Search results for: vehicle following models
976 Qualitative Inquiry for Understanding Factors Associated to Intergenerational Transmission of Child Maltreatment
Authors: Marie-Claude Richard, Amelie Bolduc-Mokhtar, Mathieu Parent
Abstract:
People who have experienced maltreatment in childhood subsequently face many parenting issues of their own, in particular when it comes to distancing themselves from the abusive behaviors they were exposed and had access to positive role models. Few studies have explored the factors explaining the ability to break the generational cycle of child maltreatment. However, deeper knowledge of the factors associated with intergenerational discontinuity could facilitate the development of innovative interventions and increase the preventive potential of existing programs. This poster presentation will be about a better understanding of the intergenerational transmission of maltreatment (IGTM) from the perspective of both youth protection workers and parents receiving child protection services. The data used to meet this goal were collected from a group interview with eight youth protection workers whose caseloads involved IGTM situations and through semi-structured interviews with four parents with a history of child protection services and who were currently receiving such services for at least one of their children. In the view of the youth protection workers, the IGTM refers to everything that is transmitted and not transmitted from one generation to the next within a family. The study participants painted quite a bleak portrait of the families affected by IGTM. However, three main avenues of intervention were mentioned by the participants: working within the network, favoring long-term interventions and being empathic. The results also show that the mothers were in a trajectory of intergenerational discontinuity in child maltreatment. Support from their families and friends as well as from formal support services brought out some possible explanatory factors for intergenerational discontinuity in child maltreatment. From a prevention perspective, developing meaningful and trusting relationships seems a source of resilience for parents who were placed in the care of the child protection system as children. The small number of participants limits the generalizability of these results. The difficulty of recruiting parents is a substantial challenge regarding gaining knowledge on the intergenerational transmission of child maltreatment. Future studies should examine this question and seek to develop effective strategies to help recruit study participants.Keywords: child maltreatment, intergenerational transmission, prevention, qualitative data
Procedia PDF Downloads 192975 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes
Authors: Mohsen Tehranizadeh, Mahboobe Forghani
Abstract:
The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design
Procedia PDF Downloads 430974 Simulating the Surface Runoff for the Urbanized Watershed of Mula-Mutha River from Western Maharashtra, India
Authors: Anargha A. Dhorde, Deshpande Gauri, Amit G. Dhorde
Abstract:
Mula-Mutha basin is one of the speedily urbanizing watersheds, wherein two major urban centers, Pune and Pimpri-Chinchwad, have developed at a shocking rate in the last two decades. Such changing land use/land cover (LULC) is prone to hydrological problems and flash floods are a frequent, eventuality in the lower reaches of the basin. The present research brings out the impact of varying LULC, impervious surfaces on urban surface hydrology and generates storm-runoff scenarios for the hydrological units. The two multi-temporal satellite images were processed and supervised classification is performed with > 75% accuracy. The built-up has increased from 14.4% to 34.37% in the 28 years span, which is concentrated in and around the Pune-PCMC region. Impervious surfaces that were obtained by population calibrated multiple regression models. Almost 50% area of the watershed is impervious, which attribute to increase surface runoff and flash floods. The SCS-CN method was employed to calculate surface runoff of the watershed. The comparison between calculated and measured values of runoff was performed in a statistically precise way which shows no significant difference. Increasing built-up areas, as well as impervious surface areas due to rapid urbanization and industrialization, may lead to generating high runoff volumes in the basin especially in the urbanized areas of the watershed and along the major transportation arteries. Simulations generated with 50 mm and 100 mm rainstorm depth conspicuously noted that most of the changes in terms of increased runoff are constricted to the highly urbanized areas. Considering whole watershed area, the runoff values 39 m³ generated with 1'' rainfall whereas only urbanized areas of the basin (Pune and Pimpari-Chinchwad) were generated 11154 m³ runoff. Such analysis is crucial in providing information regarding their intensity and location, which proves instrumental in their analysis in order to formulate proper mitigation measures and rehabilitation strategies.Keywords: land use/land cover, LULC, impervious surfaces, surface hydrology, storm-runoff scenarios
Procedia PDF Downloads 218973 Hepatoprotective Effect of Ethyl Acetate Fraction of Ficus carica L. Leaves against Carbon Tetrachloride-Induced Toxicity in vitro and in vivo
Authors: Syeda Hira, Muhammad Gulfraz
Abstract:
Background: Liver diseases cause serious health issues. Plants contain active compounds that significantly help in the treatment of various diseases. Ficus carica is traditionally used for the treatment of liver diseases. The purpose of the present study was the isolation and identification of active components from F.carica leaves which are responsible for hepatoprotective activity. Methods: The study was designed to identify the most active hepatoprotective sub-fraction from ethyl acetate fraction of Ficus carica by in vitro study and evaluation of its in vivo hepatoprotective effect in animal models. Ethyl acetate fraction was subjected to column, and a total of eight sub-fractions were obtained. In vitro, the hepatoprotective effect of all sub-fractions was determined on HepG2 cell lines. Toxicity was induced by CCl₄ (Carbon tetrachloride), and silymarin was used as a positive control. On the basis of the results, the most active sub-fraction was subjected to LC-MS and FT-IR analysis for the identification of bioactive compounds. In vivo, the hepatoprotective effect was determined in mice. Toxicity was induced by CCl₄; at the end of the experiment, biochemical parameters such as ALT, AST, ALP, bilirubin, and total protein were estimated in serum. Histopathology of liver tissues was also done. Results: Sub-fraction FVI exhibited significant (P<0.05) hepatoprotective activity as compared to other sub-fractions, which was almost similar to the standard drug silymarin. Six known bioactive compounds were identified from this sub-fraction after LC-MS analysis. In vivo, the hepatoprotective activity of sub-fraction FVI was evaluated in CCl₄-induced toxicated mice. Administration of CCl₄ significantly increased level of ALT (Alanine transaminase), AST (Aspartate aminotransferase), ALP (Alkaline phosphatase), and bilirubin and decreased the total protein. Treatment with sub-fraction FVI significantly (p<0.05) reversed the level of these biomarkers toward normal at both doses of 25 mg/kg and 50 mg/kg. Conclusion: Our findings confirmed the hepatoprotective effect of ethyl acetate fraction of F.carica. It could be a good candidate for the development of a natural hepatoprotective drug; pre-clinical investigation on ethyl acetate fraction is recommended.Keywords: Ficus carica, hepatoprotective, CCl₄, bioactive compounds, liver markers
Procedia PDF Downloads 62972 Implementation of Quality Function Development to Incorporate Customer’s Value in the Conceptual Design Stage of a Construction Projects
Authors: Ayedh Alqahtani
Abstract:
Many construction firms in Saudi Arabia dedicated to building projects agree that the most important factor in the real estate market is the value that they can give to their customer. These firms understand the value of their client in different ways. Value can be defined as the size of the building project in relationship to the cost or the design quality of the materials utilized in finish work or any other features of building rooms such as the bathroom. Value can also be understood as something suitable for the money the client is investing for the new property. A quality tool is required to support companies to achieve a solution for the building project and to understand and manage the customer’s needs. Quality Function Development (QFD) method will be able to play this role since the main difference between QFD and other conventional quality management tools is QFD a valuable and very flexible tool for design and taking into the account the VOC. Currently, organizations and agencies are seeking suitable models able to deal better with uncertainty, and that is flexible and easy to use. The primary aim of this research project is to incorporate customer’s requirements in the conceptual design of construction projects. Towards this goal, QFD is selected due to its capability to integrate the design requirements to meet the customer’s needs. To develop QFD, this research focused upon the contribution of the different (significantly weighted) input factors that represent the main variables influencing QFD and subsequent analysis of the techniques used to measure them. First of all, this research will review the literature to determine the current practice of QFD in construction projects. Then, the researcher will review the literature to define the current customers of residential projects and gather information on customers’ requirements for the design of the residential building. After that, qualitative survey research will be conducted to rank customer’s needs and provide the views of stakeholder practitioners about how these needs can affect their satisfy. Moreover, a qualitative focus group with the members of the design team will be conducted to determine the improvements level and technical details for the design of residential buildings. Finally, the QFD will be developed to establish the degree of significance of the design’s solution.Keywords: quality function development, construction projects, Saudi Arabia, quality tools
Procedia PDF Downloads 124971 Teaching Business Process Management using IBM’s INNOV8 BPM Simulation Game
Authors: Hossam Ali-Hassan, Michael Bliemel
Abstract:
This poster reflects upon our experiences using INNOV8, IBM’s Business Process Management (BPM) simulation game, in online MBA and undergraduate MIS classes over a period of 2 years. The game is designed to gives both business and information technology players a better understanding of how effective BPM impacts an entire business ecosystem. The game includes three different scenarios: Smarter Traffic, which is used to evaluate existing traffic patterns and re-route traffic based on incoming metrics; Smarter Customer Service where players develop more efficient ways to respond to customers in a call centre environment; and Smarter Supply Chains where players balance supply and demand and reduce environmental impact in a traditional supply chain model. We use the game as an experiential learning tool, where students have to act as managers making real time changes to