Search results for: window-based regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3234

Search results for: window-based regression

2514 Analysing the Interactive Effects of Factors Influencing Sand Production on Drawdown Time in High Viscosity Reservoirs

Authors: Gerald Gwamba, Bo Zhou, Yajun Song, Dong Changyin

Abstract:

The challenges that sand production presents to the oil and gas industry, particularly while working in poorly consolidated reservoirs, cannot be overstated. From restricting production to blocking production tubing, sand production increases the costs associated with production as it elevates the cost of servicing production equipment over time. Production in reservoirs that present with high viscosities, flow rate, cementation, clay content as well as fine sand contents is even more complex and challenging. As opposed to the one-factor at a-time testing, investigating the interactive effects arising from a combination of several factors offers increased reliability of results as well as representation of actual field conditions. It is thus paramount to investigate the conditions leading to the onset of sanding during production to ensure the future sustainability of hydrocarbon production operations under viscous conditions. We adopt the Design of Experiments (DOE) to analyse, using Taguchi factorial designs, the most significant interactive effects of sanding. We propose an optimized regression model to predict the drawdown time at sand production. The results obtained underscore that reservoirs characterized by varying (high and low) levels of viscosity, flow rate, cementation, clay, and fine sand content have a resulting impact on sand production. The only significant interactive effect recorded arises from the interaction between BD (fine sand content and flow rate), while the main effects included fluid viscosity and cementation, with percentage significances recorded as 31.3%, 37.76%, and 30.94%, respectively. The drawdown time model presented could be useful for predicting the time to reach the maximum drawdown pressure under viscous conditions during the onset of sand production.

Keywords: factorial designs, DOE optimization, sand production prediction, drawdown time, regression model

Procedia PDF Downloads 153
2513 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 175
2512 A Study on Wage Discrimination Between Young and Middle-Aged Workers in Indian Informal Sector: Evidence from Periodic Labour Force Survey

Authors: Dharshini S.

Abstract:

India is currently experiencing a shift in wage discrimination from gender, caste and religion to different age groups in both formal and informal sectors. In this milieu, this study examines wage discrimination in the informal labour market between young people (15-29 years) and middle-aged people (30-59 years) among regular and casual employees in the Indian informal sector. The data was collected using periodic labour force (PLFS), and the original data was extracted from the National Sample Survey Office (NSSO) under the Ministry of Statistics and Programme Implementation (MOSPI), Government of India. The OLS regression model explores the determinants of wages for both regular and casual employees. Moreover, the Blinder Oaxaca decomposition method is used to explore the explained and unexplained components of this wage discrimination. The younger people (regular and casual employees) get lower wages as compared to middle-aged employees in the informal sector. The regression result follows the human capital theory, where education, job experience and higher occupation help to raise the wage rate of middle-aged people more than young-aged people in regular work. Furthermore, we found the rising trend of wage discrimination between the above groups over the years from 2017-18 to 2022-23. Unexplained factors (discrimination effects) contribute more to the wage differentiation between the young and middle age groups. It indicates that wage discrimination persists among regular and casual employees in the informal labour market, which is not a good sign for the economy. For the betterment of workers who face discrimination for age, the policies and programs should be implemented like other countries such as the U.S.A to stop age discrimination due to stereotypes in India.

Keywords: wage discrimination, young workers, middle workers, Informal sector, blinder oaxaca decomposition, PLFS.

Procedia PDF Downloads 13
2511 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
2510 An Exploration of the Association Between the Physical Activity and Academic Performance in Internship Medical Students

Authors: Ali Ashraf, Ghazaleh Aghaee, Sedigheh Samimian, Mohaya Farzin

Abstract:

Objectives: Previous studies have indicated the positive effect of physical activity and sports on different aspects of health, such as muscle endurance and sleep cycle. However, in university students, particularly medical students, who have limited time and a stressful lifestyle, there have been limited studies exploring this matter with proven statistical results. In this regard, this study aims to find out how regular physical activity can influence the academic performance of medical students during their internship period. Methods: This was a descriptive-analytical study. Overall, 160 medical students (including 80 women and 88 men) voluntarily participated in the study. The Baecke Physical Activity Questionnaire was applied to determine the student’s physical activity levels. The student's academic performance was determined based on their total average academic scores. The data were analyzed in SPSS version 16 software using the independent t-test, Pearson correlation, and linear regression. Results: The average age of the students was 26.0±1.5 years. Eighty-eight students (52.4%) were male, and 142 (84.5%) were single. The student's mean total average academic score was 16.2±1.2, and their average physical activity score was 8.3±1.1. The student's average academic score was not associated with their gender (P=0.427), marital status (P=0.645), and age (P=0.320). However, married students had a significantly lower physical activity level compared to single students (P=0.020). The results indicated a significant positive correlation between student's physical activity levels and average academic scores (r=+0.410 and P<0.001). This correlation was independent of the student’s age, gender, and marital status based on the regression analysis. Conclusion: The results of the current study suggested that the physical activity level in medical students was low to moderate in most cases, and there was a significant direct relationship between student’s physical activity level and academic performance, independent of age, gender, and marital status.

