Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5004

Search results for: plastic bags industry

5004 Lean Manufacturing Implementation in Fused Plastic Bags Industry

Authors: Tareq Issa

Abstract:

Lean manufacturing is concerned with the implementation of several tools and methodologies that aim for the continuous elimination of wastes throughout manufacturing process flow in the production system. This research addresses the implementation of lean principles and tools in a small-medium industry focusing on 'fused' plastic bags production company in Amman, Jordan. In this production operation, the major type of waste to eliminate include material, waiting-transportation, and setup wastes. The primary goal is to identify and implement selected lean strategies to eliminate waste in the manufacturing process flow. A systematic approach was used for the implementation of lean principles and techniques, through the application of Value Stream Mapping analysis. The current state value stream map was constructed to improve the plastic bags manufacturing process through identifying opportunities to eliminate waste and its sources. Also, the future-state value stream map was developed describing improvements in the overall manufacturing process resulting from eliminating wastes. The implementation of VSM, 5S, Kanban, Kaizen, and Reduced lot size methods have provided significant benefits and results. Productivity has increased to 95.4%, delivery schedule attained at 99-100%, reduction in total inventory to 1.4 days and the setup time for the melting process was reduced to about 30 minutes.

Keywords: lean implementation, plastic bags industry, value stream map, process flow

Procedia PDF Downloads 95
5003 Impacts of Low-Density Polyethylene (Plastic Shopping Bags) on Structural Strength and Permeability of Hot-Mix-Asphalt Pavements

Authors: Chayanon Boonyuid

Abstract:

This paper experiments the effects of low-density polyethylene (LDPE) on the structural strength and permeability of hot-mix-asphalt (HMA) pavements. Different proportions of bitumen (4%, 4.5%, 5%, 5.5% and 6% of total aggregates) and plastic (5%, 10% and 15% of bitumen) contents in HMA mixtures were investigated to estimate the optimum mixture of bitumen and plastic in HMA pavement with long-term performance. Marshall Tests and Falling Head Tests were performed to experiment the structure strength and permeability of HMA mixtures with different percentages of plastic materials and bitumen. The laboratory results show that the optimum binder content was 5.5% by weight of aggregates with higher contents of plastic materials, increase structural stability, reduce permanent deformation, increase ductility, and improve fatigue life of HMA pavements. The use of recycled plastic shopping bags can reduce the use of bitumen content by 0.5% - 1% in HMA mixtures resulting in cheaper material costs with better long-term performance. The plastic materials increase the impermeability of HMA pavements. This study has two-fold contributions: optimum contents of both bitumen and plastic materials in HMA mixtures and the impacts of plastic materials on the permeability of HMA pavements.

Keywords: plastic bags, bitumen, structural strength, permeability

Procedia PDF Downloads 66
5002 Experimental Investigation of the Failure Behavior of a Retaining Wall Constructed with Soil Bags

Authors: Kewei Fan, Sihong Liu, Yi Pik Cheng

Abstract:

This paper aims to analyse the failure behaviour of the retaining wall constructed with soil bags that are formed by filling river sand into woven bags (geosynthetics). Model tests were conducted to obtain the failure mode of the wall, and shear tests on two-layers and five-layers of soil bags were designed to investigate the mechanical characteristics of the interface of soil bags. The test results show that the slip surface in the soil bags-constructed retaining wall is ladder-like due to the inter-layer insertion of soil bags, and the wall above the ladder-like surface undergoes a rigid body translation. The insertion strengthens the shear strength of two-layer staggered-stacked soil bags. Meanwhile, it affects the shape of the slip surface of the five-layer staggered-stacked soil bags. Finally, the interlayer resisting friction of soil bags is found to be related to the shape of the slip surface.

