Search results for: ground drone
1422 Mapping Man-Induced Soil Degradation in Armenia's High Mountain Pastures through Remote Sensing Methods: A Case Study
Authors: A. Saghatelyan, Sh. Asmaryan, G. Tepanosyan, V. Muradyan
Abstract:
One of major concern to Armenia has been soil degradation emerged as a result of unsustainable management and use of grasslands, this in turn largely impacting environment, agriculture and finally human health. Hence, assessment of soil degradation is an essential and urgent objective set out to measure its possible consequences and develop a potential management strategy. Since recently, an essential tool for assessing pasture degradation has been remote sensing (RS) technologies. This research was done with an intention to measure preciseness of Linear spectral unmixing (LSU) and NDVI-SMA methods to estimate soil surface components related to degradation (fractional vegetation cover-FVC, bare soils fractions, surface rock cover) and determine appropriateness of these methods for mapping man-induced soil degradation in high mountain pastures. Taking into consideration a spatially complex and heterogeneous biogeophysical structure of the studied site, we used high resolution multispectral QuickBird imagery of a pasture site in one of Armenia’s rural communities - Nerkin Sasoonashen. The accuracy assessment was done by comparing between the land cover abundance data derived through RS methods and the ground truth land cover abundance data. A significant regression was established between ground truth FVC estimate and both NDVI-LSU and LSU - produced vegetation abundance data (R2=0.636, R2=0.625, respectively). For bare soil fractions linear regression produced a general coefficient of determination R2=0.708. Because of poor spectral resolution of the QuickBird imagery LSU failed with assessment of surface rock abundance (R2=0.015). It has been well documented by this particular research, that reduction in vegetation cover runs in parallel with increase in man-induced soil degradation, whereas in the absence of man-induced soil degradation a bare soil fraction does not exceed a certain level. The outcomes show that the proposed method of man-induced soil degradation assessment through FVC, bare soil fractions and field data adequately reflects the current status of soil degradation throughout the studied pasture site and may be employed as an alternate of more complicated models for soil degradation assessment.Keywords: Armenia, linear spectral unmixing, remote sensing, soil degradation
Procedia PDF Downloads 3281421 Design of Circular Patch Antenna in Terahertz Band for Medical Applications
Authors: Moulfi Bouchra, Ferouani Souheyla, Ziani Kerarti Djalal, Moulessehoul Wassila
Abstract:
The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition.Keywords: circular patch antenna, Terahertz transmission, WBAN applications, real-time monitoring
Procedia PDF Downloads 3071420 Long Time Oxidation Behavior of Machined 316 Austenitic Stainless Steel in Primary Water Reactor
Authors: Siyang Wang, Yujin Hu, Xuelin Wang, Wenqian Zhang
Abstract:
Austenitic stainless steels are widely used in nuclear industry to manufacture critical components owing to their excellent corrosion resistance at high temperatures. Almost all the components used in nuclear power plants are produced by surface finishing (surface cold work) such as milling, grinding and so on. The change of surface states induced by machining has great influence on the corrosion behavior. In the present study, long time oxidation behavior of machined 316 austenitic stainless steel exposed to simulated pressure water reactor environment was investigated considering different surface states. Four surface finishes were produced by electro-polishing (P), grinding (G), and two milling (M and M1) processes respectively. Before oxidation, the surface Vickers micro-hardness, surface roughness of each type of sample was measured. Corrosion behavior of four types of sample was studied by using oxidation weight gain method for six oxidation periods. The oxidation time of each period was 120h, 216h, 336h, 504h, 672h and 1344h, respectively. SEM was used to observe the surface morphology of oxide film in several period. The results showed that oxide film on austenitic stainless steel has a duplex-layer structure. The inner oxide film is continuous and compact, while the outer layer is composed of oxide particles. The oxide particle consisted of large particles (nearly micron size) and small particles (dozens of nanometers to a few hundred nanometers). The formation of oxide particle could be significantly affected by the machined surface states. The large particle on cold worked samples (grinding and milling) appeared earlier than electro-polished one, and the milled sample has the largest particle size followed by ground one and electro-polished one. For machined samples, the large particles were almost distributed along the direction of machining marks. Severe exfoliation was observed on one milled surface (M) which had the most heavily cold worked layer, while rare local exfoliation occurred on the ground sample (G) and the other milled sample (M1). The electro-polished sample (P) entirely did not exfoliate.Keywords: austenitic stainless steel, oxidation, machining, SEM
