Search results for: multiple conditions diagnosis
15088 Reduced Complexity of ML Detection Combined with DFE
Authors: Jae-Hyun Ro, Yong-Jun Kim, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection.Keywords: detection, DFE, MIMO-OFDM, ML
Procedia PDF Downloads 61015087 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 44715086 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 7515085 Towards Security in Virtualization of SDN
Authors: Wanqing You, Kai Qian, Xi He, Ying Qian
Abstract:
In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.Keywords: SDN, network, virtualization, security
Procedia PDF Downloads 42815084 Analysis of Gas Transport and Sorption Processes in Coal under Confining Pressure Conditions
Authors: Anna Pajdak, Mateusz Kudasik, Norbert Skoczylas, Leticia Teixeira Palla Braga
Abstract:
A substantial majority of gas transport and sorption researches into coal are carried out on samples that are free of stress. In natural conditions, coal occurs at considerable depths, which often exceed 1000 meters. In such conditions, coal is subjected to geostatic pressure. Thus, in natural conditions, the sorption capacity of coal subjected to geostatic pressure can differ considerably from the sorption capacity of coal, determined in laboratory conditions, which is free of stress. The work presents the results of filtration and sorption tests of gases in coal under confining pressure conditions. The tests were carried out on the author's device, which ensures: confining pressure regulation in the range of 0-30 MPa, isobaric gas pressure conditions, and registration of changes in sample volume during its gas saturation. Based on the conducted research it was found, among others, that the sorption capacity of coal relative to CO₂ was reduced by about 15% as a result of the change in the confining pressure from 1.5 MPa to 30 MPa exerted on the sample. The same change in sample load caused a significant, more than tenfold reduction in carbon permeability to CO₂. The results confirmed that a load of coal corresponding to a hydrostatic pressure of 1000 meters underground reduces its permeability and sorption properties. These results are so important that the effect of load on the sorption properties of coal should be taken into account in laboratory studies on the applicability of CO₂ Enhanced Coal Bed Methane Recovery (CO₂-ECBM) technology.Keywords: coal, confining pressure, gas transport, sorption
Procedia PDF Downloads 12115083 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations
Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger
Abstract:
Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java
Procedia PDF Downloads 33615082 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems
Authors: Messaoud Eljamai, Sami Hidouri
Abstract:
Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency
Procedia PDF Downloads 14715081 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing
Authors: T. Bensana, S. Mekhilef
Abstract:
The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising
Procedia PDF Downloads 37915080 Behavior of Laterally Loaded Multi-Helix Helical Piles Under Vertical Loading in Cohesive and Cohesionless Soils
Authors: Mona Fawzy Aldaghma
Abstract:
Helical piles are gaining popularity as a viable deep foundation alternative due to their quick installation and multipurpose use in compression and tension. These piles are commonly used as foundations for constructions such as solar panels, wind turbines and offshore platforms. These structures typically transfer various combinations of loads to their helical-pile foundations, including axial and lateral loads. Further research is needed to determine the effects of loading patterns that may act on helical piles as compounds of axial compression and lateral stresses. Multi helical piles are used to increase the efficiency of these piles. In this study, it investigate the behavior of laterally loaded helical piles with multiple helices when subjected to vertical loading conditions in both cohesive and cohesionless soils. Two models of intermediate shaft rigidity are studied with either two or three helices. Additionally, the vertical loading conditions were altered between successive and simultaneous loading. The cohesionless soil is sand with medium density and the cohesive soil is clay with medium cohesion. The study will carried out with numerical analysis using PLAXIS 3D and will be verified by an experimental tests. The numerical simulations reveal that helical piles exhibit different behavior in cohesive soil compared to cohesionless soil.Keywords: helical piles, multi-helix, numerical modeling, PLAXIS 3D, cohesive soil, cohesionless soil, experimental
Procedia PDF Downloads 3615079 Multiple Version of Roman Domination in Graphs
Authors: J. C. Valenzuela-Tripodoro, P. Álvarez-Ruíz, M. A. Mateos-Camacho, M. Cera
Abstract:
