Search results for: learning strategies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11755

Search results for: learning strategies

4345 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 179
4344 Types of Innovation Management Office and Their Roles and Responsibilities in Supporting the Innovation Management Process from Organisational Strategic Foresight to Managing Innovation Project Portfolios

Authors: Bakr Zade, Paolo Cervera

Abstract:

With the aim of maximising return on innovation investments, organisations create central units to support successful implementation of innovation management initiatives. The support units–referred to in this research as innovation management offices (IMOs)–range from small teams of innovation management champions to fully resourced centres of excellence for innovation management. However, roles and responsibilities of IMOs vary in different organisations. This research investigates the different types of IMO in organisations, based on their different roles and responsibilities in supporting innovation management processes. The research uses grounded theory methodology to uncover an IMO taxonomy from emergent concepts during innovation management maturity assessment exercises in twelve organisations from the United Kingdom and the United Arab Emirates. The taxonomy distinguishes five types of IMO, based on their roles and responsibilities in supporting innovation management processes, from organisational strategic foresight to managing innovation management project portfolios. The IMO taxonomy addresses a gap in research into innovation management support in organisations and offers a practical framework that diverse organisations can appreciate and use in designing IMOs that are aligned with their innovation management visions and strategies.

Keywords: future foresight, future shaping, innovation management, innovation management office, portfolio management

Procedia PDF Downloads 395
4343 Outcome-Based Water Resources Management in the Gash River Basin, Eastern Sudan

Authors: Muna Mohamed Omer Mirghani

Abstract:

This paper responds to one of the key national development strategies and a typical challenge in the Gash Basin as well as in different parts of Sudan, namely managing water scarcity in view of climate change impacts in minor water systems sustaining over 50% of the Sudan population. While now focusing on the Gash river basin, the ultimate aim is to replicate the same approach in similar water systems in central and west Sudan. The key objective of the paper is the identification of outcome-based water governance interventions in Gash Basin, guided by the global Sustainable Development Goal six (SDG 6 on water and sanitation) and the Sudan water resource policy framework. The paper concluded that improved water resources management of the Gash Basin is a prerequisite for ensuring desired policy outcomes of groundwater use and flood risk management purposes. Analysis of various water governance dimensions in the Gash indicated that the operationalization of a Basin-level institutional reform is critically focused on informed actors and adapted practices through knowledge and technologies along with the technical data and capacity needed to make that. Adapting the devolved Institutional structure at state level is recommended to strengthen the Gash basin regulatory function and improve compliance of groundwater users.

Keywords: water governance, Gash Basin, integrated groundwater management, Sudan

Procedia PDF Downloads 176
4342 A Framework for ERP Project Evaluation Based on BSC Model: A Study in Iran

Authors: Mohammad Reza Ostad Ali Naghi Kashani, Esfanji Elia

Abstract:

Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing particularly in developing countries like Iran. ERP projects are expensive, time consuming, and complex, in addition the failure rate is high among these projects. It is important to know whether these projects could meet their goals or not. Furthermore, the area which should be improved should be identified. In this paper we made a framework to evaluate ERP projects success implementation. First, based on literature review we made a framework based on BSC model, financial, customer, processes, learning and knowledge, because of the importance of change management it was added to model. Then an organization was divided in three layers. We choose corporate, managerial, and operational levels. Then to find criteria to assess each aspect, we use Delphi method in two rounds. And for the second round we made a questionnaire and did some statistical tasks on them. Based on the statistical results some of them are accepted and others are rejected.