Procedia PDF Downloads 2871419 A Miniaturized Circular Patch Antenna Based on Metamaterial for WI-FI Applications
Authors: Fatima Zahra Moussa, Yamina Belhadef, Souheyla Ferouani
Abstract:
In this work, we present a new form of miniature circular patch antenna based on CSRR metamaterials with an extended bandwidth proposed for 5 GHz Wi-Fiapplications. A reflection coefficient of -35 dB and a radiation pattern of 7.47 dB are obtained when simulating the initial proposed antenna with the CST microwave studio simulation software. The notch insertion technique in the radiating element was used for matching the antenna to the desired frequency in the frequency band [5150-5875] MHz.An extension of the bandwidth from 332 MHz to 1423 MHz was done by the DGS (defected ground structure) technique to meet the user's requirement in the 5 GHz Wi-Fi frequency band.Keywords: patch antenna, miniaturisation, CSRR, notches, wifi, DGS
Procedia PDF Downloads 1221418 Remote Sensing and GIS for Land Use Change Assessment: Case Study of Oued Bou Hamed Watershed, Southern Tunisia
Authors: Ouerchefani Dalel, Mahdhaoui Basma
Abstract:
Land use change is one of the important factors needed to evaluate later on the impact of human actions on land degradation. This work present the application of a methodology based on remote sensing for evaluation land use change in an arid region of Tunisia. This methodology uses Landsat TM and ETM+ images to produce land use maps by supervised classification based on ground truth region of interests. This study showed that it was possible to rely on radiometric values of the pixels to define each land use class in the field. It was also possible to generate 3 land use classes of the same study area between 1988 and 2011.Keywords: land use, change, remote sensing, GIS
Procedia PDF Downloads 5651417 Optimization of Cloud Classification Using Particle Swarm Algorithm
Authors: Riffi Mohammed Amine
Abstract:
A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.Keywords: remote sensing, particle swarm optimization, clouds, meteorological image
Procedia PDF Downloads 151416 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests
Authors: Md. Kausar Alam, Ramin Motamed
Abstract:
The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction
Procedia PDF Downloads 971415 The Viscosity of Xanthan Gum Grout with Different pH and Ionic Strength
Authors: H. Ahmad Raji, R. Ziaie Moayed, M. A. Nozari
Abstract:
Xanthan gum (XG) an eco-friendly biopolymer has been recently explicitly investigated for ground improvement approaches. Rheological behavior of this additive strongly depends on electrochemical condition such as pH, ionic strength and also its content in aqueous solution. So, the effects of these factors have been studied in this paper considering various XG contents as 0.25, 0.5, 1, and 2% of water. Moreover, adjusting pH values such as 3, 5, 7 and 9 in addition to increasing ionic strength to 0.1 and 0.2 in the molar scale has covered a practical range of electrochemical condition. The viscosity of grouts shows an apparent upward trend with an increase in ionic strength and XG content. Also, pH affects the polymerization as much as other parameters. As a result, XG behavior is severely influenced by electrochemical settingsKeywords: electrochemical condition, ionic strength, viscosity, xhanthan gum
Procedia PDF Downloads 1891414 Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell
Authors: Deborah Eric, Abbas Ahmad Khan
Abstract:
Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size.Keywords: perovskite, intermediate bandgap, quantum dots, miniband formation
Procedia PDF Downloads 1651413 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization
Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic
Abstract:
One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.Keywords: anti-patterns, decision making, education, knowledge management
Procedia PDF Downloads 6321412 Robots for City Life: Design Guidelines and Strategy Recommendations for Introducing Robots in Cities
Authors: Akshay Rege, Lara Gomaa, Maneesh Kumar Verma, Sem Carree
Abstract:
The aim of this paper is to articulate design strategies and recommendations for introducing robots into the city life of people based on experiments conducted with robots and semi-autonomous systems in three cities in the Netherlands. This research was carried out by the Spot robotics team of Impact Lab housed within YES!Delft, a start-up accelerator located in Delft, The Netherlands. The premise of this research is to inform the development of the ‘region of the future’ by the Municipality of Rotterdam-Den Haag (MRDH). The paper starts by reporting the desktop research carried out to find and develop multiple use cases for robots to support humans in various activities. Further, the paper reports the user research carried out by crowdsourcing responses collected in public spaces of Rotterdam-Den Haag region and on the internet. Furthermore, based on the knowledge gathered in the initial research, practical experiments were carried out using robots and semi-autonomous systems in order to test and validate our initial research. These experiments were conducted in three cities in the Netherlands which were Rotterdam, The Hague, and Delft. Custom sensor box, Drone, and Boston Dynamics' Spot robot were used to conduct these experiments. Out of thirty use cases, five were tested with experiments which were skyscraper emergency evacuation, human transportation and security, bike lane delivery, mobility tracking, and robot drama. The learnings from these experiments provided us with insights into human-robot interaction and symbiosis in cities which can be used to introduce robots in cities to support human activities, ultimately enabling the transitioning from a human only city life towards a blended one where robots can play a role. Based on these understandings, we formulated design guidelines and strategy recommendations for incorporating robots in the Rotterdam-Den Haag’s region of the future. Lastly, we discuss how our insights in the Rotterdam-Den Haag region can inspire and inform the incorporation of robots in different cities of the world.Keywords: city life, design guidelines, human-robot Interaction, robot use cases, robotic experiments, strategy recommendations, user research
Procedia PDF Downloads 971411 Sediment Transport Monitoring in the Port of Veracruz Expansion Project
Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando
Abstract:
The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.Keywords: Acoustic Doppler Current Profiler, construction around coral reefs, dredging, port construction, sediment transport monitoring,
Procedia PDF Downloads 2271410 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 1271409 Effect of Downstream Pressure in Tuning the Flow Control Orifices of Pressure Fed Reaction Control System Thrusters
Authors: Prakash M.N, Mahesh G, Muhammed Rafi K.M, Shiju P. Nair
Abstract:
Introduction: In launch vehicle missions, Reaction Control thrusters are being used for the three-axis stabilization of the vehicle during the coasting phases. A pressure-fed propulsion system is used for the operation of these thrusters due to its less complexity. In liquid stages, these thrusters are designed to draw propellant from the same tank used for the main propulsion system. So in order to regulate the propellant flow rates of these thrusters, flow control orifices are used in feed lines. These orifices are calibrated separately as per the flow rate requirement of individual thrusters for the nominal operating conditions. In some missions, it was observed that the thrusters were operated at higher thrust than nominal. This point was addressed through a series of cold flow and hot tests carried out in-ground and this paper elaborates the details of the same. Discussion: In order to find out the exact reason for this phenomenon, two flight configuration thrusters were identified and hot tested in the ground with calibrated orifices and feed lines. During these tests, the chamber pressure, which is directly proportional to the thrust, is measured. In both cases, chamber pressures higher than the nominal by 0.32bar to 0.7bar were recorded. The increase in chamber pressure is due to an increase in the oxidizer flow rate of both the thrusters. Upon further investigation, it is observed that the calibration of the feed line is done with ambient pressure downstream. But in actual flight conditions, the orifices will be subjected to operate with 10 to 11bar pressure downstream. Due to this higher downstream pressure, the flow through the orifices increases and thereby, the thrusters operate with higher chamber pressure values. Conclusion: As part of further investigatory tests, two numbers of fresh thrusters were realized. Orifice tuning of these thrusters was carried out in three different ways. In the first trial, the orifice tuning was done by simulating 1bar pressure downstream. The second trial was done with the injector assembled downstream. In the third trial, the downstream pressure equal to the flight injection pressure was simulated downstream. Using these calibrated orifices, hot tests were carried out in simulated vacuum conditions. Chamber pressure and flow rate values were exactly matching with the prediction for the second and third trials. But for the first trial, the chamber pressure values obtained in the hot test were more than the prediction. This clearly shows that the flow is detached in the 1st trial and attached for the 2nd & 3rd trials. Hence, the error in tuning the flow control orifices is pinpointed as the reason for this higher chamber pressure observed in flight.Keywords: reaction control thruster, propellent, orifice, chamber pressure