In 2004, it was introduced the concept of Roman domination in graphs. This concept was initially inspired and related to the defensive strategy of the Roman Empire. An undefended place is a city so that no legions are established on it, whereas a strong place is a city in which two legions are deployed. This situation may be modeled by labeling the vertices of a finite simple graph with labels {0, 1, 2}, satisfying the condition that any 0-vertex must be adjacent to, at least, a 2-vertex. Roman domination in graphs is a variant of classic domination. Clearly, the main aim is to obtain such labeling of the vertices of the graph with minimum cost, that is to say, having minimum weight (sum of all vertex labels). Formally, a function f: V (G) → {0, 1, 2} is a Roman dominating function (RDF) in the graph G = (V, E) if f(u) = 0 implies that f(v) = 2 for, at least, a vertex v which is adjacent to u. The weight of an RDF is the positive integer w(f)= ∑_(v∈V)▒〖f(v)〗. The Roman domination number, γ_R (G), is the minimum weight among all the Roman dominating functions? Obviously, the set of vertices with a positive label under an RDF f is a dominating set in the graph, and hence γ(G)≤γ_R (G). In this work, we start the study of a generalization of RDF in which we consider that any undefended place should be defended from a sudden attack by, at least, k legions. These legions can be deployed in the city or in any of its neighbours. A function f: V → {0, 1, . . . , k + 1} such that f(N[u]) ≥ k + |AN(u)| for all vertex u with f(u) < k, where AN(u) represents the set of active neighbours (i.e., with a positive label) of vertex u, is called a [k]-multiple Roman dominating functions and it is denoted by [k]-MRDF. The minimum weight of a [k]-MRDF in the graph G is the [k]-multiple Roman domination number ([k]-MRDN) of G, denoted by γ_[kR] (G). First, we prove that the [k]-multiple Roman domination decision problem is NP-complete even when restricted to bipartite and chordal graphs. A problem that had been resolved for other variants and wanted to be generalized. We know the difficulty of calculating the exact value of the [k]-MRD number, even for families of particular graphs. Here, we present several upper and lower bounds for the [k]-MRD number that permits us to estimate it with as much precision as possible. Finally, some graphs with the exact value of this parameter are characterized.Keywords: multiple roman domination function, decision problem np-complete, bounds, exact values
Procedia PDF Downloads 10815078 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors
Authors: Suman Bala, Sunil Kamboj, Vipin Saini
Abstract:
Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.Keywords: 1, 3, 4-oxadiazole, QSAR, multiple linear regression, docking, glucosamine-6-phosphate synthase
Procedia PDF Downloads 34115077 Hypotonia - A Concerning Issue in Neonatal Care
Authors: Eda Jazexhiu-Postoli, Gladiola Hoxha, Ada Simeoni, Sonila Biba
Abstract:
Background Neonatal hypotonia represents a commonly encountered issue in the Neonatal Intensive Care Unit and newborn nursery. The differential diagnosis is broad, encompassing chromosome abnormalities, primary muscular dystrophies, neuropathies and inborn errors of metabolism. Aim of study Our study describes some of the main clinical features of hypotonia in newborns and presents clinical cases of neonatal hypotonia we treated in our Neonatal unit in the last 3 years. Case reports Four neonates born in our hospital presented with hypotonia after birth, one preterm newborn 35-36 weeks of gestational age and three other term newborns (38-39 weeks of gestational age). Prenatal data revealed a decrease in fetal movements in both cases. Intrapartum meconium-stained amniotic fluid was found in 75% of our hypotonic newborns. Clinical features included inability to establish effective respiratory movements and need for resuscitation in the delivery room, respiratory distress syndrome, feeding difficulties and need for oro-gastric tube feeding, dysmorphic features, hoarse voice and moderate to severe muscular hypotonia. The genetic workup revealed the diagnosis of Autosomal Recessive Congenital Myasthenic Syndrome 1-B, Sotos Syndrome, Spinal Muscular Atrophy Type 1 and Transient Hypotonia of the Newborn. Two out of four hypotonic neonates were transferred to the Pediatric Intensive Care Unit and died at the age of three to five months old. Conclusion Hypotonia is a concerning finding in neonatal care and it is suggested by decreased intrauterine fetal movements, failure to establish first breaths, respiratory distress and feeding difficulties in the neonate. Prognosis is determined by its etiology and time of diagnosis and intervention.Keywords: hypotonic neonate, respiratory distress, feeding difficulties, fetal movements
Procedia PDF Downloads 11515076 Human Endogenous Retrovirus Link With Multiple Sclerosis Disease Progression