Keywords: geosynthetics, retaining wall, soil bag, failure mode, interface, shear strength

Procedia PDF Downloads 53
5001 Plastic Degradation Activity of Bacillus Sp. Isolated from the Gut of Plastic-Fed Yellow Mealworm

Authors: Najat El-Kurdi, Sherif Hammad, Mohamed Ghazi, Sahar El-Shatoury, Khaled Zakaria

Abstract:

The increasing number of plastic production and its importance to humanity in daily life made it a headache to the planet earth. The persistence of plastic wastes in the environment formed a serious problem. They are prominent with their capability to resist microbial degradation for decades. Thus, it was crucial to find ways to eliminate the plastics without depending on conventional recycling methods, which causes the formation of more hazardous compounds and doubles the problem. In this paper, mealworms were fed with a mixture of plastic wastes such as plastic bags, Styrofoam, PE foam, and plastic tarpaulins film as the sole food source for a month. Frass was collected at the end of the test and examined using FTIR analysis. Also, the gut bacteria were isolated and identified using 16S rRNA. The results show the mineralization of plastic in the frass of plastic-fed worms when compared to control. The 16S rRNA and the BLAST analysis showed that the obtained isolate belongs to the genus Bacillus Sp especially Bacillus subtilis. Phylogenetic analysis showed their relatedness to the other Bacillus species in the NCBI database.

Keywords: mealworm, waste management, plastic-degrading bacteria, gut microbiome, Bacillus sp

Procedia PDF Downloads 51
5000 A Prototype for Biological Breakdown of Plastic Bags in Desert Areas

Authors: Yassets Egaña, Patricio Núñez, Juan C. Rios, Ivan Balic, Alex Manquez, Yarela Flores, Maria C. Gatica, Sergio Diez De Medina, Rocio Tijaro-Rojas

Abstract:

Globally, humans produce millions of tons of waste per year. An important percentage of this waste is plastic, which frequently ends up in landfills and oceans. During the last decades, the greatest plastics production in history have been made, a few amount of this plastic is recycled, the rest ending up as plastic pollution in soils and seas. Plastic pollution is disastrous for the environment, affecting essential species, quality of consumption water, and some economic activities such as tourism, in different parts of the world. Due to its durability and decomposition on micro-plastics, animals and humans are accumulating a variety of plastic components without having clear their effects on human health, economy, and wildlife. In dry regions as the Atacama Desert, up to 95% of the water consumption comes from underground reservoirs, therefore preventing the soil pollution is an urgent need. This contribution focused on isolating, genotyping and optimizing microorganisms that use plastic waste as the only source of food to construct a batch-type bioreactor able to degrade in a faster way the plastic waste before it gets the desert soils and groundwater consumed by people living in this areas. Preliminary results, under laboratory conditions, has shown an improved degradation of polyethylene when three species of bacteria and three of fungi act on a selected plastic material. These microorganisms have been inoculated in dry soils, initially lacking organic matter, under environmental conditions in the laboratory. Our team designed and constructed a prototype using the natural conditions of the region and the best experimental results.

Keywords: biological breakdown, plastic bags, prototype, desert regions

Procedia PDF Downloads 208
4999 Solid Waste and Its Impact on the Human Health

Authors: Waseem Akram, Hafiz Azhar Ali Khan

Abstract:

Unplanned urbanization together with change in life from simple to more technologically advanced style with flow of rural masses to urban areas has played a vital role in pilling loads of solid wastes in our environment. The cities and towns have expanded beyond boundaries. Even the uncontrolled population expansion has caused the overall environmental burden. Thus, today the indifference remains as one of the biggest trash that has come up due to the non-responsive behavior of the people. Everyday huge amount of solid waste is thrown in the streets, on the roads, parks, and in all those places that are frequently and often visited by the human beings. This behavior based response in many countries of the world has led to serious health concerns and environmental issues. Over 80% of our products that are sold in the market are packed in plastic bags. None of the bags are later recycled but simply become a permanent environment concern that flies, choke lines or are burnt and release toxic gases in the environment or form dumps of heaps. Lack of classification of the daily waste generated from houses and other places lead to worst clogging of the sewerage lines and formation of ponding areas which ultimately favor vector borne disease and sometimes become a cause of transmission of polio virus. Solid waste heaps were checked at different places of the cities. All of the wastes on visual assessments were classified into plastic bags, papers, broken plastic pots, clay pots, steel boxes, wrappers etc. All solid waste dumping sites in the cities and wastes that were thrown outside of the trash containers usually contained wrappers, plastic bags, and unconsumed food products. Insect populations seen in these sites included the house flies, bugs, cockroaches and mosquito larvae breeding in water filled wrappers, containers or plastic bags. The population of the mosquitoes, cockroaches and houseflies were relatively very high in dumping sites close to human population. This population has been associated with cases like dengue, malaria, dysentery, gastro and also to skin allergies during the monsoon and summer season. Thus, dumping of the huge amount of solid wastes in and near the residential areas results into serious environmental concerns, bad smell circulation, and health related issues. In some places, the same waste is burnt to get rid of mosquitoes through smoke which ultimately releases toxic material in the atmosphere. Therefore, a proper environmental strategy is needed to minimize environmental burden and promote concepts of recycled products and thus, reduce the disease burden.

Keywords: solid waste accumulation, disease burden, mosquitoes, vector borne diseases

Procedia PDF Downloads 210
4998 Sustainable Business Model Archetypes – A Systematic Review and Application to the Plastic Industry

Authors: Felix Schumann, Giorgia Carratta, Tobias Dauth, Liv Jaeckel

Abstract:

In the last few decades, the rapid growth of the use and disposal of plastic items has led to their overaccumulation in the environment. As a result, plastic pollution has become a subject of global concern. Today plastics are used as raw materials in almost every industry. While the recognition of the ecological, social, and economic impact of plastics in academic research is on the rise, the potential role of the ‘plastic industry’ in dealing with such issues is still largely underestimated. Therefore, the literature on sustainable plastic management is still nascent and fragmented. Working towards sustainability requires a fundamental shift in the way companies employ plastics in their day-to-day business. For that reason, the applicability of the business model concept has recently gained momentum in environmental research. Business model innovation is increasingly recognized as an important driver to re-conceptualize the purpose of the firm and to readily integrate sustainability in their business. It can serve as a starting point to investigate whether and how sustainability can be realized under industry- and firm-specific circumstances. Yet, there is no comprehensive view in the plastic industry on how firms start refining their business models to embed sustainability in their operations. Our study addresses this gap, looking primarily at the industrial sectors responsible for the production of the largest amount of plastic waste today: plastic packaging, consumer goods, construction, textile, and transport. Relying on the archetypes of sustainable business models and applying them to the aforementioned sectors, we try to identify companies’ current strategies to make their business models more sustainable. Based on the thematic clustering, we can develop an integrative framework for the plastic industry. The findings are underpinned and illustrated by a variety of relevant plastic management solutions that the authors have identified through a systematic literature review and analysis of existing, empirically grounded research in this field. Using the archetypes, we can promote options for business model innovations for the most important sectors in which plastics are used. Moreover, by linking the proposed business model archetypes to the plastic industry, our research approach guides firms in exploring sustainable business opportunities. Likewise, researchers and policymakers can utilize our classification to identify best practices. The authors believe that the study advances the current knowledge on sustainable plastic management through its broad empirical industry analyses. Hence, the application of business model archetypes in the plastic industry will be useful for shaping companies’ transformation to create and deliver more sustainability and provides avenues for future research endeavors.