Procedia PDF Downloads 2011408 Web Map Service for Fragmentary Rockfall Inventory
Authors: M. Amparo Nunez-Andres, Nieves Lantada
Abstract:
One of the most harmful geological risks is rockfalls. They cause both economic lost, damaged in buildings and infrastructures, and personal ones. Therefore, in order to estimate the risk of the exposed elements, it is necessary to know the mechanism of this kind of events, since the characteristics of the rock walls, to the propagation of fragments generated by the initial detached rock mass. In the framework of the research RockModels project, several inventories of rockfalls were carried out along the northeast of the Spanish peninsula and the Mallorca island. These inventories have general information about the events, although the important fact is that they contained detailed information about fragmentation. Specifically, the IBSD (Insitu Block Size Distribution) is obtained by photogrammetry from drone or TLS (Terrestrial Laser Scanner) and the RBSD (Rock Block Size Distribution) from the volume of the fragment in the deposit measured by hand. In order to share all this information with other scientists, engineers, members of civil protection, and stakeholders, it is necessary a platform accessible from the internet and following interoperable standards. In all the process, open-software have been used: PostGIS 2.1., Geoserver, and OpenLayers library. In the first step, a spatial database was implemented to manage all the information. We have used the data specifications of INSPIRE for natural risks adding specific and detailed data about fragmentation distribution. The next step was to develop a WMS with Geoserver. A previous phase was the creation of several views in PostGIS to show the information at different scales of visualization and with different degrees of detail. In the first view, the sites are identified with a point, and basic information about the rockfall event is facilitated. In the next level of zoom, at medium scale, the convex hull of the rockfall appears with its real shape and the source of the event and fragments are represented by symbols. The queries at this level offer a major detail about the movement. Eventually, the third level shows all elements: deposit, source, and blocks, in their real size, if it is possible, and in their real localization. The last task was the publication of all information in a web mapping site (www.rockdb.upc.edu) with data classified by levels using libraries in JavaScript as OpenLayers.Keywords: geological risk, web mapping, WMS, rockfalls
Procedia PDF Downloads 1601407 Risk Factors Associated to Low Back Pain among Active Adults: Cross-Sectional Study among Workers in Tunisian Public Hospital
Authors: Lamia Bouzgarrou, Irtyah Merchaoui, Amira Omrane, Salma Kammoun, Amine Daafa, Neila Chaari
Abstract:
Backgrounds: Currently, low back pain (LBP) is one of the most prevalent public health problems, which caused severe morbidity among a large portion of the adult population. It is also associated with heavy direct and indirect costs, in particular, related to absenteeism and early retirement. Health care workers are one of most occupational groups concerned by LBP, especially because of biomechanical and psycho-organizational risk factors. Our current study aims to investigate risk factors associated with chronic low back pain among Tunisian caregivers in university-hospitals. Methods: Cross-sectional study conducted over a period of 14 months, with a representative sample of caregivers, matched according to age, sex and work department, in two university-hospitals in Tunisia. Data collection included items related to socio-professional characteristics, the evaluation of the working capacity index (WAI), the occupational stress (Karazek job strain questionnaire); the quality of life (SF12), the musculoskeletal disorders Nordic questionnaire, and the examination of the spine flexibility (distance finger-ground, sit-stand maneuver and equilibrium test). Results: Totally, 293 caregivers were included with a mean age equal to 42.64 ± 11.65 years. A body mass index (BMI) exceeding 30, was noted in 20.82% of cases. Moreover, no