Keywords: ERP, BSC, ERP project evaluation, IT projects

Procedia PDF Downloads 322
4341 Light-Emitting Diode Assisted Synthesis of Ag@Fe3O4 Nanoparticles and Their Application in Magnetic and Photothermal Hyperthermia Therapy

Authors: Pei-Wen Lin, Ta-I Yang

Abstract:

Cancer has been one of the leading causes of human death for centuries. Considerable effort has been devoted to developing new treatments to reduce and control cancers. Magnetic particle hyperthermia and near-infrared photothermal therapy are the promising strategies to treat cancers due to its effectiveness with only mild side effects. This study focused on synthesizing magnetic Ag@Fe3O4 nanoparticles applicable for both of magnetic hyperthermia and near-infrared photothermal therapy. The hydrophilic poly(diallyldimethylammonium chloride) polymer was utilized to prepare superparamagnetic Fe3O4 clusters and to promote silver nanoparticles grown on Fe3O4 surfaces, obtaining Ag@Fe3O4 nanoparticles. The morphology (shape and dimension) of Ag nanoparticles was subsequently tailored using commercial LED lights. Therefore, the resulting Ag@Fe3O4 nanoparticles can absorb specific wavelength of light ranging from 400 nm to 800 nm by adjusting the wavelength of LED lights and the free silver ions in reaction solution. Heating performance tests confirmed that the synthesized Ag@Fe3O4 nanoparticles show appreciable heating capability for both of magnetic particle hyperthermia and near-infrared photothermal therapy. The findings in this study could provide new ideas to design functional materials to treat cancers.

Keywords: light-emitting diode assisted synthesis, magnetic particles, photothermal materials, hyperthermia

Procedia PDF Downloads 282
4340 Social Workers’ Reactions and Coping Strategies: An Exploratory Study about the Social Worker-Client Contacting Experiences in Hong Kong

Authors: Sze Ming Yau

Abstract:

Social worker-client interacting experience is scarcely studied in Hong Kong. Through this qualitative study, the experiences of Hong Kong social work practitioners in relating with clients provide new insights on social worker training and development. Thematic analysis is applied to examine the data collected by in-depth interviews with six local social work practitioners. The results show all practitioners have experienced both positive and challenging situations during the relating process. Their reactions either facilitate or hinder the process. Most of the practitioners’ strong reactions can be accounted for by using the concept of countertransference reactions during the interview session with clients. Moreover, they also have rarely reviewed the implications of those reactions after the session. In addition to countertransference, the self-expectation of practitioners also influences the relating process. Their self-expectations of being capable to help lead to anxiety. Though countertransference and anxiety of practitioners significantly influence the relating process, the practitioners do not adequately address personal issues and anxiety. Enhancing case conceptualization ability is their major coping strategy. The study has implications, including enhancement of social work training, workplace support, practitioner’s self-reflection, and integration of theory and practice.

Keywords: coping, countertransference, reactions, relating process, social workers

Procedia PDF Downloads 262
4339 Country of Origin, Ethnocentrism and Initial Trust in Indonesia: The Role of Religiosity and Subjective Knowledge

Authors: Adilla Anggraeni

Abstract:

The purpose of the paper is to investigate the effects of religiosity and subjective knowledge towards initial trust that a consumer has towards a product manufacturer. Since globalization enters the point of no return, it should be acknowledged that further exploration of country of origin image, its influences and possible limiting factors is imperative. This model aims to broaden COO-related research, especially related to different product categories based on the perception of consumers in emerging markets. The study employs quantitative method, aiming to involve 200 Indonesian respondents to evaluate different product categories (food/apparel). Relationships between variables are evaluated using structural equation modeling. It is expected that subjective knowledge will have significant influence towards initial trust that an individual possesses towards food products. A major contribution of this study will be the inclusion of religiosity and subjective knowledge in the country of origin study’s body of knowledge. Companies are also expected to benefit from the study as the acceleration of globalization may again repose the question of whether companies should market their product using similar strategies across different countries or different ones. Religiosity dimension is expected to add values to international marketing literature concerning emerging economies in particular, as many companies view the emerging economies as promising markets.

Keywords: country of origin, subjective knowledge, initial trust, emerging economy, Indonesia

Procedia PDF Downloads 289
4338 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving

Authors: Aly Elshafei, Daniela Romano

Abstract:

With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.

Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG

Procedia PDF Downloads 117
4337 Determination of Parasitic Load in Different Tissues of Murine Toxoplasmosis after Immunization by Excretory-Secretory Antigens using Real Time QPCR

Authors: Ahmad Daryani, Yousef Dadimoghaddam, Mehdi Sharif, Ehsan Ahmadpour, Shahabeddin Sarvi, Baghar Hashemi

Abstract:

Background: Excretory-secretory antigens (ESAs) of Toxoplasma gondii are one of the candidates for immunization against toxoplasmosis. For evaluation of immunization, we determined the kinetics of the distribution of Toxoplasma and parasite load in different tissues of mice immunized by ESAs. Methods: In this experimental study, 36 mice in case (n= 18) and control (n= 18) groups were immunized with ESAs and PBS, respectively. After 2 weeks, mice were challenged intraperitoneally with Toxoplasma virulent RH strain. Blood and different tissues (brain, spleen, liver, heart, kidney, and muscle) were collected daily after challenge (1, 2, 3 and last day before death). Parasite load was calculated using Real time QPCR targeted at the B1 gene. Results: ESAs as vaccine in different tissues showed various effects. However, infected mice which received the vaccine in comparison with control group, displayed a drastically decreasing in parasite burden, in their blood and tissues (P= 0.000). Conclusion: These results indicated that ESAs with reduction of parasite load in different tissues of host could be evaluable candidate for the development of immunization strategies against toxoplasmosis.

Keywords: parasitic load, murine toxoplasmosis, immunization, excretory-secretory antigens, real time QPCR

Procedia PDF Downloads 443
4336 Experiences on the Application of WIKI Based Coursework in a Fourth-Year Engineering Module

Authors: D. Hassell, D. De Focatiis

Abstract:

This paper presents work on the application of wiki based coursework for a fourth-year engineering module delivered as part of both a MEng and MSc programme in Chemical Engineering. The module was taught with an equivalent structure simultaneously on two separate campuses, one in the United Kingdom (UK) and one in Malaysia, and the subsequent results were compared. Student feedback was sought via questionnaires, with 45 respondents from the UK and 49 from Malaysia. Results include discussion on; perceived difficulty; student enjoyment and experiences; differences between MEng and MSc students; differences between cohorts on different campuses. The response of students to the use of wiki-based coursework was found to vary based on their experiences and background, with UK students being generally more positive on its application than those in Malaysia.

Keywords: engineering education, student differences, student learning, web based coursework

Procedia PDF Downloads 294
4335 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information

Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai

Abstract:

Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.

Keywords: knowledge graph, entity alignment, transformer, deep learning

Procedia PDF Downloads 41
4334 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal

Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal

Abstract:

The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.

Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience

Procedia PDF Downloads 32
4333 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 124
4332 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 229
4331 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education

Procedia PDF Downloads 160
4330 Agent-Based Modeling of Pedestrian Corridor Congestion on the Characteristics of Physical Space Form

Authors: Sun Shi, Sun Cheng

Abstract:

The pedestrian corridor is the most crowded area in the public space. The crowded severity has been focused on the field of evacuation strategies of the entrance in large public spaces. The aim of this paper is to analyze the walking efficiency in different spaces of pedestrian corridor with the variation of spatial parameters. The congestion condition caused by the variation of walking efficiency is modeled as well. This study established the space model of the walking corridor by setting the width, slope, turning form and turning angle of the pedestrian corridor. The pedestrian preference of walking mode varied with the difference of the crowded severity, walking speed, field of vision, sight direction and the expected destination, which is influenced by the characters of physical space form. Swarm software is applied to build Agent model. According to the output of the Agent model, the relationship between the pedestrian corridor width, ground slope, turning forms, turning angle and the walking efficiency, crowded severity is acquired. The results of the simulation can be applied to pedestrian corridor design in order to reduce the crowded severity and the potential safety risks caused by crowded people.