Keywords: business models, environmental economics, plastic management, plastic pollution, sustainability

Procedia PDF Downloads 26
4997 Sustainable Development of Medium Strength Concrete Using Polypropylene as Aggregate Replacement

Authors: Reza Keihani, Ali Bahadori-Jahromi, Timothy James Clacy

Abstract:

Plastic as an environmental burden is a well-rehearsed topic in the research area. This is due to its global demand and destructive impacts on the environment, which has been a significant concern to the governments. Typically, the use of plastic in the construction industry is seen across low-density, non-structural applications due to its diverse range of benefits including high strength-to-weight ratios, manipulability and durability. It can be said that with the level of plastic consumption experienced in the construction industry, an ongoing responsibility is shown for this sector to continually innovate alternatives for application of recycled plastic waste such as using plastic made replacement from polyethylene, polystyrene, polyvinyl and polypropylene in the concrete mix design. In this study, the impact of partially replaced fine aggregate with polypropylene in the concrete mix design was investigated to evaluate the concrete’s compressive strength by conducting an experimental work which comprises of six concrete mix batches with polypropylene replacements ranging from 0.5 to 3.0%. The results demonstrated a typical decline in the compressive strength with the addition of plastic aggregate, despite this reduction generally mitigated as the level of plastic in the concrete mix increased. Furthermore, two of the six plastic-containing concrete mixes tested in the current study exceeded the ST5 standardised prescribed concrete mix compressive strength requirement at 28-days containing 1.50% and 2.50% plastic aggregates, which demonstrated the potential for use of recycled polypropylene in structural applications, as a partial by mass, fine aggregate replacement in the concrete mix.

Keywords: compressive strength, concrete, polypropylene, sustainability

Procedia PDF Downloads 66
4996 A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion

Authors: Ying Zhang

Abstract:

In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load.

Keywords: plastic load, plastic work, strain hardening, plastic work-tangent criterion

Procedia PDF Downloads 253
4995 Algorithms of ABS-Plastic Extrusion

Authors: Dmitrii Starikov, Evgeny Rybakov, Denis Zhuravlev

Abstract:

Plastic for 3D printing is very necessary material part for printers. But plastic production is technological process, which implies application of different control algorithms. Possible algorithms of providing set diameter of plastic fiber are proposed and described in the article. Results of research were proved by existing unit of filament production.

Keywords: ABS-plastic, automation, control system, extruder, filament, PID-algorithm

Procedia PDF Downloads 335
4994 Experimental Investigation of Bituminous Roads with Waste Plastic

Authors: Arjita Biswas, Sandeep Potnis

Abstract:

Plastic roads (bituminous roads using waste plastic in the wearing course ) have now become familiar in the Road Construction Sector in India. With the Indian Road Congress Code (IRC SP: 98 -2013), many agencies are coming forward to implement Plastic Roads in India. This paper discuss and compare about the various properties of bituminous mix with 8% waste plastic and normal bituminous mix. This paper also signifies the performance of both the types of roads after 4 months of age under loading conditions. Experiments were carried out to evaluate its performance. The result shows improved performance of plastic roads.

Keywords: bituminous roads, experiments, performance, plastic roads

Procedia PDF Downloads 123
4993 Gap between Knowledge and Behaviour in Recycling Domestic Solid Waste: Evidence from Manipal, India

Authors: Vidya Pratap, Seena Biju, Keshavdev A.

Abstract:

In the educational town of Manipal (located in southern India) households dispose their wastes without segregation. Mixed wastes (organic, inorganic and hazardous items) are collected either by private collectors or by the local municipal body in trucks and taken to dump yards. These collectors select certain recyclables from the collected trash and sell them to scrap merchants to earn some extra money. Rag pickers play a major role in picking up card board boxes, glass bottles and milk sachets from dump yards and public areas and scrap iron from construction sites for recycling. In keeping with the Indian Prime Minister’s mission of Swachh Bharat (A Clean India), the local municipal administration is taking efforts to ensure segregation of domestic waste at source. With this in mind, each household in a residential area in Manipal was given two buckets – for wet and dry wastes (wet waste referred to organic waste while dry waste included recyclable and hazardous items). A study was conducted in this locality covering a cluster of 145 households to assess the residents’ knowledge of recyclable, organic and hazardous items commonly disposed by households. Another objective of this research was to evaluate the extent to which the residents actually dispose their wastes appropriately. Questionnaires were self-administered to a member of each household with the assistance of individuals speaking the local language whenever needed. Respondents’ knowledge of whether an item was organic, inorganic or hazardous was captured through a questionnaire containing a list of 50 common items. Their behaviour was captured by asking how they disposed these items. Results show that more than 70% of respondents are aware that banana and orange peels, potato skin, egg shells and dried leaves are organic; similarly, more than 70% of them consider newspapers, notebook and printed paper are recyclable. Less than 65% of respondents are aware that plastic bags and covers and plastic bottles are recyclable. However, the results of the respondents’ recycling behaviour is less impressive. Fewer than 35% of respondents recycle card board boxes, milk sachets and glass bottles. Unfortunately, since plastic items like plastic bags and covers and plastic bottles are not accepted by scrap merchants, they are not recycled. This study shows that the local municipal authorities must find ways to recycle plastic into products, alternate fuel etc.

