Search results for: cutting cycle
1961 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: hardness, RSM, sputtering, TiN XRD
Procedia PDF Downloads 3211960 Life Cycle Assessment Applied to Supermarket Refrigeration System: Effects of Location and Choice of Architecture
Authors: Yasmine Salehy, Yann Leroy, Francois Cluzel, Hong-Minh Hoang, Laurence Fournaison, Anthony Delahaye, Bernard Yannou
Abstract:
Taking into consideration all the life cycle of a product is now an important step in the eco-design of a product or a technology. Life cycle assessment (LCA) is a standard tool to evaluate the environmental impacts of a system or a process. Despite the improvement in refrigerant regulation through protocols, the environmental damage of refrigeration systems remains important and needs to be improved. In this paper, the environmental impacts of refrigeration systems in a typical supermarket are compared using the LCA methodology under different conditions. The system is used to provide cold at two levels of temperature: medium and low temperature during a life period of 15 years. The most commonly used architectures of supermarket cold production systems are investigated: centralized direct expansion systems and indirect systems using a secondary loop to transport the cold. The variation of power needed during seasonal changes and during the daily opening/closure periods of the supermarket are considered. R134a as the primary refrigerant fluid and two types of secondary fluids are considered. The composition of each system and the leakage rate of the refrigerant through its life cycle are taken from the literature and industrial data. Twelve scenarios are examined. They are based on the variation of three parameters, 1. location: France (Paris), Spain (Toledo) and Sweden (Stockholm), 2. different sources of electric consumption: photovoltaic panels and low voltage electric network and 3. architecture: direct and indirect refrigeration systems. OpenLCA, SimaPro softwares, and different impact assessment methods were compared; CML method is used to evaluate the midpoint environmental indicators. This study highlights the significant contribution of electric consumption in environmental damages compared to the impacts of refrigerant leakage. The secondary loop allows lowering the refrigerant amount in the primary loop which results in a decrease in the climate change indicators compared to the centralized direct systems. However, an exhaustive cost evaluation (CAPEX and OPEX) of both systems shows more important costs related to the indirect systems. A significant difference between the countries has been noticed, mostly due to the difference in electric production. In Spain, using photovoltaic panels helps to reduce efficiently the environmental impacts and the related costs. This scenario is the best alternative compared to the other scenarios. Sweden is a country with less environmental impacts. For both France and Sweden, the use of photovoltaic panels does not bring a significant difference, due to a less sunlight exposition than in Spain. Alternative solutions exist to reduce the impact of refrigerating systems, and a brief introduction is presented.Keywords: eco-design, industrial engineering, LCA, refrigeration system
Procedia PDF Downloads 1891959 Requirements Management in Agile
Authors: Ravneet Kaur
Abstract:
The concept of Agile Requirements Engineering and Management is not new. However, the struggle to figure out how traditional Requirements Management Process fits within an Agile framework remains complex. This paper talks about a process that can merge the organization’s traditional Requirements Management Process nicely into the Agile Software Development Process. This process provides Traceability of the Product Backlog to the external documents on one hand and User Stories on the other hand. It also gives sufficient evidence that the system will deliver the right functionality with good quality in the form of various statistics and reports. In the nutshell, by overlaying a process on top of Agile, without disturbing the Agility, we are able to get synergic benefits in terms of productivity, profitability, its reporting, and end to end visibility to all Stakeholders. The framework can be used for just-in-time requirements definition or to build a repository of requirements for future use. The goal is to make sure that the business (specifically, the product owner) can clearly articulate what needs to be built and define what is of high quality. To accomplish this, the requirements cycle follows a Scrum-like process that mirrors the development cycle but stays two to three steps ahead. The goal is to create a process by which requirements can be thoroughly vetted, organized, and communicated in a manner that is iterative, timely, and quality-focused. Agile is quickly becoming the most popular way of developing software because it fosters continuous improvement, time-boxed development cycles, and more quickly delivering value to the end users. That value will be driven to a large extent by the quality and clarity of requirements that feed the software development process. An agile, lean, and timely approach to requirements as the starting point will help to ensure that the process is optimized.Keywords: requirements management, Agile