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human endogenous retrovirus (HERV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on HERV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", "Human endogenous retrovirus", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles chosen, studied, and analyzed. Results: In the leptomeningeal cells of MS patients, a retrovirus-like element associated with reverse transcriptase (RT) activity called multiple sclerosis-associated retroviruses (MSRV) has been identified. HERVs are expressed in the human CNS despite mechanisms to suppress their expression. External factors, especially viral infections such as influenza virus, Epstein-Barr virus, and herpes simplex virus type 1, can activate HERV gene expression. The MSRV coat protein is activated by activating TLR4 at the brain surface, particularly in oligodendroglial progenitor cells and macrophages, leading to immune cascades followed by the downregulation of myelin protein expression. The HERV-K18 envelope gene (env) acts as a superantigen and induces inflammatory responses in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HERV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of endogenous retroviruses may be effective in reducing inflammatory processes in demyelinated areas of MS patients.Keywords: multiple sclerosis, human endogenous retrovirus, central nervous system, MSRV
Procedia PDF Downloads 7115075 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID
Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis
Abstract:
Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.Keywords: artificial intelligence, COVID, neural network, machine learning
Procedia PDF Downloads 9315074 Communication of Expected Survival Time to Cancer Patients: How It Is Done and How It Should Be Done
Authors: Geir Kirkebøen
Abstract:
Most patients with serious diagnoses want to know their prognosis, in particular their expected survival time. As part of the informed consent process, physicians are legally obligated to communicate such information to patients. However, there is no established (evidence based) ‘best practice’ for how to do this. The two questions explored in this study are: How do physicians communicate expected survival time to patients, and how should it be done? We explored the first, descriptive question in a study with Norwegian oncologists as participants. The study had a scenario and a survey part. In the scenario part, the doctors should imagine that a patient, recently diagnosed with a serious cancer diagnosis, has asked them: ‘How long can I expect to live with such a diagnosis? I want an honest answer from you!’ The doctors should assume that the diagnosis is certain, and that from an extensive recent study they had optimal statistical knowledge, described in detail as a right-skewed survival curve, about how long such patients with this kind of diagnosis could be expected to live. The main finding was that very few of the oncologists would explain to the patient the variation in survival time as described by the survival curve. The majority would not give the patient an answer at all. Of those who gave an answer, the typical answer was that survival time varies a lot, that it is hard to say in a specific case, that we will come back to it later etc. The survey part of the study clearly indicates that the main reason why the oncologists would not deliver the mortality prognosis was discomfort with its uncertainty. The scenario part of the study confirmed this finding. The majority of the oncologists explicitly used the uncertainty, the variation in survival time, as a reason to not give the patient an answer. Many studies show that patients want realistic information about their mortality prognosis, and that they should be given hope. The question then is how to communicate the uncertainty of the prognosis in a realistic and optimistic – hopeful – way. Based on psychological research, our hypothesis is that the best way to do this is by explicitly describing the variation in survival time, the (usually) right skewed survival curve of the prognosis, and emphasize to the patient the (small) possibility of being a ‘lucky outlier’. We tested this hypothesis in two scenario studies with lay people as participants. The data clearly show that people prefer to receive expected survival time as a median value together with explicit information about the survival curve’s right skewedness (e.g., concrete examples of ‘positive outliers’), and that communicating expected survival time this way not only provides people with hope, but also gives them a more realistic understanding compared with the typical way expected survival time is communicated. Our data indicate that it is not the existence of the uncertainty regarding the mortality prognosis that is the problem for patients, but how this uncertainty is, or is not, communicated and explained.Keywords: cancer patients, decision psychology, doctor-patient communication, mortality prognosis
Procedia PDF Downloads 32915073 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 6815072 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis
Authors: Fahad Qureshi
Abstract:
This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.Keywords: exhaust side bearing, Gas turbine, rubbing, vibration