Keywords: behaviour, knowledge, plastic waste management, recyclables

Procedia PDF Downloads 114
4992 Complex Rigid-Plastic Deformation Model of Tow Degree of Freedom Mechanical System under Impulsive Force

Authors: Abdelouaheb Rouabhi

Abstract:

In order to study the plastic resource of structures, the elastic-plastic single degree of freedom model described by Prandtl diagram is widely used. The generalization of this model to tow degree of freedom beyond the scope of a simple rigid-plastic system allows investigating the plastic resource of structures under complex disproportionate by individual components of deformation (earthquake). This macro-model greatly increases the accuracy of the calculations carried out. At the same time, the implementation of the proposed macro-model calculations easier than the detailed dynamic elastic-plastic calculations existing software systems such as ANSYS.

Keywords: elastic-plastic, single degree of freedom model, rigid-plastic system, plastic resource, complex plastic deformation, macro-model

Procedia PDF Downloads 306
4991 Traditional Industries Innovation and Brand Value Analysis in Taiwan: Case Study of a Certain Plastic Company

Authors: Ju Shan Lin

Abstract:

The challenges for traditional industries in Taiwan the past few years are the changes of overall domestic and foreign industry structure, the entrepreneurs not only need to keep on improving their profession skills but also continuously research and develop new products. It is also necessary for the all traditional industries to keep updating the business strategy, let the enterprises continue to progress, and won't be easily replaced by the other industries. The traditional industry in Taiwan attach great importance to the field of enterprises upgrading and innovation in recent years, by the enterprise innovation and transformation can enhance the overall business situation also enable them to obtain more additional profits than in the past. Except the original industry structure's need to transform and upgrade, the brand's business and marketing strategy are also essential. This study will take a certain plastic company as case analysis, for the brand promotion of traditional industries, brand values and business innovation model for further exploration. It will also be mentioned that the other traditional industries cases which were already achieved success on the enterprise's upgrading and innovation, at the same time, the difficulties which they faced with and the way they overcome will be explored as well. This study will use the case study method combined with expert interviews to discuss and analyze this certain plastic company's current business situation, the existing products and the possible trends in the future. Looking forward to providing an innovative business model that will enable this plastic company to upgrade its corporate image and the brand could transform successfully.

Keywords: brand marketing strategy, enterprise upgrade, industrial transformation, traditional industry

Procedia PDF Downloads 181
4990 Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products

Authors: Merve Sogancioglu, Esra Yel, Ferda Tartar, Nihan Canan Iskender

Abstract:

Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700°C with heating rates of 5°C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal.