Procedia PDF Downloads 3701958 Development of a Research Platform to Revitalize People-Forest Relationship Through a Cycle of Architectural Embodiments
Authors: Hande Ünlü, Yu Morishita
Abstract:
The total area of forest land in Japan accounts for 67% of the national land; however, despite this wealth and hundred years history of silviculture, today Japanese forestry faces socio-economic stagnation in forestry. While the growing gap in the people-forest relationship causes the depopulation of many forest villages, this paper introduces a methodology aiming to develop a place-specific approach in revitalizing this relationship. The paper focuses on a case study from Taiki town in the Hokkaido region to analyze the place's specific socio-economic requirements through interviews and workshops with the local experts, researchers, and stakeholders. Based on the analyzed facts, a master outline of design requirements is developed to produce locally sourced architectural embodiments that aim to act as a unifying element between the forests and the people of Taiki town. In parallel, the proposed methodology aims to generate a cycle of research feed and a researcher retreat, a definition given by Memu Earth Lab to the researchers' stay at Memu in Taiki town for a defined period to analyze local resources, for the continuous improvement of the introduced methodology to revitalize the interaction between people and forest through architecture.Keywords: architecture, Japanese forestry, local timber, people-forest relationship, research platform
Procedia PDF Downloads 1781957 Liposomal Encapsulation of Silver Nanoparticle for Improved Delivery and Enhanced Anticancer Properties
Authors: Azeez Yusuf, Alan Casey
Abstract:
Silver nanoparticles (AgNP) are one of the most widely investigated metallic nanoparticles due to their promising antibacterial activities. In recent years, AgNP research has shifted beyond antimicrobial use to potential applications in the medical arena. This shift coupled with the extensive commercial applications of AgNP will further increase human exposure, and the subsequent risk of adverse effects that may result from repeated exposures and inefficient delivery meaning research into improved AgNP delivery is of paramount importance. In this study, AgNP were encapsulated in a natural bio-surfactant, dipalmitoylphosphatyidyl choline (DPPC), in an attempt to enhance the intracellular delivery and simultaneously mediate the associated cytotoxicity of the AgNP. It was noted that as a result of the encapsulation, liposomal-AgNP (Lipo-AgNP) at 0.625 μg/ml induced significant cell death in THP1 cell lines a notably lower dose than that of the uncoated AgNP induced cytotoxicity. The induced cytotoxicity was shown to result in an increased level of DNA fragmentation resulting in a cell cycle interruption at the S phase of the cell cycle. It was shown that the predominate form of cell death upon exposure to both uncoated and Lipo-AgNP was apoptosis, however, a ROS-independent activation of the executioner caspases 3/7 occurred when exposed to the Lipo-AgNP. These findings showed that encapsulation of AgNP enhances AgNP cytotoxicity and mediates an ROS-independent induction of apoptosis.Keywords: silver nanoparticles, AgNP, cytotoxicity, encapsulation, liposome
Procedia PDF Downloads 1561956 Environmental Cost and Benefits Analysis of Different Electricity Option: A Case Study of Kuwait
Authors: Mohammad Abotalib, Hamid Alhamadi
Abstract:
In Kuwait, electricity is generated from two primary sources that are heavy fuel combustion and natural gas combustion. As Kuwait relies mainly on petroleum-based products for electricity generation, identifying and understanding the environmental trade-off of such operations should be carefully investigated. The life cycle assessment (LCA) tool is applied to identify the potential environmental impact of electricity generation under three scenarios by considering the material flow in various stages involved, such as raw-material extraction, transportation, operations, and waste disposal. The three scenarios investigated represent current and futuristic electricity grid mixes. The analysis targets six environmental impact categories: (1) global warming potential (GWP), (2) acidification potential (AP), (3) water depletion (WD), (4) acidification potential (AP), (4) eutrophication potential (EP), (5) human health particulate matter (HHPM), and (6) smog air (SA) per one kWh of electricity generated. Results indicate that one kWh of electricity generated would have a GWP (881-1030) g CO₂-eq, mainly from the fuel combustion process, water depletion (0.07-0.1) m³ of water, about 68% from cooling processes, AP (15.3-17.9) g SO₂-eq, EP (0.12-0.14) g N eq., HHPA (1.13- 1.33)g PM₂.