Keywords: crowded severity, multi-agent, pedestrian preference, urban space design

Procedia PDF Downloads 217
4329 The Challenge of Teaching French as a Foreign Language in a Multilingual Community

Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis

Abstract:

The teaching of French language, like every other language, has its numerous challenges. A multilingual community, however, is a linguistic environment housing diverse languages, each with its peculiarity, both pros, and cones. A foreign language will have to strive hard for survival in an environment where various indigenous languages, as well as an established official language, exist. This study examined the challenges and prospects of the teaching of French as a foreign language in a multilingual community. A 22-item questionnaire was used to elicit information from 40 Nigerian Secondary school teachers of French. One of the findings of this study showed that the teachers of the French language are not motivated. Also, the linguistic environment is not favourable for the teaching and learning of French language in Nigeria. One of the recommendations was that training and re-training of teachers of French should be of utmost importance to the Nigerian Federal Ministry of Education.

Keywords: challenges, french as foreign language, multilingual community, teaching

Procedia PDF Downloads 216
4328 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination

Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq

Abstract:

Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.

Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing

Procedia PDF Downloads 87
4327 Objective vs. Perceived Quality in the Cereal Industry

Authors: Albena Ivanova, Jill Kurp, Austin Hampe

Abstract:

Cereal products in the US contain rich information on the front of the package (FOP) as well as point-of-purchase (POP) summaries provided by the store. These summaries frequently are confusing and misleading to the consumer. This study explores the relationship between perceived quality, objective quality, price, and value in the cold cereal industry. A total of 270 cold cereal products were analyzed and the price, quality and value for different summaries were compared using ANOVA tests. The results provide evidence that the United States Department of Agriculture Organic FOP/POP are related to higher objective quality, higher price, but not to a higher value. Whole grain FOP/POP related to a higher objective quality, lower or similar price, and higher value. Heart-healthy POP related to higher objective quality, similar price, and higher value. Gluten-free FOP/POP related to lower objective quality, higher price, and lower value. Kid's cereals were of lower objective quality, same price, and lower value compared to family and adult markets. The findings point to a disturbing tendency of companies to continue to produce lower quality products for the kids’ market, pricing them the same as high-quality products. The paper outlines strategies that marketers and policymakers can utilize to contribute to the increased objective quality and value of breakfast cereal products in the United States.

Keywords: cereals, certifications, front-of-package claims, consumer health.

Procedia PDF Downloads 124
4326 The Corona is a Double Virus: The Effect of the Corona on Domestic Violence

Authors: B. Waked Najar

Abstract:

Since the spread of Covid- 19, Israel and other countries suffer from lockdowns and social distance, which impose different kinds of restrictions. On the one side, many organization closed and unemployment increased, bringing about economic problems and distress. On the other side, family ties were damaged due to inability to sustain close relations with some family members and too frequent interactions with others. Unfortunately, conflicts within families, controlling behavior and domestic violence appear more often. Purpose: to examine the phenomenon of domestic violence and its expansion during the Covid-19 crisis, to propose and classify strategies of dealing with it, including encouragement of public systems providing more information and support to domestic violence victims. Methodology: the author strives to reveal methods of supporting domestic violence victims through public and private treatment organizations. The author interviewed battered women and families who experienced violence during the Covid-19 crisis. Findings: victims of domestic violence often feel isolated and helpless. It is a real challenge to track and support them, especially in the traditional minorities’ communities. Research limitations: Many families refused to be interviewed because they did not want to be exposed to the community, especially religious families. Originality: research is aimed to examine a phenomenon of domestic violence during the Covid-19 crisis and methods of help and support the victims, which is not a common theme of research during the pandemic.