regular physical activity was practiced in 51.9% of cases. In contrast, domestic activity equal or exceeding 20 hours per week, was reported by 38.22%. Job strain was noted in 19.79 % of cases and the work capacity was 'low' to 'average' among 27.64% of subjects. During the 12 months previous to the investigation, 65% of caregivers complained of LBP, with pain rated as 'severe' or 'extremely severe' in 54.4% of cases and with a frequency of discomfort exceeding one episode per week in 58.52% of cases. During physical examination, the mean distance finger-ground was 7.10 ± 7.5cm. Caregivers assigned to 'high workload' services had the highest prevalence of LBP (77.4%) compared to other categories of hospital services, with no statistically significant relationship (P = 0.125). LBP prevalence was statistically correlated with female gender (p = 0.01) and impaired work capacity (p < 10⁻³). Moreover, the increase of the distance finger-ground was statistically associated with LBP (p = 0.05), advanced age (p < 10⁻³), professional seniority (p < 10⁻³) and the BMI ≥ 25 (p = 0.001). Furthermore, others physical tests of spine flexibility were underperformed among LBP suffering workers with a statistically significant difference (sit-stand maneuver (p = 0.03); equilibrium test (p = 0.01)). According to the multivariate analysis, only the domestic activity exceeding 20H/week, the degraded quality of physical life, and the presence of neck pain were significantly corelated to LBP. The final model explains 36.7% of the variability of this complaint. Conclusion: Our results highlighted the elevate prevalence of LBP among caregivers in Tunisian public hospital and identified both professional and individual predisposing factors. The preliminary analysis supports the necessity of a multidimensional approach to prevent this critical occupational and public health problem. The preventive strategy should be based both on the improvement of working conditions, and also on lifestyle modifications, and reinforcement of healthy behaviors in these active populations.Keywords: health care workers, low back pain, prevention, risk factor
Procedia PDF Downloads 1531406 Stoner Impurity Model in Nickel Hydride
Authors: Andrea Leon, J. M. Florez, P. Vargas
Abstract:
The effect of hydrogen adsorption on the magnetic properties of fcc Ni has been calculated using the linear-muffin-tin-orbital formalism and using the local-density approximation for the exchange y correlation. The calculations for the ground state show that the sequential addition of hydrogen atoms is found to monotonically reduce the total magnetic moment of the Ni fcc structure, as a result of changes in the exchange-splitting parameter and in the Fermi energy. In order to physically explain the effect of magnetization reduction as the Hydrogen concentration increases, we propose a Stoner impurity model to describe the influence of H impurity on the magnetic properties of Nickel.Keywords: electronic structure, magnetic properties, Nickel hydride, stoner model
Procedia PDF Downloads 4591405 Investigation of Subsurface Structures within Bosso Local Government for Groundwater Exploration Using Magnetic and Resistivity Data
Authors: Adetona Abbassa, Aliyu Shakirat B.
Abstract:
The study area is part of Bosso local Government, enclosed within Longitude 6.25’ to 6.31’ and Latitude 9.35’ to 9.45’, an area of 16x8 km², within the basement region of central Nigeria. The region is a host to Nigerian Airforce base 12 (NAF 12quick response) and its staff quarters, the headquarters of Bosso local government, the Independent National Electoral Commission’s two offices, four government secondary schools, six primary schools and Minna international airport. The area suffers an acute shortage of water from November when rains stop to June when rains commence within North Central Nigeria. A way of addressing this problem is a reconnaissance method to delineate possible fractures and fault lines that exists within the region by sampling the Aeromagnetic data and using an appropriate analytical algorithm to delineate these fractures. This is followed by an appropriate ground truthing method that will confirm if the fracture is connected to underground water movement. The first vertical derivative for structural analysis, reveals a set of lineaments labeled AA’, BB’, CC’, DD’, EE’ and FF’ all trending in the Northeast – Southwest directions. AA’ is just below latitude 9.45’ above Maikunkele village, cutting off the upper part of the field, it runs through Kangwo, Nini, Lawo and other communities. BB’ is at Latitude 9.43’ it truncated at about 2Km before Maikunkele and Kuyi. CC’ is around 9.40’ sitting below Maikunkele runs down through Nanaum. DD’ is from Latitude 9.38’; interestingly no community within this region where the fault