Keywords: exercise, education, physical activity, academic performance

Procedia PDF Downloads 49
2509 Impact of Leadership Styles on Work Motivation and Organizational Commitment among Faculty Members of Public Sector Universities in Punjab

Authors: Wajeeha Shahid

Abstract:

The study was designed to assess the impact of transformational and transactional leadership styles on work motivation and organizational commitment among faculty members of universities of Punjab. 713 faculty members were selected as sample through convenient random sampling technique. Three self-constructed questionnaires namely Leadership Styles Questionnaire (LSQ), Work Motivation Questionnaire (WMQ) and Organizational Commitment Questionnaire (OCMQ) were used as research instruments. Major objectives of the study included assessing the effect and impact of transformational and transactional leadership styles on work motivation and organizational commitment. Theoretical frame work of the study included Idealized Influence, Inspirational Motivation, Intellectual Stimulation, Individualized Consideration, Contingent Rewards and Management by Exception as independent variables and Extrinsic motivation, Intrinsic motivation, Affective commitment, Continuance commitment and Normative commitment as dependent variables. SPSS Version 21 was used to analyze and tabulate data. Cronbach's Alpha reliability, Pearson Correlation and Multiple regression analysis were applied as statistical treatments for the analysis. Results revealed that Idealized Influence correlated significantly with intrinsic motivation and Affective commitment whereas Contingent rewards had a strong positive correlation with extrinsic motivation and affective commitment. Multiple regression models revealed a variance of 85% for transformational leadership style over work motivation and organizational commitment. Whereas transactional style as a predictor manifested a variance of 79% for work motivation and 76% for organizational commitment. It was suggested that changing organizational cultures are demanding more from their leadership. All organizations need to consider transformational leadership style as an important part of their equipment in leveraging both soft and hard organizational targets.

Keywords: leadership styles, work motivation, organizational commitment, faculty member

Procedia PDF Downloads 311
2508 Determination of Genetic Markers, Microsatellites Type, Liked to Milk Production Traits in Goats

Authors: Mohamed Fawzy Elzarei, Yousef Mohammed Al-Dakheel, Ali Mohamed Alseaf

Abstract:

Modern molecular techniques, like single marker analysis for linked traits to these markers, can provide us with rapid and accurate genetic results. In the last two decades of the last century, the applications of molecular techniques were reached a faraway point in cattle, sheep, and pig. In goats, especially in our region, the application of molecular techniques is still far from other species. As reported by many researchers, microsatellites marker is one of the suitable markers for lie studies. The single marker linked to traits of interest is one technique allowed us to early select animals without the necessity for mapping the entire genome. Simplicity, applicability, and low cost of this technique gave this technique a wide range of applications in many areas of genetics and molecular biology. Also, this technique provides a useful approach for evaluating genetic differentiation, particularly in populations that are poorly known genetically. The expected breeding value (EBV) and yield deviation (YD) are considered as the most parameters used for studying the linkage between quantitative characteristics and molecular markers, since these values are raw data corrected for the non-genetic factors. A total of 17 microsatellites markers (from chromosomes 6, 14, 18, 20 and 23) were used in this study to search for areas that could be responsible for genetic variability for some milk traits and search of chromosomal regions that explain part of the phenotypic variance. Results of single-marker analyses were used to identify the linkage between microsatellite markers and variation in EBVs of these traits, Milk yield, Protein percentage, Fat percentage, Litter size and weight at birth, and litter size and weight at weaning. The estimates of the parameters from forward and backward solutions using stepwise regression procedure on milk yield trait, only two markers, OARCP9 and AGLA29, showed a highly significant effect (p≤0.01) in backward and forward solutions. The forward solution for different equations conducted that R2 of these equations were highly depending on only two partials regressions coefficient (βi,) for these markers. For the milk protein trait, four marker showed significant effect BMS2361, CSSM66 (p≤0.01), BMS2626, and OARCP9 (p≤0.05). By the other way, four markers (MCM147, BM1225, INRA006, andINRA133) showed highly significant effect (p≤0.01) in both backward and forward solutions in association with milk fat trait. For both litter size at birth and at weaning traits, only one marker (BM143(p≤0.01) and RJH1 (p≤0.05), respectively) showed a significant effect in backward and forward solutions. The estimates of the parameters from forward and backward solution using stepwise regression procedure on litter weight at birth (LWB) trait only one marker (MCM147) showed highly significant effect (p≤0.01) and two marker (ILSTS011, CSSM66) showed a significant effect (p≤0.05) in backward and forward solutions.

Keywords: microsatellites marker, estimated breeding value, stepwise regression, milk traits

Procedia PDF Downloads 93
2507 Market Chain Analysis of Onion: The Case of Northern Ethiopia

Authors: Belayneh Yohannes

Abstract:

In Ethiopia, onion production is increasing from time to time mainly due to its high profitability per unit area. Onion has a significant contribution to generating cash income for farmers in the Raya Azebo district. Therefore, enhancing onion producers’ access to the market and improving market linkage is an essential issue. Hence, this study aimed to analyze structure-conduct-performance of onion market and identifying factors affecting the market supply of onion producers. Data were collected from both primary and secondary sources. Primary data were collected from 150 farm households and 20 traders. Four onion marketing channels were identified in the study area. The highest total gross margin is 27.6 in channel IV. The highest gross marketing margin of producers of the onion market is 88% in channel II. The result from the analysis of market concentration indicated that the onion market is characterized by a strong oligopolistic market structure, with the buyers’ concentration ratio of 88.7 in Maichew town and 82.7 in Mekelle town. Lack of capital, licensing problems, and seasonal supply was identified as the major entry barrier to onion marketing. Market conduct shows that the price of onion is set by traders while producers are price takers. Multiple linear regression model results indicated that family size in adult equivalent, irrigated land size, access to information, frequency of extension contact, and ownership of transport significantly determined the quantity of onion supplied to the market. It is recommended that strengthening and diversifying extension services in information, marketing, post-harvest handling, irrigation application, and water harvest technology is highly important.