Keywords: biochar, co-pyrolysis, waste plastic, waste olive pomace

Procedia PDF Downloads 205
4989 Effects of Storage Methods on Proximate Compositions of African Yam Bean (Sphenostylis stenocarpa) Seeds

Authors: Iyabode A. Kehinde, Temitope A. Oyedele, Clement G. Afolabi

Abstract:

One of the limitations of African yam bean (AYB) (Sphenostylis sternocarpa) is poor storage ability due to the adverse effect of seed-borne fungi. This study was conducted to examine the effects of storage methods on the nutritive composition of AYB seeds stored in three types of storage materials viz; Jute bags, Polypropylene bags, and Plastic Bowls. Freshly harvested seeds of AYB seeds were stored in all the storage materials for 6 months using 2 × 3 factorial (2 AYB cultivars and 3 storage methods) in 3 replicates. The proximate analysis of the stored AYB seeds was carried out at 3 and 6 months after storage using standard methods. The temperature and relative humidity of the storeroom was recorded monthly with Kestrel pocket weather tracker 4000. Seeds stored in jute bags gave the best values for crude protein (24.87%), ash (5.69%) and fat content (6.64%) but recorded least values for crude fibre (2.55%), carbohydrate (50.86%) and moisture content (12.68%) at the 6th month of storage. The temperature of the storeroom decreased from 32.9ºC - 28.3ºC, while the relative humidity increased from 78% - 86%. Decreased incidence of field fungi namely: Rhizopus oryzae, Aspergillus flavus, Geotricum candidum, Aspergillus fumigatus and Mucor meihei was accompanied by the increase in storage fungi viz: Apergillus niger, Mucor hiemalis, Penicillium espansum and Penicillium atrovenetum with prolonged storage. The study showed that of the three storage materials jute bag was more effective at preserving AYB seeds.

Keywords: storage methods, proximate composition, African Yam Bean, fungi

Procedia PDF Downloads 65
4988 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests

Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda

Abstract:

One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.

Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling

Procedia PDF Downloads 203
4987 Effect of Seasons and Storage Methods on Seed Quality of Slender Leaf (Crotalaria Sp.) in Western Kenya

Authors: Faith Maina

Abstract:

Slender leaf (Crotalaria brevidens and Crotalaria ochroleuca), African indigenous vegetables, are an important source of nutrients, income and traditional medicines in Kenya. However, their production is constrained by poor quality seed, due to lack of standardized agronomic and storage practices. Factors that affect the quality of seed in storage include the duration of storage, seed moisture, temperature, relative humidity, oxygen pressure during storage, diseases, and pests. These factors vary with the type of storage method used. The aim of the study was to investigate the effect of various storage methods on seed quality of slender leaf and recommend the best methods of seed storage to the farmers in Western Kenya. Seeds from various morphotypes of slender leaf that had high germination percentage (90%) were stored in pots, jars, brown paper bags and polythene bags in Kakamega and Siaya. Other seeds were also stored in a freezer at the University of Eldoret. In Kakamega County average room temperature was 23°C and relative humidity was 85% during the storage period of May to July 2006. Between December and February 2006 the average room temperature was 26°C while relative humidity was 80% in the same county. In Siaya County, the average room temperature was 25°C and relative humidity was 80% during storage period of May to July 2006. In the same county, the average temperature was 28°C and relative humidity 65% during the period of December and February 2006. Storage duration was 90 days for each season. Seed viability and vigour, was determined for each storage method. Data obtained from storage experiments was subjected to ANOVA and T-tests using Statistical Analysis Software (SAS). Season of growth and storage methods significantly influenced seed quality in Kakamega and Siaya counties. Seeds from the long rains season had higher seed quality than those grown during the short rains season. Generally, seeds stored in pots, brown paper bags, jars and freezer had higher seed quality than those stored in polythene bags. It was concluded that in order to obtain high-quality seeds farmers should store slender leaf seeds in pots or brown paper bags or plastic jars or freezer.

Keywords: Crotalaria sp, seed, quality, storage

Procedia PDF Downloads 135
4986 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: silty soil, waste plastic, compaction, consolidation, reinforcement

Procedia PDF Downloads 87
4985 Design Consideration of a Plastic Shredder in Recycling Processes

Authors: Tolulope A. Olukunle

Abstract:

Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.