passes through. A result from the three sites where Vertical Electrical Sounding was carried out reveals three layers comprised of topsoil, intermediate Clay formation and weathered/fractured or fresh basement. The depth to basement map was also produced, depth to the basement from the ground surface with VES A₂, B5, D₂ and E₁ to be relatively deeper with depth values range between 25 to 35 m while the shallower region of the area has a depth range value between 10 to 20 m. Hence, VES A₂, A₅, B₄, B₅, C₂, C₄, D₄, D₅, E₁, E₃, and F₄ are high conductivity zone that are prolific for groundwater potential. The depth range of the aquifer potential zones is between 22.7 m to 50.4 m. The result from site C is quite unique though the 3 layers were detected in the majority of the VES points, the maximum depth to the basement in 90% of the VES points is below 8 km, only three VES points shows considerably viability, which are C₆, E₂ and F₂ with depths of 35.2 m and 38 m respectively but lack of connectivity will be a big challenge of chargeability.Keywords: lithology, aeromagnetic, aquifer, geoelectric, iso-resistivity, basement, vertical electrical sounding(VES)
Procedia PDF Downloads 1391404 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations
Authors: K. Al Ammari, B. G. Clarke
Abstract:
Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column
Procedia PDF Downloads 3741403 The Risk of Ground Movements After Digging Two Parallel Vertical Tunnel in Urban
Authors: Djelloul Chafia, Demagh Rafik, Kareche Toufik
Abstract:
Human activities, made without precautions, accelerate the degradation of the soil structure and reduces its resistance. Operations, such as tunnel construction may exercise an influence more or less permanent on the grounds which surrounded them, these structures alter soil it is necessary to predict their impacts by suitable measures. This research is a numerical analysis that deals the risks and effects due to the weakening of the soil after digging two parallel vertical circular tunnels in urban areas, and suggests forecasting techniques based essentially on the organization of underground space. The simulations are performed using the finite-difference code FLAC in a two-dimensional case and with an elasto-plastic behavior of the soil.Keywords: sol, weakening, degradation, prevention, tunnel
Procedia PDF Downloads 5571402 Cross-border Data Transfers to and from South Africa
Authors: Amy Gooden, Meshandren Naidoo
Abstract:
Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa
Procedia PDF Downloads 1251401 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging
Authors: O. Abusaeeda, J. P. O. Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, KDE, view synthesis
Procedia PDF Downloads 2651400 Analytical and Numerical Studies on the Behavior of a Freezing Soil Layer
Authors: X. Li, Y. Liu, H. Wong, B. Pardoen, A. Fabbri, F. McGregor, E. Liu
Abstract:
The target of this paper is to investigate how saturated poroelastic soils subject to freezing temperatures behave and how different boundary conditions can intervene and affect the thermo-hydro-mechanical (THM) responses, based on a particular but classical configuration of a finite homogeneous soil layer studied by Terzaghi. The essential relations on the constitutive behavior of a freezing soil are firstly recalled: ice crystal - liquid water thermodynamic equilibrium, hydromechanical constitutive equations, momentum balance, water mass balance, and the thermal diffusion equation, in general, non-linear case where material parameters are state-dependent. The system of equations is firstly linearized, assuming all material parameters to be constants, particularly the permeability of liquid water, which should depend on the ice content. Two analytical solutions solved by the classic Laplace transform are then developed, accounting for two different sets of boundary conditions. Afterward, the general non-linear equations with state-dependent parameters are solved using a commercial code COMSOL based on finite elements method to obtain numerical results. The validity of this numerical modeling is partially verified using the analytical solution in the limiting case of state-independent parameters. Comparison between the results given by the linearized analytical solutions and the non-linear numerical model reveals that the above-mentioned linear computation will always underestimate the liquid pore pressure and displacement, whatever the hydraulic boundary conditions are. In the nonlinear model, the faster growth of ice crystals, accompanying the subsequent reduction of permeability of freezing soil layer, makes a longer duration for the depressurization of water liquid and slower settlement in the case where the ground surface is swiftly covered by a thin layer of ice, as well as a bigger global liquid pressure and swelling in the case of the impermeable ground surface. Nonetheless, the analytical solutions based on linearized equations give a correct order-of-magnitude estimate, especially at moderate temperature variations, and remain a useful tool for preliminary design checks.Keywords: chemical potential, cryosuction, Laplace transform, multiphysics coupling, phase transformation, thermodynamic equilibrium