Keywords: oligopoly, onion, market chain, multiple linear regression

Procedia PDF Downloads 150
2506 Adoption of Climate-Smart Agriculture Practices Among Farmers and Its Effect on Crop Revenue in Ethiopia

Authors: Fikiru Temesgen Gelata

Abstract:

Food security, adaptation, and climate change mitigation are all problems that can be resolved simultaneously with Climate-Smart Agriculture (CSA). This study examines determinants of climate-smart agriculture (CSA) practices among smallholder farmers, aiming to understand the factors guiding adoption decisions and evaluate the impact of CSA on smallholder farmer income in the study areas. For this study, three-stage sampling techniques were applied to select 230 smallholders randomly. Mann-Kendal test and multinomial endogenous switching regression model were used to analyze trends of decrease or increase within long-term temporal data and the impact of CSA on the smallholder farmer income, respectively. Findings revealed education level, household size, land ownership, off-farm income, climate information, and contact with extension agents found to be highly adopted CSA practices. On the contrary, erosion exerted a detrimental impact on all the agricultural practices examined within the study region. Various factors such as farming methods, the size of farms, proximity to irrigated farmlands, availability of extension services, distance to market hubs, and access to weather forecasts were recognized as key determinants influencing the adoption of CSA practices. The multinomial endogenous switching regression model (MESR) revealed that joint adoption of crop rotation and soil and water conservation practices significantly increased farm income by 1,107,245 ETB. The study recommends that counties and governments should prioritize addressing climate change in their development agendas to increase the adoption of climate-smart farming techniques.

Keywords: climate-smart practices, food security, Oincome, MERM, Ethiopia

Procedia PDF Downloads 41
2505 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia

Authors: Arragaw Alemayehu, Woldeamlak Bewket

Abstract:

The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.

Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend

Procedia PDF Downloads 438
2504 Physical Health, Depression and Related Factors for Elementary School Students in Seoul, South Korea

Authors: Kyung-Sook Bang

Abstract:

Background: The health status of school-age children has a great influence on their growth and life-long health. The purposes of this study were to identify physical and mental health status of late school-age children in Seoul, South Korea and to investigate the related factors for their health. Methods: After gaining the approval from Institutional Review Board (IRB), a cross-sectional study was conducted with elementary students in grade 4 or 5. Questionnaires were distributed to eight elementary schools located different regions of Seoul in November, 2016, and 302 participants were finally included. From all participants, informed consents from the parents, and assents from children were received. Children's socioeconomic status, family functioning, peer relations, physical health symptoms, and depression were measured with self-reported questionnaires. Data were analyzed with descriptive statistics, t-test, Pearson’s correlations, and multiple regression. Results: Children's physical health symptoms and depression were not significantly different, and only their peer relations were significantly different according to their socioeconomic status (t=-3.93, p<.001). Depression showed significant positive correlation with physical health symptoms (r=.720, p<.001) and negative correlations with family functioning (r=-.428, p<.001) and peer relations (r=-.775, p<.001). The multiple regression model, which explained 73.5% of variance, showed peer relations (r2 =.604), physical health symptoms (r2 change=.125), and family functioning (r2 change=.005) as significant predictors for depression. Only the peer relations was significant predictor for their physical health symptoms and explained 50.6% of it. Conclusions: The peer relations was the most important factor in their physical and mental health at this age, and it can be affected by their socioeconomic status. Nursing interventions for promoting social relations and family functioning are required to improve children’s physical and mental health, especially for vulnerable population.

Keywords: child, depression, health, peer relation

Procedia PDF Downloads 232
2503 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 80
2502 The Determinants of Financial Ratio Disclosures and Quality: Evidence from an Emerging Market

Authors: Ben Kwame Agyei-Mensah

Abstract:

This study investigated the influence of firm-specific characteristics which include proportion of Non-Executive Directors, ownership concentration, firm size, profitability, debt equity ratio, liquidity and leverage on the extent and quality of financial ratios disclosed by firms listed on the Ghana Stock Exchange. The research was conducted through detailed analysis of the 2012 financial statements of the listed firms. Descriptive analysis was performed to provide the background statistics of the variables examined. This was followed by regression analysis which forms the main data analysis. The results of the extent of financial ratio disclosure level, mean of 62.78%, indicate that most of the firms listed on the Ghana Stock Exchange did not overwhelmingly disclose such ratios in their annual reports. The results of the low quality of financial ratio disclosure mean of 6.64% indicate that the disclosures failed woefully to meet the International Accounting Standards Board's qualitative characteristics of relevance, reliability, comparability and understandability. The results of the multiple regression analysis show that leverage (gearing ratio) and return on investment (dividend per share) are associated on a statistically significant level as far as the extent of financial ratio disclosure is concerned. Board ownership concentration and proportion of (independent) non-executive directors, on the other hand were found to be statistically associated with the quality of financial ratio disclosed. There is a significant negative relationship between ownership concentration and the quality of financial ratio disclosure. This means that under a higher level of ownership concentration less quality financial ratios are disclosed. The findings also show that there is a significant positive relationship between board composition (proportion of non-executive directors) and the quality of financial ratio disclosure.