Keywords: design, machine, plastic waste, recycling

Procedia PDF Downloads 247
4984 Construction of Green Aggregates from Waste Processing

Authors: Fahad K. Alqahtani

Abstract:

Nowadays construction industry is developing means to incorporate waste products in concrete to ensure sustainability. To meet the need of construction industry, a synthetic aggregate was developed using optimized technique called compression moulding press technique. The manufactured aggregate comprises mixture of plastic, waste which acts as binder, together with by-product waste which acts as fillers. The physical properties and microstructures of the inert materials and the manufactured aggregate were examined and compared with the conventional available aggregates. The outcomes suggest that the developed aggregate has potential to be used as substitution of conventional aggregate due to its less weight and water absorption. The microstructure analysis confirmed the efficiency of the manufacturing process where the final product has the same mixture of binder and filler.

Keywords: fly ash, plastic waste, quarry fine, red sand, synthetic aggregate

Procedia PDF Downloads 88
4983 Experimental Assessment of Polypropylene Plastic Aggregates(PPA) for Pavement Construction: Their Mechanical Properties via Marshall Test

Authors: Samiullah Bhatti, Safdar Abbas Zaidi, Syed Murtaza Ali Jafri

Abstract:

This research paper presents the results of using plastic aggregate in flexible pavement. Plastic aggregates have been prepared with polypropylene (PP) recycled products and have been tested with Marshall apparatus. Grade 60/70 bitumen has been chosen for this research with a total content of 2.5 %, 3 % and 3.5 %. Plastic aggregates are mixed with natural aggregates with different proportions and it ranges from 10 % to 100 % with an increment of 10 %. Therefore, a total of 10 Marshall cakes were prepared with plastic aggregates in addition to a standard pavement sample. In total 33 samples have been tested for Marshall stability, flow and voids in mineral aggregates. The results show an increase in the value when it changes from 2.5 % bitumen to 3 % and after then it goes again toward declination. Thus, 3 % bitumen content has been found as the most optimum value for flexible pavements. Among all the samples, 20 % PP aggregates sample has been found satisfactory with respect to all the standards provided by ASTM. Therefore, it is suggested to use 20 plastic aggregates in flexible pavement construction. A comparison of bearing capacity and skid resistance is also observed.

Keywords: marshall test, polypropylene plastic, plastic aggregates, flexible pavement alternative, recycling of plastic waste

Procedia PDF Downloads 39
4982 Continuous Manufacturing of Ultra Fine Grained Materials by Severe Plastic Deformation Methods

Authors: Aslı Günay Bulutsuz, Mehmet Emin Yurci

Abstract:

Severe plastic deformation techniques are top-down deformation methods which enable superior mechanical properties by decreasing grain size. Different kind severe plastic deformation methods have been widely being used at various process temperature and geometries. Besides manufacturing advantages of severe plastic deformation technique, most of the types are being used only at the laboratory level. They cannot be adapted to industrial usage due to their continuous manufacturability and manufacturing costs. In order to enhance these manufacturing difficulties and enable widespread usage, different kinds of methods have been developed. In this review, a comprehensive literature research was fulfilled in order to highlight continuous severe plastic deformation methods.

Keywords: continuous manufacturing, severe plastic deformation, ultrafine grains, grain size refinement

Procedia PDF Downloads 175
4981 Use of Non-woven Polyethylene Terephthalate Fabrics to Improve Certain Properties of Concrete

Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri

Abstract:

Plastic packages have been broadly used for a long time. Such widespread usage of plastic has resulted in an increased amount of plastic wastes and many environmental impacts. Plastic wastes are one of the most significant types of waste materials because of their non-degradation and low biodegradability. It is why many researchers tried to find a safe and environmentally friendly solution for plastic wastes. In this goal, in the civil engineering industry, many types of plastic wastes have been incorporated, as a partial substitution of aggregates or as additive materials (fibers) in concrete mixtures because of their lengthier lifetime and lower weight. This work aims to study the mechanical properties (compressive, split tensile and flexural strengths) of concrete with a water-cement ratio (w/c) of 0.45 and with the incorporation of non-woven PET plastic sheets. Five configurations -without PET (reference), 1-layer sheet, 2-side, 3-side, and full sample wrapping- were applied. The 7, 14 and 28-days samples’ compressive strengths, flexural strength and split tensile strength were measured. The outcomes of the study show that the compressive strength was improved for the wrapped samples, particularly for the cylindrical specimens. Also, split tensile and flexural behaviors of the wrapped samples improved significantly compared to the reference ones. Moreover, reference samples were damaged into many parts after mechanical testing, while wrapped specimens were taken by the applied configurations and were not divided into many small fragments. Therefore, non-woven fabrics appeared to improve some properties of the concrete.