Procedia PDF Downloads 18615071 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: building system, time series, diagnosis, outliers, delay, data gap
Procedia PDF Downloads 24515070 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment
Authors: Abbas Pourreza
Abstract:
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.Keywords: breast cancer, HER2 positive, miRNA, TNBC
Procedia PDF Downloads 9615069 Detecting Tomato Flowers in Greenhouses Using Computer Vision
Authors: Dor Oppenheim, Yael Edan, Guy Shani
Abstract:
This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.Keywords: agricultural engineering, image processing, computer vision, flower detection
Procedia PDF Downloads 32915068 Functional Analysis of Variants Implicated in Hearing Loss in a Cohort from Argentina: From Molecular Diagnosis to Pre-Clinical Research
Authors: Paula I. Buonfiglio, Carlos David Bruque, Lucia Salatino, Vanesa Lotersztein, Sebastián Menazzi, Paola Plazas, Ana Belén Elgoyhen, Viviana Dalamón
Abstract:
Hearing loss (HL) is the most prevalent sensorineural disorder affecting about 10% of the global population, with more than half due to genetic causes. About 1 in 500-1000 newborns present congenital HL. Most of the patients are non-syndromic with an autosomal recessive mode of inheritance. To date, more than 100 genes are related to HL. Therefore, the Whole-exome sequencing (WES) technique has become a cost-effective alternative approach for molecular diagnosis. Nevertheless, new challenges arise from the detection of novel variants, in particular missense changes, which can lead to a spectrum of genotype-to-phenotype correlations, which is not always straightforward. In this work, we aimed to identify the genetic causes of HL in isolated and familial cases by designing a multistep approach to analyze target genes related to hearing impairment. Moreover, we performed in silico and in vivo analyses in order to further study the effect of some of the novel variants identified in the hair cell function using the zebrafish model. A total of 650 patients were studied by Sanger Sequencing and Gap-PCR in GJB2 and GJB6 genes, respectively, diagnosing 15.5% of sporadic cases and 36% of familial ones. Overall, 50 different sequence variants were detected. Fifty of the undiagnosed patients with moderate HL were tested for deletions in STRC gene by Multiplex ligation-dependent probe amplification technique (MLPA), leading to 6% of diagnosis. After this initial screening, 50 families were selected to be analyzed by WES, achieving diagnosis in 44% of them. Half of the identified variants were novel. A missense variant in MYO6 gene detected in a family with postlingual HL was selected to be further analyzed. A protein modeling with AlphaFold2 software was performed, proving its pathogenic effect. In order to functionally validate this novel variant, a knockdown phenotype rescue assay in zebrafish was carried out. Injection of wild-type MYO6 mRNA in embryos rescued the phenotype, whereas using the mutant MYO6 mRNA (carrying c.2782C>A variant) had no effect. These results strongly suggest the deleterious effect of this variant on the mobility of stereocilia in zebrafish neuromasts, and hence on the auditory system. In the present work, we demonstrated that our algorithm is suitable for the sequential multigenic approach to HL in our cohort. These results highlight the importance of a combined strategy in order to identify candidate variants as well as the in silico and in vivo studies to analyze and prove their pathogenicity and accomplish a better understanding of the mechanisms underlying the physiopathology of the hearing impairment.Keywords: diagnosis, genetics, hearing loss, in silico analysis, in vivo analysis, WES, zebrafish
Procedia PDF Downloads 9415067 Electroactive Ferrocenyl Dendrimers as Transducers for Fabrication of Label-Free Electrochemical Immunosensor
Authors: Sudeshna Chandra, Christian Gäbler, Christian Schliebe, Heinrich Lang
Abstract:
Highly branched dendrimers provide structural homogeneity, controlled composition, comparable size to biomolecules, internal porosity and multiple functional groups for conjugating reactions. Electro-active dendrimers containing multiple redox units have generated great interest in their use as electrode modifiers for development of biosensors. The electron transfer between the redox-active dendrimers and the biomolecules play a key role in developing a biosensor. Ferrocenes have multiple and electrochemically equivalent redox units that can act as electron “pool” in a system. The ferrocenyl-terminated polyamidoamine dendrimer is capable of transferring multiple numbers of electrons under the same applied potential. Therefore, they can be used for dual purposes: one in building a film over the electrode for immunosensors and the other for immobilizing biomolecules for sensing. Electrochemical immunosensor, thus developed, exhibit fast and sensitive analysis, inexpensive and involve no prior sample pre-treatment. Electrochemical amperometric immunosensors are even more promising