Keywords: voluntary disclosure, firm-specific characteristics, financial reporting, financial ratio disclosure, Ghana stock exchange

Procedia PDF Downloads 593
2501 Determinants of Stone Free Status After a Single Session of Flexible Ureteroscopy with Laser Lithotripsy for Renal Calculi

Authors: Mohamed Elkoushy, Sameer Munshi, Waseem Tayeb

Abstract:

Background: Flexible ureteroscopy (fURS) has dramatically improved the minimally invasive management of complex nephrolithiasis. fUR is increasingly being used as the first-line treatment for patients with renal stones. Stone-free status (SFS) is the primary goal in the management of patients with urolithiasis. However, substantial variations exist in the reported SFS following fURS. Objectives: This study determines the predictors of SFS after a single session of fURS with holmium laser lithotripsy (HLL) for renal calculi. Methods: A retrospective review of prospectively collected data was performed for all consecutive patients undergoing fURS and HLL for renal calculi at a tertiary care center. Patients with previous ipsilateral URS for the same stones were excluded. All patients underwent JJ ureteral stent insertion at the end of the procedure. SFS was defined as the presence of no residuals or ≤4-mm non-obstructing stone and was assessed by CT/KUB imaging after 3-4 weeks post-operatively. Multivariate logistic regression was used to detect possible predictors of SFS. Results: A total of 212 patients were included with a mean age of 52.3±8.3 years and a stone burden <20 mm (49.1%), 20-30 mm (41.0%) and >30 mm (9.9%). Overall SFS after a single session of fURS was 71.7%, 92% and 52% for stones less and larger than 20 mm, respectively. Patients with stones> 20 mm need retreatment with a mean number of 1.8 (1.3-2.7) fURS. SFS was significantly associated with male gender, stone bulk <20 mm (95.7% vs. 56.2%), non-lower pole stones, hydronephrotic kidney, low stone intensity, ureteral access sheath, and preoperative stenting. SFS was associated with a lower readmission rate (5.9% vs. 38.9%) and urinary tract infections (3.8% vs. 25.9%). In multivariate regression analysis, SFS maintains its significant association with low stone burden of <20 mm (OR: 5.21), stone intensity <600 HFU (OR: 2.87), and non-lower caliceal stones (OR: 3.84). Conclusion: Best results after a single-session fURS for renal stone were obtained for the stone burden of less than 20 mm and low stone attenuation. Lower calyceal stones may influence stone clearance and need a different approach than fURS, especially for higher stone burden.

Keywords: ureteroscopy, kidney stone, lithotripsy, stone-free, predictors

Procedia PDF Downloads 19
2500 Illustrative Effects of Social Capital on Perceived Health Status and Quality of Life among Older Adult in India: Evidence from WHO-Study on Global AGEing and Adults Health India

Authors: Himansu, Bedanga Talukdar

Abstract:

The aim of present study is to investigate the prevalence of various health outcomes and quality of life and analyzes the moderating role of social capital on health outcomes (i.e., self-rated good health (SRH), depression, functional health and quality of life) among elderly in India. Using WHO Study on Global AGEing and adults health (SAGE) data, with sample of 6559 elderly between 50 and above (Mage=61.81, SD=9.00) age were selected for analysis. Multivariate analysis accessed the prevalence of SRH, depression, functional limitation and quality of life among older adults. Logistic regression evaluates the effect of social capital along with other co-founders on SRH, depression, and functional limitation, whereas linear regression evaluates the effect of social capital with other co-founders on quality of life (QoL) among elderly. Empirical results reveal that (74%) of respondents were married, (70%) having low social action, (46%) medium sociability, (45%) low trust-solidarity, (58%) high safety, (65%) medium civic engagement and 37% reported medium psychological resources. The multivariate analysis, explains (SRH) is associated with age, female, having education, higher social action great trust, safety and greater psychological resources. Depression among elderly is greatly related to age, sex, education and higher wealth, higher sociability, having psychological resources. QoL is negatively associated with age, sex, being Muslim, whereas positive associated with higher education, currently married, civic engagement, having wealth, social action, trust and solidarity, safeness, and strong psychological resources.

Keywords: depressive symptom, functional limitation, older adults, quality of life, self rated health, social capital

Procedia PDF Downloads 225
2499 Urban Retrofitting Application Based on Social-Media to Model the Malioboro Smart Central Business Design through Statistical Regression Approach

Authors: Muhammad Hardyan Prastyanto, Aisah Azhari Marwangi, Yulinda Rizky Pratiwi

Abstract:

Globalization has become a driving force for the current technological developments. The presence of the Virtual Space provides opportunities for people to self-actualization through access to a wider world, quickly and easily. Cities that are part of the existence of life, witness the history of civilization over time, also has been the major object to upgrading on technological sector. A smart city is one where the government and citizenry are using the best available means, including ICT, to achieve their shared goals. This often includes economic development, environmental sustainability, and improved quality of life for citizens. Thus theory is the basis for research of this study. This study aimed to know the implementation of the Urban Retrofitting at Malioboro area based on Information and Communication Technologies. The method of this study is by reviewing the effectiveness of the E-commerce uses as a major system to identification the Malioboro Smart Central Business District. By using a significance level of 5 %, it can be concluded that addresses have a significant influence on the ratings obtained, namely regarding the location of the hotel establishment. But despite the use of the website does not have a significant influence on the rating of the hotel, using the website still has influence significantly on the rating, because the p -value (Sig.) of the variable website is not so much different from the significance level determined by the researcher. In the interpretation, if a hotel is located on the Pasar Kembang streets and not to use the website, so the hotel is likely to have a rating of the constant value which is 3.183. However, if a hotel located on the Sosrowijayan streets, so the hotel rating will be increased by 0,302. Then if a hotel has been using a website, so the hotel rating will increase by 0,264. It is possible to conclude the effectiveness of ICT’s (Website) uses and location to identification the urban retrofitting through increasing of building rating in Malioboro Central Business District.