₅ eq., and SA (64.8-75.8) g O₃ eq. The variation in results depend on the scenario investigated. It can be observed from the analysis that introducing solar photovoltaic and wind to the electricity grid mix improves the performance of scenarios 2 and 3 where 15% of the electricity comes from renewables correspond to a further decrease in LCA results.Keywords: energy, functional uni, global warming potential, life cycle assessment, energy, functional unit
Procedia PDF Downloads 1351955 Evolution of Rock-Cut Caves of Dhamnar at Dhamnar, MP
Authors: Abhishek Ranka
Abstract:
Rock-cut Architecture is a manifestation of human endurance in constructing magnificent structures by sculpting and cutting entire hills. Cave Architecture in India form an important part of rock-cut development and is among the most prolific examples of rock-cut architecture in the world. There are more than 1500 rock-cut caves in various regions of India. Among them mostly are located in western India, more particularly in the state of Maharashtra. Some of the rock-cut caves are located in the central region of India, which is presently known as Malawa (Madhya Pradesh). The region is dominated by the vidhyachal hill ranges toward the west, dotted with the coarse laterite rock. Dhamnar Caves have been excavated in the central region of Mandsaur Dist. With a combination of shared sacred faiths. The earliest rock-cut activity began in the north, in Bihar, where caves were excavated in the Barabar and the Nagarjuni hills during the Mauryan period (3rd century BCE). The rock-cut activity then shifts to the central part of India in Madhya Pradesh, where the caves at Dhamnar, Bagh, Udayagiri, Poldungar, etc. excavated between 3rdto 9ᵗʰ CE. The rock-cut excavation continued to flourish in Madhya Pradesh till 10ᵗʰ century CE, simultaneously with monolithic Hindu temples. Dhamnar caves fall into four architectural typologies: the Lena caves, Chaitya caves, Viharas & Lena-Chaityagriha caves. The Buddhist rock-cutting activity in central India is divisible into two phases. In the first phase (2ndBCE-3rd CE), the Buddha image is conspicuously absent. After a lapse of about three centuries, activity begins again, and the Buddha images this time are carved. The former group belongs to the Hinayana (Lesser Vehicle) phase and the latter to the Mahayana (Greater Vehicle). Dhamnar caves has an elaborate facades, pillar capitals, and many more creative sculptures in various postures. These caves were excavated against the background of invigorating trade activities and varied socio-religious or Socio Cultural contexts. These caves also highlights the wealthy and varied patronage provided by the dynasties of the past. This paper speaks about the appraisal of the rock cut mechanisms, design strategies, and approaches while promoting a scope for further research in conservation practices. Rock-cut sites, with their physical setting and various functional spaces as a sustainable habitat for centuries, has a heritage footprint with a researchquotient.Keywords: rock-cut architecture, buddhism, hinduism, Iconography, and architectural typologies, Jainism
Procedia PDF Downloads 1531954 The Risk of Occupational Health in the Shipbuilding Industry in Bangladesh
Authors: Md. Rashel Sheikh
Abstract:
The shipbuilding industry in Bangladesh had become a fast-growing industry in recent years when it began to export newly built ships. The various activities of shipbuilding industries in their limited, confined spaces added occupational worker exposures to chemicals, dusts, and metal fumes. The aim of this literature search is to identify the potential sources of occupational health hazards in shipyards and to promote the regulation of appropriate personal protective equipment (PPE) for the workers. In shipyards, occupational workers are involved in various activities, such as the manufacture, repair, maintenance, dismantling of boats and ships, building small ocean-going vessels and ferries. The occupational workers in the shipbuilding industry suffer from a number of hazardous issues, such as asthma, dermatitis, hearing deficits, and musculoskeletal disorders. The use of modern technologies, such as underwater plasma welding, electron beam welding, and friction stir welding and laser cutting and welding, and appropriate PPE (i.e., long-sleeved shirt and long pants, shoes plus socks, safety masks, chemical resistant gloves, eyewear, face shield, and respirators) can help reduce the occupational exposure to environmental hazards created by different activities in the shipyards. However, most