because they can achieve a very low detection limit with high sensitivity. Detection of the cancer biomarkers at an early stage can provide crucial information for foundational research of life science, clinical diagnosis and prevention of disease. Elevated concentration of biomarkers in body fluid is an early indication of some type of cancerous disease and among all the biomarkers, IgG is the most common and extensively used clinical cancer biomarkers. We present an IgG (=immunoglobulin) electrochemical immunosensor using a newly synthesized redox-active ferrocenyl dendrimer of generation 2 (G2Fc) as glassy carbon electrode material for immobilizing the antibody. The electrochemical performance of the modified electrodes was assessed in both aqueous and non-aqueous media using varying scan rates to elucidate the reaction mechanism. The potential shift was found to be higher in an aqueous electrolyte due to presence of more H-bond which reduced the electrostatic attraction within the amido groups of the dendrimers. The cyclic voltammetric studies of the G2Fc-modified GCE in 0.1 M PBS solution of pH 7.2 showed a pair of well-defined redox peaks. The peak current decreased significantly with the immobilization of the anti-goat IgG. After the immunosensor is blocked with BSA, a further decrease in the peak current was observed due to the attachment of the protein BSA to the immunosensor. A significant decrease in the current signal of the BSA/anti-IgG/G2Fc/GCE was observed upon immobilizing IgG which may be due to the formation of immune-conjugates that blocks the tunneling of mass and electron transfer. The current signal was found to be directly related to the amount of IgG captured on the electrode surface. With increase in the concentration of IgG, there is a formation of an increasing amount of immune-conjugates that decreased the peak current. The incubation time and concentration of the antibody was optimized for better analytical performance of the immunosensor. The developed amperometric immunosensor is sensitive to IgG concentration as low as 2 ng/mL. Tailoring of redox-active dendrimers provides enhanced electroactivity to the system and enlarges the sensor surface for binding the antibodies. It may be assumed that both electron transfer and diffusion contribute to the signal transformation between the dendrimers and the antibody.Keywords: ferrocenyl dendrimers, electrochemical immunosensors, immunoglobulin, amperometry
Procedia PDF Downloads 33715066 Stigmatization of Individuals Who Receive Mental Health Treatment and the Role of Social Media: A Cross-Generational Cohort Design and Extension
Authors: Denise Ben-Porath, Tracy Masterson
Abstract:
In the past, individuals who struggled with and sought treatment for mental health difficulties were stigmatized. However, the current generation holds more open attitudes around mental health issues. Indeed, public figures such as Demi Lovato, Naomi Osaka, and Simone Biles have taken to social media to break the silence around mental health, discussing their own struggles and the benefits of treatment. Thus, there is considerable reason to believe that this generation would hold fewer stigmatizing attitudes toward mental health difficulties and treatment compared to previous ones. In this study, we explored possible changes in stigma on mental health diagnosis and treatment seeking behavior between two generations: Gen Z, the current generation, and Gen X, those born between 1965-1980. It was hypothesized that Gen Z would hold less stigmatizing views on mental illness than Gen X. To examine possible changes in stigma attitudes between these two generations, we conducted a cross-generational cohort design by using the same methodology employed 20 years ago from the Ben-Porath (2002) study. Thus, participants were randomly assigned to read one of the following four case vignettes employed in the Ben-Porath (2002) study: (a) “Tom” who has received psychotherapy due to depression (b) “Tom” who has been depressed but received no psychological help, (c) “Tom” who has received medical treatment due to a back pain, or (d) “Tom” who had a back pain but did not receive medical attention. After reading the vignette, participants rated “Tom” on various personality dimensions using the IFQ Questionnaire and answered questions about their frequency of social media use and willingness to seek mental health treatment on a scale from 1-10. Identical to the results 20 years prior, a significant main effect was found for diagnosis with “Tom” being viewed in more negative terms when he was described as having depression vs. a medical condition (back pain) [F (1, 376) = 126.53, p < .001]. However, in the study conducted 20 years earlier, a significant interaction was found between diagnosis and help-seeking behavior [F (1, 376) = 8.28, p < .005]. Specifically, “Tom” was viewed in the most negative terms when described as depressed and seeking treatment. Alternatively, the current study failed to find a significant interaction between depression and help seeking behavior. These findings suggest that while individuals who hold a mental health diagnosis may still be stigmatized as they were 20 years prior, seeking treatment for mental health issues may be less so. Findings are discussed in the context of social media use and its impact on destigmatization.Keywords: stigma, mental illness, help-seeking, social media