Keywords: violence, coronavirus, domestic violence, influence

Procedia PDF Downloads 97
4325 Synthesis of Biologically Active Heterocyclic Compounds via C-H Bond Activation

Authors: Neeraj Kumar Mishra, In Su Kim

Abstract:

The isoindoline, indazole and indole heterocycles are ubiquitous structural motif found in heterocyclic compounds as they exhibit biological and medicinal applications. For example, isoindoline motif is present in molecules that act as endothelin-A receptor antagonists and dipeptidyl peptidase inhibitors. Moreover, isoindoline derivatives are very crucial constituents in the field of materials science as attractive candidates for organic light-emitting devices. However, compounds containing the indazole motif are known to exhibit to a variety of biological activities, such as estrogen receptor, HIV protease inhibition and anti-tumor activity. The prevalence of indazoles and indoles has led to the development of many useful methods for their preparation. Thus, isoindoline, indazole and indole heterocycles can be new candidates for the next generation of pharmaceuticals. Therefore, the development of highly efficient strategies for the formation of these heterocyclic architectures is an area of great interest in organic synthesis. The past years, transition-metal-catalyzed C−H activation followed by annulation reaction has been frequently used as a powerful tool to construct various heterocycles. Herein, we describe our recent achievements about the transition-metal-catalyzed tandem cyclization reactions of N-benzyltriflamides, 1,2-disubstituted arylhydrazines, acetanilides, etc. via C−H bond activation to access the corresponding bioactive heterocylic scaffolds.

Keywords: biologically active, C-H activation, heterocyclic compounds, transition-metal catalysts

Procedia PDF Downloads 308
4324 Examining the Impact of Fake News on Mental Health of Residents in Jos Metropolis

Authors: Job Bapyibi Guyson, Bangripa Kefas

Abstract:

The advent of social media has no doubt provided platforms that facilitate the spread of fake news. The devastating impact of this does not only end with the prevalence of rumours and propaganda but also poses potential impact on individuals’ mental well-being. Therefore, this study on examining the impact of fake news on the mental health of residents in Jos metropolis among others interrogates the impact of exposure to fake news on residents' mental health. Anchored on the Cultivation Theory, the study adopted quantitative method and surveyed two the opinions of hundred (200) social media users in Jos metropolis using purposive sampling technique. The findings reveal that a significant majority of respondents perceive fake news as highly prevalent on social media, with associated feelings of anxiety and stress. The majority of the respondents express confidence in identifying fake news, though a notable proportion lacks such confidence. Strategies for managing the mental impact of encountering fake news include ignoring it, fact checking, discussing with others, reporting to platforms, and seeking professional support. Based on these insights, recommendations were proposed to address the challenges posed by fake news. These include promoting media literacy, integrating fact-checking tools, adjusting algorithms and fostering digital well-being features among others.

Keywords: fake news, mental health, social media, impact

Procedia PDF Downloads 53
4323 Lean Manufacturing Implementation in Fused Plastic Bags Industry

Authors: Tareq Issa

Abstract:

Lean manufacturing is concerned with the implementation of several tools and methodologies that aim for the continuous elimination of wastes throughout manufacturing process flow in the production system. This research addresses the implementation of lean principles and tools in a small-medium industry focusing on 'fused' plastic bags production company in Amman, Jordan. In this production operation, the major type of waste to eliminate include material, waiting-transportation, and setup wastes. The primary goal is to identify and implement selected lean strategies to eliminate waste in the manufacturing process flow. A systematic approach was used for the implementation of lean principles and techniques, through the application of Value Stream Mapping analysis. The current state value stream map was constructed to improve the plastic bags manufacturing process through identifying opportunities to eliminate waste and its sources. Also, the future-state value stream map was developed describing improvements in the overall manufacturing process resulting from eliminating wastes. The implementation of VSM, 5S, Kanban, Kaizen, and Reduced lot size methods have provided significant benefits and results. Productivity has increased to 95.4%, delivery schedule attained at 99-100%, reduction in total inventory to 1.4 days and the setup time for the melting process was reduced to about 30 minutes.