shipyards in Bangladesh use traditional methods, e.g., flame cutting and arc, that add hazardous waste and pollutants to the environment in and around the shipyard. The safety and security of occupational workers in the shipyard workplace are very important. It is the primary responsibility of employers to ensure the safety and security of occupational workers in the shipyards. Employers must use advanced technologies and supply adequate and appropriate PPE for the workers. There are a number of accidents and illnesses that happen daily in the shipyard industries in Bangladesh due to the negligence and lack of adequate technologies and appropriate PPE. In addition, there are no specific regulations and implementations available to use the PPE. It is essential to have PPE regulations and strict enforcement for the adoption of PPE in the shipbuilding industries in Bangladesh. Along with the adoption of PPE with regular health examinations, health education to the workers regarding occupational hazards and lifestyle diseases are also important and require reinforcement. Monitoring health and safety hazards in shipyards are essential to enhance worker protection, and ensure worker safety, and mitigate workplace injuries and illnesses.Keywords: shipbuilding Industries, health education, occupational health hazards, personal protective equipment, shipyard workers, occupational workers, shipyards
Procedia PDF Downloads 1651953 Daily Probability Model of Storm Events in Peninsular Malaysia
Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain
Abstract:
Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.Keywords: daily probability model, monsoon seasons, regions, storm events
Procedia PDF Downloads 3431952 Effect of the Firing Cycle on the Microstructure and Mechanical Properties of High Steel Barrel Fabricated by Forging Process
Authors: El Oualid Mokhnache, Noureddine Ramdani
Abstract:
The choice of gun barrel materials is crucial to ensure the maximum high rate of fire. The high rate of fire causes wear-out damage and shuts off mechanical properties (hardness, strength, wear resistance, etc.) and ballistic properties (bullet speed, dispersion and precision, longevity of barrel, etc). To overcome these kinds of problems, a deep understanding of the effect of the firing cycle on the mechanical and ballistic properties of the barrel is regarded as crucial to improving its characteristics. In the present work, a real experimental test of firing by using a high steel barrel with 7.62x39 ammunition was carried. Microstructural observations by using SEM were investigated. Hardness evolution through the barrel of both barrels labeled as reference barrels and as fired barrels were compared and discussed. Ballistic properties during the firing test, including speed of projectile and precision dispersion, are revealed and discussed as well. The aim of the present communication is about to discuss the relationship between pressure distribution versus mechanical properties through the wall barrel. Ballistic properties, including speed of the projectile, dispersion, and precision results during the shooting process, were investigated. Microstructure observations of the as-rifled barrel in comparison with the as-reference barrel were performed as well.Keywords: barrel, ballistic, pressure, microstructure evolution, hardness
Procedia PDF Downloads 751951 Interactive Garments: Flexible Technologies for Textile Integration
Authors: Anupam Bhatia
Abstract:
Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.Keywords: ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology
Procedia PDF Downloads 3931950 Economic Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gas, fossil fuel power plants
Procedia PDF Downloads 3971949 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication
Authors: L. Roseiro, C. Veiga, V. Maranha, A. Neto, N. Laraqi, A. Baïri, N. Alilat
Abstract:
In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.Keywords: bone necrosis, bone drilling, thermography, surgery
Procedia PDF Downloads 5971948 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings
Authors: J. N. Nackler, K. Saleh Pascha, W. Winter
Abstract:
WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate
Procedia PDF Downloads 2191947 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making
Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty
Abstract:
Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality
Procedia PDF Downloads 821946 Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies
Authors: Lei Zhao, Zhe Yuan, Wenyue Kuang
Abstract:
This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions.Keywords: FIFO model, inventory-level-dependent, LIFO model, two-warehouse inventory
Procedia PDF Downloads 2791945 Optimization of Machining Parameters by Using Cryogenic Media
Authors: Shafqat Wahab, Waseem Tahir, Manzoor Ahmad, Sarfraz Khan, M. Azam