Keywords: urban retrofitting, e-commerce, information and communication technology, statistic regression, SCBD, Malioboro

Procedia PDF Downloads 301
2498 Nowcasting Indonesian Economy

Authors: Ferry Kurniawan

Abstract:

In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.

Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination

Procedia PDF Downloads 331
2497 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 38
2496 A Profile of an Exercise Addict: The Relationship between Exercise Addiction and Personality

Authors: Klary Geisler, Dalit Lev-Arey, Yael Hacohen

Abstract:

It is a well-known fact that exercise has favorable effects on people's physical health, as well as mental well-being. However, as for as excessive exercise, it may likely elevate negative consequences (e.g., physical injuries, negligence of everyday responsibilities such as work, family life). Lately, there is a growing interest in exercise addiction, sometimes referred to as exercise dependence, which is defined as a craving for physical activity that results in extreme work-out sessions and generates negative physiological and psychological symptoms (e.g., withdrawal symptoms, tolerance, social conflict). Exercise addiction is considered a behavioral addiction, yet it was not included in the latest editions of the diagnostic and statistical manual of mental disorders (DSM-IV), due to lack of significant research. Specifically, there is scarce research on the relationship between exercise addiction and personality dimensions. The purpose of the current research was to examine the relationship between primary exercise addiction symptoms and the big five dimensions, perfectionism (high performance expectations and self-critical performance evaluations) and subjective affect. participants were 152 trainees on a variety of aerobic sports activities (running, cycling, swimming) that were recruited through sports groups and trainers. 88% of participants trained for at least 5 hours per week, 24% of the participants trained above 10 hours per week. To test the predictive ability of the IVs a hierarchical linear regression with forced block entry was performed. It was found that Neuroticism significantly predicted exercise addiction symptoms (20% of the variance, p<0.001), while consciousness was negatively correlated with exercise addiction symptoms (14% of variance p<0.05); both had a unique contribution. Other dimensions of the big five (agreeableness, openness and extraversion) did not have any contribution to the dependent. Moreover, maladaptive perfectionism (self-critical performance evaluations) significantly predicted exercise addiction symptoms as well (10% of the variance P < 0.05). The overall regression model explained 54% of variance.

Keywords: big five, consciousness, excessive exercise, exercise addiction, neuroticism, perfectionism, personality

Procedia PDF Downloads 230
2495 Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran

Authors: Nima Safaei, Arezoo Masoud, Babak Safaei

Abstract:

In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels.

Keywords: BMI, linear regression, transportation, walking, work trips

Procedia PDF Downloads 198
2494 Consequences of Youth Bulge in Pakistan

Authors: Muhammad Farooq, Muhammad Idrees

Abstract:

The present study has been designed to explore the causes and effects of Youth Bulge in Pakistan. However, youth bulge is a part of population segment which create problem for the whole society. The youth bulge is a common phenomenon in many developing countries, and in particular, in the least developed countries. It is often due to a stage of development where a country achieves success in reducing infant mortality but mothers still have a high fertility rate. The result is that a large share of the population is comprised of children and young adults, and today’s children are tomorrow’s young adults. Youth often play a prominent role in political violence and the existence of a “youth bulge” has been associated with times of political crisis. The population pyramid of Pakistan represents a large youth proportion and our government did not use that youth in positive way and did not provide them opportunity for development, this situation creates frustration in youth that leads them towards conflict, unrest and violence. This study will be focus on the opportunity and motives of the youth bulge situation in Pakistan in the lens of youth bulge theory. Moreover, it will give some suggestions to utilize youth in the development activities and avoid youth bulge situation in Pakistan. The present research was conducted in the metropolitan entities of Punjab, Pakistan. A sample of 300 respondents was taken from three randomly selected metropolitan entities (Faisalabad, Lahore and Rawalpindi) of Punjab Province of Pakistan. Information regarding demography, household, locality and other socio-cultural variables related to causes and effects of youth bulge in the state was collected through a well structured interview schedule. Mean, Standard Deviation and frequency distribution were used to check the measure of central tendency. Multiple linear regression was also applied to measure the influence of various independent variables on the response variable.