Keywords: solid waste plastic, non-woven polyethylene terephthalate sheets, mechanical behaviors, crack pattern

Procedia PDF Downloads 54
4980 Effect of Injection Moulding Process Parameter on Tensile Strength of Using Taguchi Method

Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma

Abstract:

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. So to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Here Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Keywords: injection moulding, tensile strength, poly-propylene, Taguchi

Procedia PDF Downloads 202
4979 PLA Plastic as Biodegradable Material for 3D Printers

Authors: Juraj Beniak, Ľubomír Šooš, Peter Križan, Miloš Matúš

Abstract:

Within Rapid Prototyping technologies are used many types of materials. Many of them are recyclable but there are still as plastic like, so practically they do not degrade in the landfill. Polylactic acid (PLA) is one of the special plastic materials which are biodegradable and also available for 3D printing within Fused Deposition Modelling (FDM) technology. The question is, if the mechanical properties of produced models are comparable to similar technical plastic materials which are usual for prototype production. Presented paper shows the experiments results for tensile strength measurements for specimens prepared with different 3D printer settings and model orientation. Paper contains also the comparison of tensile strength values with values measured on specimens produced by conventional technologies as injection moulding.

Keywords: 3D printing, biodegradable plastic, fused deposition modeling, PLA plastic, rapid prototyping

Procedia PDF Downloads 338
4978 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation

Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun

Abstract:

This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.

Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation

Procedia PDF Downloads 378
4977 Stabilization of Fly Ash Slope Using Plastic Recycled Polymer and Finite Element Analysis Using Plaxis 3D

Authors: Tushar Vasant Salunkhe, Sariput M. Nawghare, Maheboobsab B. Nadaf, Sushovan Dutta, J. N. Mandal

Abstract:

The model tests were conducted in the laboratory without and with plastic recycled polymer in fly ash steep slopes overlaying soft foundation soils like fly ash and power soil in order to check the stability of steep slope. In this experiment, fly ash is used as a filling material, and Plastic Recycled Polymers of diameter = 3mm and length = 4mm were made from the waste plastic product (lower grade plastic product). The properties of fly ash and plastic recycled polymers are determined. From the experiments, load and settlement have measured. From these data, load–settlement curves have been reported. It has been observed from test results that the load carrying capacity of mixture fly ash with Plastic Recycled Polymers slope is more than that of fly ash slope. The deformation of Plastic Recycled Polymers slope is slightly more than that of fly ash slope. A Finite Element Method (F.E.M.) was also evaluated using PLAXIS 3D version. The failure pattern, deformations and factor of safety are reported based on analytical programme. The results from experimental data and analytical programme are compared and reported.

Keywords: factor of safety, finite element method (FEM), fly ash, plastic recycled polymer

Procedia PDF Downloads 348
4976 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy

Abstract:

The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or post-consumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: Fiber length ranging from 20 to 50 mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.

Keywords: mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers

Procedia PDF Downloads 334
4975 Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite

Authors: Pattamaphorn Phuangngamphan, Rewadee Anuwattana, Narumon Soparatana, Nestchanok Yongpraderm, Atiporn Jinpayoon, Supinya Sutthima, Saroj Klangkongsub, Worapong Pattayawan

Abstract:

This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products.

Keywords: agricultural waste, waste utilization, biomaterials, cellulose fiber, composite material

Procedia PDF Downloads 112