Abstract:
Optimization and analysis of tool flank wear width and surface finish of alloy steel rods are studied in the presence of cryogenic media (LN2) by using Tungsten Carbide Insert (CNMG 120404- WF 4215). Robust design concept of Taguchi L9(34) method and ANOVA is applied to determine the contribution of key cutting parameters and their optimum conditions. Through analysis, it revealed that cryogenic impact is more significant in reduction of the tool flank wear width while surface finish is mostly dependent on feed rate.Keywords: turning, cryogenic fluid, liquid nitrogen, flank wear, surface roughness, taguchi
Procedia PDF Downloads 6661944 Holistic Simulation-Based Impact Analysis Framework for Sustainable Manufacturing
Authors: Mijoh A. Gbededo, Kapila Liyanage, Sabuj Mallik
Abstract:
The emerging approaches to sustainable manufacturing are considered to be solution-oriented with the aim of addressing the environmental, economic and social issues holistically. However, the analysis of the interdependencies amongst the three sustainability dimensions has not been fully captured in the literature. In a recent review of approaches to sustainable manufacturing, two categories of techniques are identified: 1) Sustainable Product Development (SPD), and 2) Sustainability Performance Assessment (SPA) techniques. The challenges of the approaches are not only related to the arguments and misconceptions of the relationships between the techniques and sustainable development but also to the inability to capture and integrate the three sustainability dimensions. This requires a clear definition of some of the approaches and a road-map to the development of a holistic approach that supports sustainability decision-making. In this context, eco-innovation, social impact assessment, and life cycle sustainability analysis play an important role. This paper deployed an integrative approach that enabled amalgamation of sustainable manufacturing approaches and the theories of reciprocity and motivation into a holistic simulation-based impact analysis framework. The findings in this research have the potential to guide sustainability analysts to capture the aspects of the three sustainability dimensions into an analytical model. Additionally, the research findings presented can aid the construction of a holistic simulation model of a sustainable manufacturing and support effective decision-making.Keywords: life cycle sustainability analysis, sustainable manufacturing, sustainability performance assessment, sustainable product development
Procedia PDF Downloads 1731943 The Need for Implementing Building Information Modelling (BIM) and Integrated Project Delivery (IPD) in the Construction Project: A Case Study in UAE
Authors: C. W. F. Che Wan Putra, M. Alshawi, M. S. Al Ahbabi, M. Jabakhanji
Abstract:
Much of the waste that is generated throughout the life-cycle of a building is mainly related to project stakeholders not having access to information that others have created. This results in waste and high costs. Over the past decade, however, the industry reacted to these challenges by adopting effective procurement approaches, such as partnering and design and build, to improve collaboration and communication among projects’ stakeholders. Most recently, there is a focus on creating and reusing digital project information of stakeholders throughout the life-cycle to facilitate the exchange of information among partners. This shift is based around BIM (Building Information Modelling) and collaborative environment (IPD). The power of collaborative BIM goes beyond improving efficiency. Sustainability, perhaps the most important challenge for the design and construction community, is at the intersection of BIM and collaborative project delivery, drawing strength from both. Due to these benefits, a research study has been carried out to investigate the need of BIM and IPD, on a large scale construction project which is procured on a traditional approach, i.e. design-bid-build. A qualitative research work including a semi-structured interview with project partners was conducted on a typical project in the UAE, whereby the selected project suffered from severe delays and cost overrun. This paper aims to bring about clear evidence to what most likely to happen to a typical construction project in spite of employing very good consultants, project manager and contractors and how these problems could have been avoided if BIM and IPD were deployed.Keywords: building information modelling (BIM), integrated project delivery (IPD), collaborative environment, case study
Procedia PDF Downloads 3981942 Sustainable Development of HV Substation in Urban Areas Considering Environmental Aspects
Authors: Mahdi Naeemi Nooghabi, Mohammad Tofiqu Arif
Abstract:
Gas Insulated Switchgears by using an insulation material named SF6 (Sulphur Hexafluoride) and its significant dielectric properties have been the only choice in urban areas and other polluted industries. However, the initial investment of GIS is more than conventional AIS substation, its total life cycle costs caused to reach huge amounts of electrical market share. SF6 environmental impacts on global warming, atmosphere depletion, and decomposing to toxic gases in high temperature situation, and highest rate in Global Warming Potential (GWP) with 23900 times of CO2e and a 3200-year period lifetime was the only undeniable concern of GIS substation. Efforts of international environmental institute and their politic supports have been able to lead SF6 emission reduction legislation. This research targeted to find an appropriate alternative for GIS substations to meet all advantages in land occupation area and to improve SF6 environmental impacts due to its leakage and emission. An innovative new conceptual design named Multi-Storey prepared a new AIS design similar in land occupation, extremely low Sf6 emission, and maximum greenhouse gas emission reduction. Surprisingly, by considering economic benefits due to carbon price saving, it can earn more than $675 million during the 30-year life cycle by replacing of just 25% of total annual worldly additional GIS switchgears.Keywords: AIS substation, GIS substation, SF6, greenhouse gas, global warming potential, carbon price, emission
Procedia PDF Downloads 3071941 Assessing the Social Impacts of a Circular Economy in the Global South
Authors: Dolores Sucozhañay, Gustavo Pacheco, Paul Vanegas
Abstract:
In the context of sustainable development and the transition towards a sustainable circular economy (CE), evaluating the social dimension remains a challenge. Therefore, developing a respective methodology is highly important. First, the change of the economic model may cause significant social effects, which today remain unaddressed. Second, following the current level of globalization, CE implementation requires targeting global material cycles and causes social impacts on potentially vulnerable social groups. A promising methodology is the Social Life Cycle Assessment (SLCA), which embraces the philosophy of life cycle thinking and provides complementary information to environmental and economic assessments. In this context, the present work uses the updated Social Life Cycle Assessment (SLCA) Guidelines 2020 to assess the social performance of the recycling system of Cuenca, Ecuador, to exemplify a social assessment method. Like many other developing countries, Ecuador heavily depends on the work of informal waste pickers (recyclers), who, even contributing to a CE, face harsh socio-economic circumstances, including inappropriate working conditions, social exclusion, exploitation, etc. Under a Reference Scale approach (Type 1), 12 impact subcategories were assessed through 73 site-specific inventory indicators, using an ascending reference scale ranging from -2 to +2. Findings reveal a social performance below compliance levels with local and international laws, basic societal expectations, and practices in the recycling sector; only eight and five indicators present a positive score. In addition, a social hotspot analysis depicts collection as the most time-consuming lifecycle stage and the one with the most hotspots, mainly related to working hours and health and safety aspects. This study provides an integrated view of the recyclers’ contributions, challenges, and opportunities within the recycling system while highlighting the relevance of assessing the social dimension of CE practices. It also fosters an understanding of the social impact of CE operations in developing countries, highlights the need for a close north-south relationship in CE, and enables the connection among the environmental, economic, and social dimensions.Keywords: SLCA, circular economy, recycling, social impact assessment
Procedia PDF Downloads 1511940 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies
Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid
Abstract:
Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.Keywords: climate, renewable energy, R strategies, sustainability
Procedia PDF Downloads 1371939 Performance of Non-toxic, Corrosion Resistant, and Lubricious Metalworking Fluids under Machining
Authors: Ajay Pratap Singh Lodhi, Deepak Kumar
Abstract:
Vegetable oil-based environmentally friendly metalworking fluids (MWFs) are formulated. The tribological performance, cytotoxicity, and corrosion resistance of the formulated fluids (FFs) are evaluated and benchmarked with commercial mineral oil-based MWFs (CF). Results show that FFs exhibited better machining characteristics (roughness, cutting forces, and surface morphology) during machining than CF. MTT assay and Live dead cell assay confirm the cytocompatibility nature of the FFs relative to the toxic CF. Electrochemical analysis shows that FFs and CF exhibited comparable corrosion current density.Keywords: corrosion inhibitors, cytotoxicity, machining, MTT assay, Taguchi method, vegetable oil