Procedia PDF Downloads 8115065 The Bicycle-Related Traumatic Situations That Consulted Our Hospital
Authors: Yoshitaka Ooya, Daishuke Furuya, Manabu Nemoto
Abstract:
Some countries such as Canada and Australia have mandatory bicycle helmet laws for all citizens and age groups. As of 2008 Japan has also adopted a helmet law but it is restricted to people 13 years old and under. People over 13 years of age are not required to wear helmets in Japan. Currently, the rate that people 0-13 years old actually wear helmets is low. In 2013 a number of patients came to Saitama University Hospital International Medical Center for treatment due to bicycle-related trauma. The total number of patients was 89 (55 male and 34 female). The average age of the patients was 40.9 years old (eldest; 83 y/o, median; 40 y/o, youngest; 1 y/o with a standard deviation ± 2.8). 54 of these patients (61%) experienced head trauma as well as some experiencing multiple injuries associated with their accident. 13 patients were wearing helmets, 50 patients were not wearing helmets and it is unknown if the remaining 26 patients were wearing helmets. This information was acquired from the patient`s medical charts. Only one patient who was wearing a helmet had a severe head injury, and this patient also experienced other multiple injuries. 17 patients who were not wearing helmets had severe head injuries and out of the 17, two had multiple injuries. The mechanism for injury varied. 12 patients were injured in an accident with a vehicle, only one of which was wearing a helmet. This patient also had multiple injuries. Of the other 11 patients, two had multiple injuries. The remaining patient`s injuries were caused by other accidents (3; fell over while riding, 2; crashed into an inanimate object, 1; collided with a motorcycle). The ladder of which had a severe head injury. All of these patients had light energy accidents and were all over 13 years of age. In Japan it is not mandatory for people over the age of 13 years to wear a bicycle helmet. Research shows that light energy accidents were mostly present in people over the age of 13, to which the law does not require the wearing of helmets. It is important that all people in all age groups be required to wear helmets when operating a bicycle to reduce the rate of light energy severe head injuries.Keywords: bicycle helmet, head trauma, hospital, traumatic situation
Procedia PDF Downloads 36415064 Performance Analysis of SAC-OCDMA System using Different Detectors
Authors: Somaya A. Abd El Mottaleb, Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly
Abstract:
In this paper, we present the performance of spectral amplitude coding optical code division multiple access using different detectors at different transmission distances using single photodiode detection technique. Modified double weight codes are used as signature codes. Simulation results show that the system using avalanche photo detector can move distance longer than that using positive intrinsic negative photo detector.Keywords: avalanche photodiode, modified double weight, multiple access technique, single photodiode.
Procedia PDF Downloads 60515063 Generator Subgraphs of the Wheel
Authors: Neil M. Mame
Abstract:
We consider only finite graphs without loops nor multiple edges. Let G be a graph with E(G) = {e1, e2, …., em}. The edge space of G, denoted by ε(G), is a vector space over the field Z2. The elements of ε(G) are all the subsets of E(G). Vector addition is defined as X+Y = X Δ Y, the symmetric difference of sets X and Y, for X, Y ∈ ε(G). Scalar multiplication is defined as 1.X =X and 0.X = Ø for X ∈ ε(G). The set S ⊆ ε(G) is called a generating set if every element ε(G) is a linear combination of the elements of S. For a non-empty set X ∈ ε(G), the smallest subgraph with edge set X is called edge-induced subgraph of G, denoted by G[X]. The set EH(G) = { A ∈ ε(G) : G[A] ≅ H } denotes the uniform set of H with respect to G and εH(G) denotes the subspace of ε(G) generated by EH(G). If εH(G) is generating set, then we call H a generator subgraph of G. This paper gives the characterization for the generator subgraphs of the wheel that contain cycles and gives the necessary conditions for the acyclic generator subgraphs of the wheel.Keywords: edge space, edge-induced subgraph, generator subgraph, wheel
Procedia PDF Downloads 46415062 Economic Impact and Benefits of Integrating Augmented Reality Technology in the Healthcare Industry: A Systematic Review
Authors: Brenda Thean I. Lim, Safurah Jaafar
Abstract:
Augmented reality (AR) in the healthcare industry has been gaining popularity in recent years, principally in areas of medical education, patient care and digital health solutions. One of the drivers in deciding to invest in AR technology is the potential economic benefits it could bring for patients and healthcare providers, including the pharmaceutical and medical technology sectors. Works of literature have shown that the benefits and impact of AR technologies have left trails of achievements in improving medical education and patient health outcomes. However, little has been published on the economic impact of AR in healthcare, a very resource-intensive industry. This systematic review was performed on studies focused on the benefits and impact of AR in healthcare to appraise if they meet the founded quality criteria so as to identify relevant publications for an in-depth analysis of the economic impact assessment. The literature search was conducted using multiple databases such as PubMed, Cochrane, Science Direct and Nature. Inclusion criteria include research papers on AR implementation in healthcare, from education to diagnosis and treatment. Only papers written in English language were selected. Studies on AR prototypes were excluded. Although there were many articles that have addressed the benefits of AR in the healthcare industry in the area of medical education, treatment and diagnosis and dental medicine, there were very few publications that identified the specific economic impact of technology within the healthcare industry. There were 13 publications included in the analysis based on the inclusion criteria. Out of the 13 studies, none comprised a systematically comprehensive cost impact evaluation. An outline of the cost-effectiveness and cost-benefit framework was made based on an AR article from another industry as a reference. This systematic review found that while the advancements of AR technology is growing rapidly and industries are starting to adopt them into respective sectors, the technology and its advancements in healthcare were still in their early stages. There are still plenty of room for further advancements and integration of AR into different sectors within the healthcare industry. Future studies will require more comprehensive economic analyses and costing evaluations to enable economic decisions for or against implementing AR technology in healthcare. This systematic review concluded that the current literature lacked detailed examination and conduct of economic impact and benefit analyses. Recommendations for future research would be to include details of the initial investment and operational costs for the AR infrastructure in healthcare settings while comparing the intervention to its conventional counterparts or alternatives so as to provide a comprehensive comparison on impact, benefit and cost differences.Keywords: augmented reality, benefit, economic impact, healthcare, patient care
Procedia PDF Downloads 20715061 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 51215060 Development of Fire Douse Vehicle
Authors: Nikhil Verma, Akshay Kant Mishra, Rishabh Rastogi, Bikarama Prasad Yadav
Abstract:
Emerging fire incidents are the protuberant contributor out turning into life loss, property damage and importantly firefighters. It insinuates that a firefighting and rescue operation of the existing equipment or apparatus and their proficiency is limited, particularly in annihilating firefighting environments. The proposed methodology will help in developing a technology which can be useful in minimizing the risks and losses due to fire. In this paper, design and development of combat mini vehicle comprising of multi-purpose nozzle system is proposed which can target diverse fires simultaneously at distinct time and location. Basically, the system is semi-automated type protection system which can be manoeuvred by controller. Designing of robust vehicle based on semi-automated protection type system is consummated using SolidWorks platform. Concept of developing a robust vehicle will help to fight fires in multiple directions reducing the time required to douse multiple fires.Keywords: fire douse vehicle, multiple fires, multi-purpose nozzle, semi-automated system
Procedia PDF Downloads 12915059 3D Stereoscopic Measurements from AR Drone Squadron
Authors: R. Schurig, T. Désesquelles, A. Dumont, E. Lefranc, A. Lux
Abstract:
A cost-efficient alternative is proposed to the use of a single drone carrying multiple cameras in order to take stereoscopic images and videos during its flight. Such drone has to be particularly large enough to take off with its equipment, and stable enough in order to make valid measurements. Corresponding performance for a single aircraft usually comes with a large cost. Proposed solution consists in using multiple smaller and cheaper aircrafts carrying one camera each instead of a single expensive one. To give a proof of concept, AR drones, quad-rotor UAVs from Parrot Inc., are experimentally used.Keywords: drone squadron, flight control, rotorcraft, Unmanned Aerial Vehicle (UAV), AR drone, stereoscopic vision
Procedia PDF Downloads 473