proportional-Integral (P-I) and Integral-Propotional (I-P) Controllers for Speed Control in Vector Controlled Permanent Magnet Synchronous Motor Drive

Authors: V. Srikanth, K. Balasubramanian, Rajath R. Bhat, A. S. Arjun, Nandhu Venugopal, Ananthu Unnikrishnan

Abstract:

Indirect vector control is known to produce high performance in Permanent Magnet Synchronous Motor (PMSM) drives by decoupling flux and torque producing current components of stator current. The most commonly used controller or the vector control of AC motor is Proportional-Integral (P-I) controller. However, the P-I controller has some disadvantages such as high starting overshoot, sensitivity to controller gains and slower response to sudden disturbance. Therefore, the Integral-Proportional controller for PMSM drives to overcome the disadvantages of the P-I controller. Simulations results are presented and analyzed for both controllers and it is observed that Integral-Proportional (I-P) controllers give better responses than the traditional P-I controllers.

Keywords: PMSM, FOC, PI controller, IP controller

Procedia PDF Downloads 219
19 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor

Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher

Abstract:

The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.

Keywords: efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application

Procedia PDF Downloads 93
18 The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor

Authors: Justas Dilys

Abstract:

ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive.

Keywords: unscented kalman filter, ARM, PMSM, implementation

Procedia PDF Downloads 33
17 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor

Authors: Abdelsalam A. Ahmed

Abstract:

Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is drived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.

Keywords: permanent magnet synchronous motor, model-based predictive control, DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP

Procedia PDF Downloads 534
16 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 25
15 A Study on Improvement of the Torque Ripple and Demagnetization Characteristics of a PMSM

Authors: Yong Min You

Abstract:

The study on the torque ripple of Permanent Magnet Synchronous Motors (PMSMs) has been rapidly progressed, which effects on the noise and vibration of the electric vehicle. There are several ways to reduce torque ripple, which are the increase in the number of slots and poles, the notch of the rotor and stator teeth, and the skew of the rotor and stator. However, the conventional methods have the disadvantage in terms of material cost and productivity. The demagnetization characteristic of PMSMs must be attained for electric vehicle application. Due to rare earth supply issue, the demand for Dy-free permanent magnet has been increasing, which can be applied to PMSMs for the electric vehicle. Dy-free permanent magnet has lower the coercivity; the demagnetization characteristic has become more significant. To improve the torque ripple as well as the demagnetization characteristics, which are significant parameters for electric vehicle application, an unequal air-gap model is proposed for a PMSM. A shape optimization is performed to optimize the design variables of an unequal air-gap model. Optimal design variables are the shape of an unequal air-gap and the angle between V-shape magnets. An optimization process is performed by Latin Hypercube Sampling (LHS), Kriging Method, and Genetic Algorithm (GA). Finite element analysis (FEA) is also utilized to analyze the torque and demagnetization characteristics. The torque ripple and the demagnetization temperature of the initial model of 45kW PMSM with unequal air-gap are 10 % and 146.8 degrees, respectively, which are reaching a critical level for electric vehicle application. Therefore, the unequal air-gap model is proposed, and then an optimization process is conducted. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 7.7 %. In addition, the demagnetization temperature of the optimized model was also increased by 1.8 % while maintaining the efficiency. From these results, a shape optimized unequal air-gap PMSM has shown the usefulness of an improvement in the torque ripple and demagnetization temperature for the electric vehicle.

Keywords: permanent magnet synchronous motor, optimal design, finite element method, torque ripple

Procedia PDF Downloads 188
14 Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive

Authors: Marcel Lehr, Andreas Binder

Abstract:

This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior.

Keywords: doubly-salient-permanent-magnet-machine, flux-reversal-permanent-magnet-machine, flux-switching-permanent-magnet-machine, industrial drive

Procedia PDF Downloads 240
13 Optimization of Coefficients of Fractional Order Proportional-Integrator-Derivative Controller on Permanent Magnet Synchronous Motors Using Particle Swarm Optimization

Authors: Ali Motalebi Saraji, Reza Zarei Lamuki

Abstract:

Speed control and behavior improvement of permanent magnet synchronous motors (PMSM) that have reliable performance, low loss, and high power density, especially in industrial drives, are of great importance for researchers. Because of its importance in this paper, coefficients optimization of proportional-integrator-derivative fractional order controller is presented using Particle Swarm Optimization (PSO) algorithm in order to improve the behavior of PMSM in its speed control loop. This improvement is simulated in MATLAB software for the proposed optimized proportional-integrator-derivative fractional order controller with a Genetic algorithm and compared with a full order controller with a classic optimization method. Simulation results show the performance improvement of the proposed controller with respect to two other controllers in terms of rising time, overshoot, and settling time.

Keywords: speed control loop of permanent magnet synchronous motor, fractional and full order proportional-integrator-derivative controller, coefficients optimization, particle swarm optimization, improvement of behavior

Procedia PDF Downloads 27
12 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 407
11 Identification of the Parameters of a AC Servomotor Using Genetic Algorithm

Authors: J. G. Batista, K. N. Sousa, ¬J. L. Nunes, R. L. S. Sousa, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measured and/or expected values.

Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control

Procedia PDF Downloads 339
10 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control

Procedia PDF Downloads 384
9 Optimal Rotor Design of an 150kW-Class IPMSM through the 3D Voltage-Inductance Map Analysis Method

Authors: Eung-Seok Park, Tae-Chul Jeong, Hyun-Jong Park, Hyun-Woo Jun, Dong-Woo Kang, Ju Lee

Abstract:

This presents a methodology to determine detail design directions of an 150kW-class IPMSM (interior permanent magnet synchronous motor) and its detail design. The basic design of the stator and rotor was conducted. After dividing the designed models into the best cases and the worst cases based on rotor shape parameters, Sensitivity analysis and 3D Voltage-Inductance Map (3D EL-Map) parameters were analyzed. Then, the design direction for the final model was predicted. Based on the prediction, the final model was extracted with Trend analysis. Lastly, the final model was validated with experiments.

Keywords: PMSM, optimal design, rotor design, voltage-inductance map

Procedia PDF Downloads 520
8 Vector Control of Two Five Phase PMSM Connected in Series Powered by Matrix Converter Application to the Rail Traction

Authors: S. Meguenni, A. Djahbar, K. Tounsi

Abstract:

Electric railway traction systems are complex; they have electrical couplings, magnetic and solid mechanics. These couplings impose several constraints that complicate the modeling and analysis of these systems. An example of drive systems, which combine the advantages of the use of multiphase machines, power electronics and computing means, is mono convert isseur multi-machine system which can control a fully decoupled so many machines whose electric windings are connected in series. In this approach, our attention especially on modeling and independent control of two five phase synchronous machine with permanent magnet connected in series and fed by a matrix converter application to the rail traction (bogie of a locomotive BB 36000).

Keywords: synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway traction

Procedia PDF Downloads 263
7 Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based on Passivity Approach

Authors: Jenn-Yih Chen, Bean-Yin Lee, Yuan-Chuan Hsu, Jui-Cheng Lin, Kuang-Chyi Lee

Abstract:

In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances.

Keywords: adaptive law, passivity theorem, permanent magnet synchronous motor, sliding mode control

Procedia PDF Downloads 347
6 Control Methods Used to Minimize Losses in High-Speed Electrical Machines

Authors: Mohammad Hedar

Abstract:

This paper presents selected topics from the area of high-speed electrical machine control with a focus on loss minimization. It focuses on pulse amplitude modulation (PAM) set-up in order to minimize the inrush current peak. An overview of these machines and the control topologies that have been used with these machines are reported. The critical problem that happens when controlling a high-speed electrical motor is the high current peak in the start-up process, which will cause high power-losses. The main goal of this paper is to clarify how the inrush current peak can be minimized in the start-up process. PAM control method is proposed to use in the frequency inverter, simulation results for PAM & PWM control method, and steps to improve the PAM control are reported. The simulations were performed with data for PMSM (nominal speed: 25 000 min-1, power: 3.1 kW, load: 1.2 Nm).

Keywords: control topology, frequency inverter, high-speed electrical machines, PAM, power losses, PWM

Procedia PDF Downloads 28
5 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: K. Hartani, T. Mohammed Chikouche, N. Aouadj, M. Khalfaoui

Abstract:

Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance.

Keywords: electric vehicle, multi-machine single-inverter system, multi-machine multi-inverter control, in-wheel motor, master-slave control

Procedia PDF Downloads 89
4 A Study on the Method of Accelerated Life Test to Electric Rotating System

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.

Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration

Procedia PDF Downloads 222
3 FPGA Based Vector Control of PM Motor Using Sliding Mode Observer

Authors: Hanan Mikhael Dawood, Afaneen Anwer Abood Al-Khazraji

Abstract:

The paper presents an investigation of field oriented control strategy of Permanent Magnet Synchronous Motor (PMSM) based on hardware in the loop simulation (HIL) over a wide speed range. A sensorless rotor position estimation using sliding mode observer for permanent magnet synchronous motor is illustrated considering the effects of magnetic saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. Therefore, the inductance measurement regards the saturation and cross saturation which are used to obtain the suitable id-characteristics in base and flux weakening regions. Real time matrix multiplication in Field Programmable Gate Array (FPGA) using floating point number system is used utilizing Quartus-II environment to develop FPGA designs and then download these designs files into development kit. dSPACE DS1103 is utilized for Pulse Width Modulation (PWM) switching and the controller. The hardware in the loop results conducted to that from the Matlab simulation. Various dynamic conditions have been investigated.

Keywords: magnetic saturation, rotor position estimation, sliding mode observer, hardware in the loop (HIL)

Procedia PDF Downloads 443
2 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network

Procedia PDF Downloads 35
1 Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower

Authors: Usman Abubakar, Xiaoyuan Wang, Sayyed Haleem Shah, Sadiq Ur Rahman, Rabiu Saleh Zakariyya

Abstract:

High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding’s potting material and sleeve’s material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine’s electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine’s cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine’s winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM.

Keywords: airflow network, axial ventilation, high-speed PMSM, thermal network

Procedia PDF Downloads 75