Procedia PDF Downloads 801399 Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting
Authors: Mohamed Adel Sennouni, Jamal Zbitou, Benaissa Abboud, Abdelwahed Tribak, Hamid Bennis, Mohamed Latrach
Abstract:
A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875Keywords: UWB planar antenna, L-shaped slots, wireless applications, impedance band-width, radiation pattern, CST
Procedia PDF Downloads 4871398 Experimental Research on the Properties Reactive Powder Concrete (RPC)
Authors: S. Yousefi Oderji, B. Chen, M. A. Yazdi, J. Yang
Abstract:
This study investigates the influence of water-binder ratio, mineral admixtures (silica fume and ground granulated blast furnace slag), and copper coated steel fiber on fluidity diameter, compressive and flexural strengths of reactive powder concrete (RPC). The test results show that the binary combination of silica fume and blast-furnace slag provided a positive influence on the mechanical properties of RPC. Although the addition of fibers reduced the workability, results indicated a higher mechanical strength in the inclusion of fibers.Keywords: RPC, steel fiber, fluidity, mechanical properties
Procedia PDF Downloads 3041397 Experimental Analysis of Supersonic Combustion Induced by Shock Wave at the Combustion Chamber of the 14-X Scramjet Model
Authors: Ronaldo de Lima Cardoso, Thiago V. C. Marcos, Felipe J. da Costa, Antonio C. da Oliveira, Paulo G. P. Toro
Abstract:
The 14-X is a strategic project of the Brazil Air Force Command to develop a technological demonstrator of a hypersonic air-breathing propulsion system based on supersonic combustion programmed to flight in the Earth's atmosphere at 30 km of altitude and Mach number 10. The 14-X is under development at the Laboratory of Aerothermodynamics and Hypersonic Prof. Henry T. Nagamatsu of the Institute of Advanced Studies. The program began in 2007 and was planned to have three stages: development of the wave rider configuration, development of the scramjet configuration and finally the ground tests in the hypersonic shock tunnel T3. The install configuration of the model based in the scramjet of the 14-X in the test section of the hypersonic shock tunnel was made to proportionate and test the flight conditions in the inlet of the combustion chamber. Experimental studies with hypersonic shock tunnel require special techniques to data acquisition. To measure the pressure along the experimental model geometry tested we used 30 pressure transducers model 122A22 of PCB®. The piezoeletronic crystals of a piezoelectric transducer pressure when to suffer pressure variation produces electric current (PCB® PIEZOTRONIC, 2016). The reading of the signal of the pressure transducers was made by oscilloscope. After the studies had begun we observed that the pressure inside in the combustion chamber was lower than expected. One solution to improve the pressure inside the combustion chamber was install an obstacle to providing high temperature and pressure. To confirm if the combustion occurs was selected the spectroscopy emission technique. The region analyzed for the spectroscopy emission system is the edge of the obstacle installed inside the combustion chamber. The emission spectroscopy technique was used to observe the emission of the OH*, confirming or not the combustion of the mixture between atmospheric air in supersonic speed and the hydrogen fuel inside of the combustion chamber of the model. This paper shows the results of experimental studies of the supersonic combustion induced by shock wave performed at the Hypersonic Shock Tunnel T3 using the scramjet 14-X model. Also, this paper provides important data about the combustion studies using the model based on the engine of 14-X (second stage of the 14-X Program). Informing the possibility of necessaries corrections to be made in the next stages of the program or in other models to experimental study.Keywords: 14-X, experimental study, ground tests, scramjet, supersonic combustion
Procedia PDF Downloads 3871396 Illicit Arms and the Emergence of Armed Groups in Nigeria
Authors: Halilu Babaji, Adamu Buba
Abstract:
Illicit arms and the emergence of armed groups have witnessed unprecedented situations of political uncertainties in Nigeria, and the twenty-first century globalisation has established the process that has benefited a good number of militia groups and thereby boosting both illicit arms movement and the thriving of terrorist groups, which are largely responsible for the longstanding threat to the national security and stability of the country. This has unleashed unforeseen consequences on the entire Sub-region, following an inflow of weapons and armed fighter which are motivated by weak governance, insecurity and poverty. The social, economic and political environments make it a fertile breeding ground for the penetration and development of terrorist groups in Sub-Saharan Africa.Keywords: arms, emergence, insecurity, groups
Procedia PDF Downloads 2631395 Stabilized Earth Roads Construction and Its Challenges
Authors: Mokhtar Nikgoo
Abstract:
Road definition and road construction: in engineering literature, a road is defined as a means of communication between two different places by air, land, and sea. In this way, all sea, land, and air routes are considered as roads. Road construction is an operation to create a road on the ground between 2 points with a specified width, which includes works such as subgrade, paving, placing tables, and traffic signs on the road. In this article, the stages of road construction are explained from the beginning to the end. Road construction is generally done in the construction of rural, urban, and inter-city roads, and according to the special conditions of this area, the precision of engineers in its design and calculations is very important. For example, if the design of a road does not pay enough attention to the way the road curves, there will undoubtedly be countless accidents. Also, adjusting the road surface and its durability and uniformity are among the things that engineers solve according to the upcoming obstacles.Keywords: road construction, surveying, freeway, pavement, excavator
Procedia PDF Downloads 941394 Water Balance in the Forest Basins Essential for the Water Supply in Central America
Authors: Elena Listo Ubeda, Miguel Marchamalo Sacristan
Abstract:
The demand for water doubles every twenty years, at a rate which is twice as fast as the world´s population growth. Despite it´s great importance, water is one of the most degraded natural resources in the world, mainly because of the reduction of natural vegetation coverage, population growth, contamination and changes in the soil use which reduces its capacity to collect water. This situation is especially serious in Central America, as reflected in the Human Development reports. The objective of this project is to assist in the improvement of water production and quality in Central America. In order to do these two watersheds in Costa Rica were selected as experiments: that of the Virilla-Durazno River, located in the extreme north east of the central valley which has an Atlantic influence; and that of the Jabillo River, which flows directly into the Pacific. The Virilla river watershed is located over andisols, and that of the Jabillo River is over alfisols, and both are of great importance for water supply to the Greater Metropolitan Area and the future tourist resorts respectively, as well as for the production of agriculture, livestock and hydroelectricity. The hydrological reaction in different soil-cover complexes, varying from the secondary forest to natural vegetation and degraded pasture, was analyzed according to the evaluation of the properties of the soil, infiltration, soil compaction, as well as the effects of the soil cover complex on erosion, calculated by the C factor of the Revised Universal Soil Loss Equation (RUSLE). A water balance was defined for each watershed, in which the volume of water that enters and leaves were estimated, as well as the evapotranspiration, runoff, and infiltration. Two future scenarios, representing the implementation of reforestation and deforestation plans, were proposed, and were analyzed for the effects of the soil cover complex on the water balance in each case. The results obtained show an increase of the ground water recharge in the humid forest areas, and an extension of the study of the dry areas is proposed since the ground water recharge here is diminishing. These results are of great significance for the planning, design of Payment Schemes for Environmental Services and the improvement of the existing water supply systems. In Central America spatial planning is a priority, as are the watersheds, in order to assess the water resource socially and economically, and securing its availability for the future.Keywords: Costa Rica, infiltration, soil, water
Procedia PDF Downloads 3841393 Assessment of Seeding and Weeding Field Robot Performance
Authors: Victor Bloch, Eerikki Kaila, Reetta Palva
Abstract:
Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.Keywords: agricultural robot, field robot, plant detection, robot performance
Procedia PDF Downloads 87