Keywords: youth bulge, violence, conflict, social unrest, crime, metropolitan entities, mean, standard deviation, multiple linear regression

Procedia PDF Downloads 461
2493 Decisional Regret in Men with Localized Prostate Cancer among Various Treatment Options and the Association with Erectile Functioning and Depressive Symptoms: A Moderation Analysis

Authors: Caren Hilger, Silke Burkert, Friederike Kendel

Abstract:

Men with localized prostate cancer (PCa) have to choose among different treatment options, such as active surveillance (AS) and radical prostatectomy (RP). All available treatment options may be accompanied by specific psychological or physiological side effects. Depending on the nature and extent of these side effects, patients are more or less likely to be satisfied or to struggle with their treatment decision in the long term. Therefore, the aim of this study was to assess and explain decisional regret in men with localized PCa. The role of erectile functioning as one of the main physiological side effects of invasive PCa treatment, depressive symptoms as a common psychological side effect, and the association of erectile functioning and depressive symptoms with decisional regret were investigated. Men with localized PCa initially managed with AS or RP (N=292) were matched according to length of therapy (mean 47.9±15.4 months). Subjects completed mailed questionnaires assessing decisional regret, changes in erectile functioning, depressive symptoms, and sociodemographic variables. Clinical data were obtained from case report forms. Differences among the two treatment groups (AS and RP) were calculated using t-tests and χ²-tests, relationships of decisional regret with erectile functioning and depressive symptoms were computed using multiple regression. Men were on average 70±7.2 years old. The two treatment groups differed markedly regarding decisional regret (p<.001, d=.50), changes in erectile functioning (p<.001, d=1.2), and depressive symptoms (p=.01, d=.30), with men after RP reporting higher values, respectively. Regression analyses showed that after adjustment for age, tumor risk category, and changes in erectile functioning, depressive symptoms were still significantly associated with decisional regret (B=0.52, p<.001). Additionally, when predicting decisional regret, the interaction of changes in erectile functioning and depressive symptoms reached significance for men after RP (B=0.52, p<.001), but not for men under AS (B=-0.16, p=.14). With increased changes in erectile functioning, the association of depressive symptoms with decisional regret became stronger in men after RP. Decisional regret is a phenomenon more prominent in men after RP than in men under AS. Erectile functioning and depressive symptoms interact in their prediction of decisional regret. Screening and treating depressive symptoms might constitute a starting point for interventions aiming to reduce decisional regret in this target group.

Keywords: active surveillance, decisional regret, depressive symptoms, erectile functioning, prostate cancer, radical prostatectomy

Procedia PDF Downloads 218
2492 Occupational Attainment of Second Generation of Ethnic Minority Immigrants in the UK

Authors: Rukhsana Kausar, Issam Malki

Abstract:

The integration and assimilation of ethnic minority immigrants (EMIs) and their subsequent generations remains a serious unsettled issue in most of the host countries. This study conducts the labour market gender analysis to investigate specifically whether second generation of ethnic minority immigrants in the UK is gaining access to professional and managerial employment and advantaged occupational positions on par with their native counterparts. The data used to examine the labour market achievements of EMIs is taken from Labour Force Survey (LFS) for the period 2014-2018. We apply a multivalued treatment under ignorability as proposed by Cattaneo (2010), which refers to treatment effects under the assumptions of (i) selection – on – observables and (ii) common support. We report estimates of Average Treatment Effect (ATE), Average Treatment Effect on the Treated (ATET), and Potential Outcomes Means (POM) using three estimators, including the Regression Adjustment (RA), Augmented Inverse Probability Weighting (AIPW) and Inverse Probability Weighting- Regression Adjustment (IPWRA). We consider two cases: the case with four categories where the first-generation natives are the base category, the second case combine all natives as a base group. Our findings suggest the following. Under Case 1, the estimated probabilities and differences across groups are consistently similar and highly significant. As expected, first generation natives have the highest probability for higher career attainment among both men and women. The findings also suggest that first generation immigrants perform better than the remaining two groups, including the second-generation natives and immigrants. Furthermore, second generation immigrants have higher probability to attain higher professional career, while this is lower for a managerial career. Similar conclusions are reached under Case 2. That is to say that both first – generation and second – generation immigrants have a lower probability for higher career and managerial attainment. First – generation immigrants are found to perform better than second – generation immigrants.

Keywords: immigrnats, second generation, occupational attainment, ethnicity

Procedia PDF Downloads 108
2491 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 119
2490 Giving Right-of-Way to Emergency Ambulances: Attitude and Behavior of Road Users in Developing Countries

Authors: Mahmoud T. Alwidyan, Ahmad Alrawashdeh, Alaa O. Oteir

Abstract:

Background: Emergency medical service (EMS) providers, oftentimes, use the lights and sirens (L&S) of their ambulances to warn road users, navigate through traffic, and expedite transport to save lives of ill and injured patients. Despite the contribution of road users in the effectiveness of reducing transport time of EMS ambulances using L&S, there is a lack of empirical assessments exploring the road user’s attitude and behavior in such situations. This study, therefore, aimed to assess the attitude and behavior of road users in response to EMS ambulances with warning L&S in use. Methods: This was a cross-sectional survey developed and distributed to adult road users in Northern Jordan. The questionnaire included 20 items addressing demographics, attitudes, and behavior toward emergency ambulances. We described the participants’ responses and assessed the association between demographics and attitude statements using logistic regression. Results: A total of 1302 questionnaires were complete and appropriate for analysis. The mean age was 34.2 (SD± 11.4) years, and the majority were males (72.6%). About half of road users (47.9%) in our sample would perform inappropriate action in response to EMS ambulances with L&S in use. The multivariate logistic regression model show that being female (OR, 0.63; 95% CI = 0.48-0.81), more educated (OR, 0.68; 95% CI = 0.53-0.86), or public transport driver (OR, 0.55; 95% CI = 0.34-0.90) is significantly associated with inappropriate response to EMS ambulances. Additionally, a significant proportion of road users may perform inappropriate and lawless driving practices such as crossing red traffic lights or following the passing by EMS ambulances, which would, in turn, increase the risk on ambulances and other road users. Conclusions: A large proportion of road users in Jordan may respond inappropriately to the EMS ambulances, and many engage in risky driving behaviors due perhaps to the lack of procedural knowledge. Policy-related interventions and educational programs are crucially needed to increase public awareness of the traffic law concerning EMS ambulances and to enhance appropriate driving behavior, which, in turn, improves the efficiency of ambulance services.