Procedia PDF Downloads 1881938 Evaluating the Ability to Cycle in Cities Using Geographic Information Systems Tools: The Case Study of Greek Modern Cities
Authors: Christos Karolemeas, Avgi Vassi, Georgia Christodoulopoulou
Abstract:
Although the past decades, planning a cycle network became an inseparable part of all transportation plans, there is still a lot of room for improvement in the way planning is made, in order to create safe and direct cycling networks that gather the parameters that positively influence one's decision to cycle. The aim of this article is to study, evaluate and visualize the bikeability of cities. This term is often used as the 'the ability of a person to bike' but this study, however, adopts the term in the sense of bikeability as 'the ability of the urban landscape to be biked'. The methodology used included assessing cities' accessibility by cycling, based on international literature and corresponding walkability methods and the creation of a 'bikeability index'. Initially, a literature review was made to identify the factors that positively affect the use of bicycle infrastructure. Those factors were used in order to create the spatial index and quantitatively compare the city network. Finally, the bikeability index was applied in two case studies: two Greek municipalities that, although, they have similarities in terms of land uses, population density and traffic congestion, they are totally different in terms of geomorphology. The factors suggested by international literature were (a) safety, (b) directness, (c) comfort and (d) the quality of the urban environment. Those factors were quantified through the following parameters: slope, junction density, traffic density, traffic speed, natural environment, built environment, activities coverage, centrality and accessibility to public transport stations. Each road section was graded for the above-mentioned parameters, and the overall grade shows the level of bicycle accessibility (low, medium, high). Each parameter, as well as the overall accessibility levels, were analyzed and visualized through Geographic Information Systems. This paper presents the bikeability index, its' results, the problems that have arisen and the conclusions from its' implementation through Strengths-Weaknesses-Opportunities-Threats analysis. The purpose of this index is to make it easy for researchers, practitioners, politicians, and stakeholders to quantify, visualize and understand which parts of the urban fabric are suitable for cycling.Keywords: accessibility, cycling, green spaces, spatial data, urban environment
Procedia PDF Downloads 1101937 Experimental Investigation of Cutting Forces and Temperature in Bone Drilling
Authors: Vishwanath Mali, Hemant Warhatkar, Raju Pawade
Abstract:
Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling.Keywords: bone drilling, helix angle, point angle, thrust force, temperature, thermal necrosis
Procedia PDF Downloads 3091936 Development of Portable Water Jet Cutter Mobile Hand Tool: Analysis of Nozzle Geometries and Materials
Authors: Razali Bin Abidin
Abstract:
This paper presents the development of a portable water jet cutter for soft materials such as meat. Twelve geometries of nozzles were simulated using finite element method. Water pressure was set to 1500 lb/in². Through the simulation, highest average water output speed was 133.04 m/s. The nozzle was fabricated from Al - alloy 5052 with the Factor of Safety~ 3. This indicates that the nozzle made of Al-alloy 5052 is capable of performing the cutting process without any fracture. Preliminary design of mobile water jet hand tool is presented at the end of this paper.Keywords: water jet, finite element, Al-alloy 5052, nozzle geometry
Procedia PDF Downloads 3741935 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors
Authors: Huda Al Shuaily, Karen Renaud
Abstract:
Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.Keywords: pattern, SQL, learning, model
Procedia PDF Downloads 2541934 Residual Compressive Strength of Drilled Glass Fiber Reinforced Composites
Authors: Navid Zarif Karimi, Giangiacomo Minak, Parnian Kianfar
Abstract:
Drilling is one of the most frequently used machining process for glass fiber reinforced polymer composites due to the need for structural joining. In drilling of composite laminates, interlaminar cracking, or delamination, has a detrimental effect on the compressive strength of these materials. The delamination can be controlled by adopting proper drilling condition. In this paper, the effect of feed rate, cutting speed and drill point angle on delamination and residual compressive strength of drilled GFRPs is studied. The objective is to find optimal conditions for maximum residual compressive strength.Keywords: composite material, delamination, drilling, residual compressive strength