Keywords: lean implementation, plastic bags industry, value stream map, process flow

Procedia PDF Downloads 172
4322 Moral Distress among Nurses Working in Hospitals in Jazan: A Cross-Sectional Study

Authors: Hussain Darraj

Abstract:

Background: Healthcare workers, especially nurses, are subjected to a great risk of psychological stress, mostly moral distress. Therefore, it is crucial to address moral distress in nurses. Objectives: The aim of this study is to study the extent of moral distress among hospital nurses in Jazan. Methods: This study used a cross-sectional study design, which included 419 nurses from Jazan hospitals. A questionnaire was used to measure moral distress and its related factors. Results: The average total score for moral distress among the study participants is 134.14, with a standard deviation of 53.94. Moreover, the current study findings indicate that those over the age of 35 years who work as nurse managers, working in critical departments, have the intention to leave a position, have received ethical training or workshops, have provided care for COVID-19 cases, or work in a department with staff shortages are associated with the experience of higher-level moral stress. Conclusion: Nurses are recommended to be provided with ongoing education and resources in order to reduce moral distress and create a positive work atmosphere for nurses. Moreover, the current study sheds light on the importance of organizational support to provide enough resources and staffing in order to reduce moral distress among nurses. Further research is needed to focus on other health professionals and moral distress. Moreover, future studies are also required to explore the strategies to reduce moral distress levels among nurses.

Keywords: moral distress, Jazan, nurses, hospital

Procedia PDF Downloads 89
4321 Explanation of Sustainable Architecture Models in Tabriz Residential Fabric Monuments: Case Study of Sharbatoglu House and Ghadaki House

Authors: Fereshteh Pashaei Kamali, Elham Kazemi, Shokooh Neshani Fam

Abstract:

The subject of sustainable development is a reformist revision of modernism and tradition, proposing reconciliatory strategies between these two. Sustainability in architecture cannot only be interpreted as the construction’s physical stability, but also as stability, the preserving of the continuous totality of earth and its energy resources as well, whose available resources and materials should be employed more efficiently. In other words, by referring to the building ecology, emphasizing the combinatory capacity of the building with the environmental factors (existence context), the aim of sustainability is to achieve spatial quality and comfort, as well as proper design in the architectural composition. To achieve these traditional Iranian architecture objectives, it is essential to plan on protecting the environment, maintaining aesthetic measures and responding to the needs of each climatic region. This study was conducted based on the descriptive-analytical method, and aimed to express the design patterns compatible with the climate of the Tabriz residential fabric. The present article attempts to express the techniques and patterns used in traditional Iranian architecture, especially the Tabriz Sharbatoglu houses and Ghadaki houses, which are supposed to be in accordance with modern concepts of sustainable architecture.

Keywords: sustainable architecture, climate, Tabriz, Sharbatoglu house, Ghadaki house

Procedia PDF Downloads 374
4320 Psychometric Examination of the QUEST-25: An Online Assessment of Intellectual Curiosity and Scientific Epistemology

Authors: Matthew J. Zagumny

Abstract:

The current study reports an examination of the QUEST-25 (Q-Assessment of Undergraduate Epistemology and Scientific Thinking) online version for assessing the dispositional attitudes toward scientific thinking and intellectual curiosity among undergraduate students. The QUEST-25 consists of scientific thinking (SIQ-25) and intellectual curiosity (ICIQ-25), which were correlated in hypothesized directions with the Religious Commitment Inventory, Curiosity and Exploration Inventory, Belief in Science scale, and measures of academic self-efficacy. Additionally, concurrent validity was established by the resulting significant differences between those identifying the centrality of religious belief in their lives and those who do not self-identify as being guided daily by religious beliefs. This study demonstrates the utility of the QUEST-25 for research, evaluation, and theory development.

Keywords: guided-inquiry learning, intellectual curiosity, psychometric assessment, scientific thinking

Procedia PDF Downloads 260
4319 Multidisciplinary Training of Social Work and Applied Drama: From the Perspective of the Third Space

Authors: Yen Yi Huang

Abstract:

This paper aims to explore the application of strategies in applied drama to the social work education arena in order to enhance students' creativity, curiosity, and aesthetic sensitivity. Also, applied drama is used as a means to facilitate students' reflection-in-action and improve their understanding of issues on creative aging, gender equality, human rights, bullying, and prejudice. This paper mainly uses the perspective of Homi K. Bhabha's third space to explore the impact of applied drama and social work training on students. First, it focuses on how students create new understandings and insights in the third space of multidisciplinary training studies. Second, it analyzes how the hybridity and negotiation of ideas between applied drama and social work were created. Finally, it discusses the follow-up effects of the training and the factors that promote or hinder the hybridity and generation of the third space. This paper uses students' reflection papers for analysis. It is not focused on a discussion of the effectiveness of the teaching but attempts to bring new insights into the applications of applied drama to the social work education arena. The hybridity and generation of the third space require handling power strategically and looking after the emotional space of the students. Taking part in the training allows students in the third space of multidisciplinary training to reexamine the traditional framework of social work knowledge to create new ideas and possibilities.

Keywords: multidisciplinary, applied drama, social work education, third space

Procedia PDF Downloads 163
4318 Earthquake Vulnerability and Repair Cost Estimation of Masonry Buildings in the Old City Center of Annaba, Algeria

Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente

Abstract:

The seismic risk mitigation from the perspective of the old buildings stock is truly essential in Algerian urban areas, particularly those located in seismic prone regions, such as Annaba city, and which the old buildings present high levels of degradation associated with no seismic strengthening and/or rehabilitation concerns. In this sense, the present paper approaches the issue of the seismic vulnerability assessment of old masonry building stocks through the adaptation of a simplified methodology developed for a European context area similar to that of Annaba city, Algeria. Therefore, this method is used for the first level of seismic vulnerability assessment of the masonry buildings stock of the old city center of Annaba. This methodology is based on a vulnerability index that is suitable for the evaluation of damage and for the creation of large-scale loss scenarios. Over 380 buildings were evaluated in accordance with the referred methodology and the results obtained were then integrated into a Geographical Information System (GIS) tool. Such results can be used by the Annaba city council for supporting management decisions, based on a global view of the site under analysis, which led to more accurate and faster decisions for the risk mitigation strategies and rehabilitation plans.

Keywords: Damage scenarios, masonry buildings, old city center, seismic vulnerability, vulnerability index

Procedia PDF Downloads 450
4317 Comprehensive Studio Tables: Improving Performance and Quality of Student's Work in Architecture Studio

Authors: Maryam Kalkatechi

Abstract:

Architecture students spent most of their qualitative time in studios during their years of study. The studio table’s importance as furniture in the studio is that it elevates the quality of the projects and positively influences the student’s productivity. This paper first describes the aspects considered in designing comprehensive studio table and later details on each aspect. Comprehensive studio tables are meant to transform the studio space to an efficient yet immense place of learning, collaboration, and participation. One aspect of these tables is that the surface transforms to a place of accommodation for design conversations, the other aspect of these tables is the efficient interactive platform of the tools. The discussion factors of the comprehensive studio include; the comprehensive studio setting of workspaces, the arrangement of the comprehensive studio tables, the collaboration aspects in the studio, the studio display and lightings shaped by the tables and lighting of the studio.

Keywords: studio tables, student performance, productivity, hologram, 3D printer

Procedia PDF Downloads 187
4316 Evolution of Classroom Languaging over the Years: Prospects for Teaching Mathematics Differently

Authors: Jabulani Sibanda, Clemence Chikiwa

Abstract:

This paper traces diverse language practices representative of equally diverse conceptions of language. To be dynamic with languaging practices, one needs to appreciate nuanced languaging practices, their challenges, prospects, and opportunities. The paper presents what we envision as three major conceptions of language that give impetus to diverse language practices. It examines theoretical models of the bilingual mental lexicon and how they inform language practices. The paper explores classroom languaging practices that have been promulgated and experimented with. The paper advocates the deployment of multisensory semiotic systems to complement linguistic classroom communication and the acknowledgement of learners’ linguistic and semiotic resources as valid in the learning enterprise. It recommends the enactment of specific clauses on language in education policies and curriculum documents that empower classroom interactants to exercise discretion in languaging practices.

Keywords: languaging, monolingual, multilingual, semiotic and linguistic repertoire

Procedia PDF Downloads 71