Keywords: EMS ambulances, lights and sirens, road users, attitude and behavior

Procedia PDF Downloads 90
2489 Exploring the Relationships between Cyberbullying Perceptions and Facebook Attitudes of Turkish Students

Authors: Yavuz Erdoğan, Hidayet Çiftçi

Abstract:

Cyberbullying, a phenomenon among adolescents, is defined as actions that use information and communication technologies such as social media to support deliberate, repeated, and hostile behaviour by an individual or group. With the advancement in communication and information technology, cyberbullying has expanded its boundaries among students in schools. Thus, parents, psychologists, educators, and lawmakers must become aware of the potential risks of this phenomenon. In the light of these perspectives, this study aims to investigate the relationships between cyberbullying perception and Facebook attitudes of Turkish students. A survey method was used for the study and the data were collected by “Cyberbullying Perception Scale”, “Facebook Attitude Scale” and “Personal Information Form”. For this purpose, study has been conducted during 2014-2015 academic year, with a total of 748 students with 493 male (%65.9) and 255 female (%34.1) from randomly selected high schools. In the analysis of data Pearson correlation and multiple regression analysis, multivariate analysis of variance (MANOVA) and Scheffe post hoc test has been used. At the end of the study, the results displayed a negative correlation between Turkish students’ Facebook attitudes and cyberbullying perception (r=-.210; p<0.05). In order to identify the predictors of students’ cyberbullying perception, multiple regression analysis was used. As a result, significant relations were detected between cyberbullying perception and independent variables (F=5.102; p<0.05). Independent variables together explain 11.0% of the total variance in cyberbullying scores. The variables that significantly predict the students’ cyberbullying perception are Facebook attitudes (t=-5.875; p<0.05), and gender (t=3.035; p<0.05). In order to calculate the effects of independent variables on students’ Facebook attitudes and cyberbullying perception MANOVA was conducted. The results of the MANOVA indicate that the Facebook attitudes and cyberbullying perception were significantly differed according to students’ gender, age, educational attainment of the mother, educational attainment of the father, income of the family and daily usage of internet.

Keywords: facebook, cyberbullying, attitude, internet usage

Procedia PDF Downloads 402
2488 Age Estimation from Teeth among North Indian Population: Comparison and Reliability of Qualitative and Quantitative Methods

Authors: Jasbir Arora, Indu Talwar, Daisy Sahni, Vidya Rattan

Abstract:

Introduction: Age estimation is a crucial step to build the identity of a person, both in case of deceased and alive. In adults, age can be estimated on the basis of six regressive (Attrition, Secondary dentine, Dentine transparency, Root resorption, Cementum apposition and Periodontal Disease) changes in teeth qualitatively using scoring system and quantitatively by micrometric method. The present research was designed to establish the reliability of qualitative (method 1) and quantitative (method 2) of age estimation among North Indians and to compare the efficacy of these two methods. Method: 250 single-rooted extracted teeth (18-75 yrs.) were collected from Department of Oral Health Sciences, PGIMER, Chandigarh. Before extraction, periodontal score of each tooth was noted. Labiolingual sections were prepared and examined under light microscope for regressive changes. Each parameter was scored using Gustafson’s 0-3 point score system (qualitative), and total score was calculated. For quantitative method, each regressive change was measured quantitatively in form of 18 micrometric parameters under microscope with the help of measuring eyepiece. Age was estimated using linear and multiple regression analysis in Gustafson’s method and Kedici’s method respectively. Estimated age was compared with actual age on the basis of absolute mean error. Results: In pooled data, by Gustafson’s method, significant correlation (r= 0.8) was observed between total score and actual age. Total score generated an absolute mean error of ±7.8 years. Whereas, for Kedici’s method, a value of correlation coefficient of r=0.5 (p<0.01) was observed between all the eighteen micrometric parameters and known age. Using multiple regression equation, age was estimated, and an absolute mean error of age was found to be ±12.18 years. Conclusion: Gustafson’s (qualitative) method was found to be a better predictor for age estimation among North Indians.

Keywords: forensic odontology, age estimation, North India, teeth

Procedia PDF Downloads 242
2487 Healthcare Providers’ Perception Towards Utilization of Health Information Applications and Its Associated Factors in Healthcare Delivery in Health Facilities in Cape Coast Metropolis, Ghana

Authors: Richard Okyere Boadu, Godwin Adzakpah, Nathan Kumasenu Mensah, Kwame Adu Okyere Boadu, Jonathan Kissi, Christiana Dziyaba, Rosemary Bermaa Abrefa

Abstract:

Information and communication technology (ICT) has significantly advanced global healthcare, with electronic health (e-Health) applications improving health records and delivery. These innovations, including electronic health records, strengthen healthcare systems. The study investigates healthcare professionals' perceptions of health information applications and their associated factors in the Cape Coast Metropolis of Ghana's health facilities. Methods: We used a descriptive cross-sectional study design to collect data from 632 healthcare professionals (HCPs), in the three purposively selected health facilities in the Cape Coast municipality of Ghana in July 2022. Shapiro-Wilk test was used to check the normality of dependent variables. Descriptive statistics were used to report means with corresponding standard deviations for continuous variables. Proportions were also reported for categorical variables. Bivariate regression analysis was conducted to determine the factors influencing the Benefits of Information Technology (BoIT); Barriers to Information Technology Use (BITU); and Motives of Information Technology Use (MoITU) in healthcare delivery. Stata SE version 15 was used for the analysis. A p-value of less than 0.05 served as the basis for considering a statistically significant accepting hypothesis. Results: Healthcare professionals (HCPs) generally perceived moderate benefits (Mean score (M)=5.67) from information technology (IT) in healthcare. However, they slightly agreed that barriers like insufficient computers (M=5.11), frequent system downtime (M=5.09), low system performance (M=5.04), and inadequate staff training (M=4.88) hindered IT utilization. Respondents slightly agreed that training (M=5.56), technical support (M=5.46), and changes in work procedures (M=5.10) motivated their IT use. Bivariate regression analysis revealed significant influences of education, working experience, healthcare profession, and IT training on attitudes towards IT utilization in healthcare delivery (BoIT, BITU, and MoITU). Additionally, the age of healthcare providers, education, and working experience significantly influenced BITU. Ultimately, age, education, working experience, healthcare profession, and IT training significantly influenced MoITU in healthcare delivery. Conclusions: Healthcare professionals acknowledge moderate benefits of IT in healthcare but encounter barriers like inadequate resources and training. Motives for IT use include staff training and support. Bivariate regression analysis shows education, working experience, profession, and IT training significantly influence attitudes toward IT adoption. Targeted interventions and policies can enhance IT utilization in the Cape Coast Metropolis, Ghana.

Keywords: health information application, utilization of information application, information technology use, healthcare

Procedia PDF Downloads 67
2486 River Catchment’s Demography and the Dynamics of Access to Clean Water in the Rural South Africa

Authors: Yiseyon Sunday Hosu, Motebang Dominic Vincent Nakin, Elphina N. Cishe

Abstract:

Universal access to clean and safe drinking water and basic sanitation is one of the targets of the 6th Sustainable Development Goals (SDGs). This paper explores the evidence-based indicators of Water Rights Acts (2013) among households in the rural communities in the Mthatha River catchment of OR Tambo District Municipality of South Africa. Daily access to minimum 25 litres/person and the factors influencing clean water access were investigated in the catchment. A total number of 420 households were surveyed in the upper, peri-urban, lower and coastal regions of Mthatha Rivier catchment. Descriptive and logistic regression analyses were conducted on the data collected from the households to elicit vital information on domestic water security among rural community dwellers. The results show that approximately 68 percent of total households surveyed have access to the required minimum 25 litre/person/day, with 66.3 percent in upper region, 76 per cent in the peri-urban, 1.1 percent in the lower and 2.3 percent in the coastal regions. Only 30 percent among the total surveyed households had access to piped water either in the house or public taps. The logistic regression showed that access to clean water was influenced by lack of water infrastructure, proximity to urban regions, daily flow of pipe-borne water, household size and distance to public taps. This paper recommends that viable integrated rural community-based water infrastructure provision strategies between NGOs and local authority and the promotion of point of use (POU) technologies to enhance better access to clean water.

Keywords: domestic water, household technology, water security, rural community

Procedia PDF Downloads 354
2485 Ethanol in Carbon Monoxide Intoxication: Focus on Delayed Neuropsychological Sequelae

Authors: Hyuk-Hoon Kim, Young Gi Min

Abstract:

Background: In carbon monoxide (CO) intoxication, the pathophysiology of delayed neurological sequelae (DNS) is very complex and remains poorly understood. And predicting whether patients who exhibit resolved acute symptoms have escaped or will experience DNS represents a very important clinical issue. Brain magnetic resonance (MR) imaging has been conducted to assess the severity of brain damage as an objective method to predict prognosis. And co-ingestion of a second poison in patients with intentional CO poisoning occurs in almost one-half of patients. Among patients with co-ingestions, 66% ingested ethanol. We assessed the effects of ethanol on neurologic sequelae prevalence in acute CO intoxication by means of abnormal lesion in brain MR. Method: This study was conducted retrospectively by collecting data for patients who visited an emergency medical center during a period of 5 years. The enrollment criteria were diagnosis of acute CO poisoning and the measurement of the serum ethanol level and history of taking a brain MR during admission period. Official readout data by radiologist are used to decide whether abnormal lesion is existed or not. The enrolled patients were divided into two groups: patients with abnormal lesion and without abnormal lesion in Brain MR. A standardized extraction using medical record was performed; Mann Whitney U test and logistic regression analysis were performed. Result: A total of 112 patients were enrolled, and 68 patients presented abnormal brain lesion on MR. The abnormal brain lesion group had lower serum ethanol level (mean, 20.14 vs 46.71 mg/dL) (p-value<0.001). In addition, univariate logistic regression analysis showed the serum ethanol level (OR, 0.99; 95% CI, 0.98 -1.00) was independently associated with the development of abnormal lesion in brain MR. Conclusion: Ethanol could have neuroprotective effect in acute CO intoxication by sedative effect in stressful situation and mitigative effect in neuro-inflammatory reaction.

Keywords: carbon monoxide, delayed neuropsychological sequelae, ethanol, intoxication, magnetic resonance

Procedia PDF Downloads 252