Procedia PDF Downloads 4581933 Enhancing Thai In-Service Science Teachers' Technological Pedagogical Content Knowledge Integrating Local Context and Sufficiency Economy into Science Teaching
Authors: Siriwan Chatmaneerungcharoen
Abstract:
An emerging body of ‘21st century skills’-such as adaptability, complex communication skills, technology skills and the ability to solve non-routine problems--are valuable across a wide range of jobs in the national economy. Within the Thai context, a focus on the Philosophy of Sufficiency Economy is integrated into Science Education. Thai science education has advocated infusing 21st century skills and Philosophy of Sufficiency Economy into the school curriculum and several educational levels have launched such efforts. Therefore, developing science teachers to have proper knowledge is the most important factor to success of the goals. The purposes of this study were to develop 40 Cooperative Science teachers’ Technological Pedagogical Content Knowledge (TPACK) and to develop Professional Development Model integrated with Co-teaching Model and Coaching System (Co-TPACK). TPACK is essential to career development for teachers. Forty volunteer In-service teachers who were science cooperative teachers participated in this study for 2 years. Data sources throughout the research project consisted of teacher refection, classroom observations, Semi-structure interviews, Situation interview, questionnaires and document analysis. Interpretivist framework was used to analyze the data. Findings indicate that at the beginning, the teachers understood only the meaning of Philosophy of Sufficiency Economy but they did not know how to integrate the Philosophy of Sufficiency Economy into their science classrooms. Mostly, they preferred to use lecture based teaching and experimental teaching styles. While the Co- TPACK was progressing, the teachers had blended their teaching styles and learning evaluation methods. Co-TPACK consists of 3 cycles (Student Teachers’ Preparation Cycle, Cooperative Science Teachers Cycle, Collaboration cycle (Co-teaching, Co-planning, and Co-Evaluating and Coaching System)).The Co-TPACK enhances the 40 cooperative science teachers, student teachers and university supervisor to exchange their knowledge and experience on teaching science. There are many channels that they used for communication including online. They have used more Phuket context-integrated lessons, technology-integrated teaching and Learning that can explicit Philosophy of Sufficiency Economy. Their sustained development is shown in their lesson plans and teaching practices.Keywords: technological pedagogical content knowledge, philosophy of sufficiency economy, professional development, coaching system
Procedia PDF Downloads 4641932 Increasing the Efficiency of the Biomass Gasification Technology with Using the Organic Rankin Cycle
Authors: Jaroslav Frantík, Jan Najser
Abstract:
This article deals with increasing the energy efficiency of a plant in terms of optimizing the process. The European Union is striving to achieve the climate-energy package in the area increasing of energy efficiency. The goal of energy efficiency is to reduce primary energy consumption by 20% within the EU until 2020. The objective of saving energy consumption in the Czech Republic was set at 47.84 PJ (13.29 TWh). For reducing electricity consumption, it is possible to choose: a) mandatory increasing of energy efficiency, b) alternative scheme, c) combination of both actions. The Czech Republic has chosen for reducing electricity consumption using-alternative scheme. The presentation is focused on the proposal of a technological unit dealing with the gasification process of processing of biomass with an increase of power in the output. The synthesis gas after gasification of biomass is used as fuel in a cogeneration process of reciprocating internal combustion engine with the classic production of heat and electricity. Subsequently, there is an explanation of the ORC system dealing with the conversion of waste heat to electricity with the using closed cycle of the steam process with organic medium. The arising electricity is distributed to the power grid as a further energy source, or it is used for needs of the partial coverage of the technological unit. Furthermore, there is a presented schematic description of the technology with the identification of energy flows starting from the biomass treatment by drying, through its conversion to gaseous fuel, producing of electricity and utilize of thermal energy with minimizing losses. It has been found that using of ORC system increased the efficiency of the produced electricity by 7.5%.Keywords: biomass, efficiency, gasification, ORC system
Procedia PDF Downloads 217