business processes to meet changing business demands and environments. The students learn how information technology (IT) and information systems (IS) can be used to intelligently solve different problems and how computer simulations can be used to test different scenarios or models based on business decisions without having to actually make the potentially costly and/or disruptive changes to business processes. Moreover, when students play the three different scenarios, they quickly see how practical process improvements can help meet profitability, customer satisfaction and environmental goals while addressing real problems faced by municipalities and businesses today. After spending approximately two hours in the game, students reflect on their experience from it to apply several BPM principles that were presented in their textbook through the use of a structured set of assignment questions. For each final scenario students submit a screenshot of their solution followed by one paragraph explaining what criteria you were trying to optimize, and why they picked their input variables. In this poster we outline the course and the module’s learning objectives where we used the game to place this into context. We illustrate key features of the INNOV8 Simulation Game, and describe how we used them to reinforce theoretical concepts. The poster will also illustrate examples from the simulation, assignment, and learning outcomes.Keywords: experiential learning, business process management, BPM, INNOV8, simulation, game
Procedia PDF Downloads 329970 Predicting Expectations of Non-Monogamy in Long-Term Romantic Relationships
Authors: Michelle R. Sullivan
Abstract:
Positive romantic relationships and marriages offer a buffer against a host of physical and emotional difficulties. Conversely, poor relationship quality and marital discord can have deleterious consequences for individuals and families. Research has described non-monogamy, infidelity, and consensual non-monogamy, as both consequential and causal of relationship difficulty, or as a unique way a couple strives to make a relationship work. Much research on consensual non-monogamy has built on feminist theory and critique. To the author’s best knowledge, to date, no studies have examined the predictive relationship between individual and relationship characteristics and expectations of non-monogamy. The current longitudinal study: 1) estimated the prevalence of expectations of partner non-monogamy and 2) evaluated whether gender, sexual identity, age, education, how a couple met, and relationship quality were predictive expectations of partner non-monogamy. This study utilized the publically available longitudinal dataset, How Couples Meet and Stay Together. Adults aged 18- to 98-years old (n=4002) were surveyed by phone over 5 waves from 2009-2014. Demographics and how a couple met were gathered through self-report in Wave 1, and relationship quality and expectations of partner non-monogamy were gathered through self-report in Waves 4 and 5 (n=1047). The prevalence of expectations of partner non-monogamy (encompassing both infidelity and consensual non-monogamy) was 4.8%. Logistic regression models indicated that sexual identity, gender, education, and relationship quality were significantly predictive of expectations of partner non-monogamy. Specifically, male gender, lower education, identifying as lesbian, gay, or bisexual, and a lower relationship quality scores were predictive of expectations of partner non-monogamy. Male gender was not predictive of expectations of partner non-monogamy in the follow up logistic regression model. Age and whether a couple met online were not associated with expectations of partner non-monogamy. Clinical implications include awareness of the increased likelihood of lesbian, gay, and bisexual individuals to have an expectation of non-monogamy and the sequelae of relationship dissatisfaction that may be related. Future research directions could differentiate between non-monogamy subtypes and the person and relationship variables that lead to the likelihood of consensual non-monogamy and infidelity as separate constructs, as well as explore the relationship between predicting partner behavior and actual partner behavioral outcomes.Keywords: open relationship, polyamory, infidelity, relationship satisfaction
Procedia PDF Downloads 159969 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center
Authors: Adolfo Martucci, Iulian Mihai
Abstract:
By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.Keywords: hypersonic, uncertainty, enthalpy, simulations
Procedia PDF Downloads 97968 Dietary Vitamin D Intake and the Bladder Cancer Risk: A Pooled Analysis of Prospective Cohort Studies
Authors: Iris W. A. Boot, Anke Wesselius, Maurice P. Zeegers
Abstract:
Diet may play an essential role in the aetiology of bladder cancer (BC). Vitamin D is involved in various biological functions which have the potential to prevent BC development. Besides, vitamin D also influences the uptake of calcium and phosphorus , thereby possibly indirectly influencing the risk of BC. The aim of the present study was to investigate the relation between vitamin D intake and BC risk. Individual dietary data were pooled from three cohort studies. Food item intake was converted to daily intakes of vitamin D, calcium and phosphorus. Pooled multivariate hazard ratios (HRs), with corresponding 95% confidence intervals (CIs) were obtained using Cox-regression models. Analyses were adjusted for gender, age and smoking status (Model 1), and additionally for the food groups fruit, vegetables and meat (Model 2). Dose–response relationships (Model 1) were examined using a nonparametric test for trend. In total, 2,871 cases and 522,364 non-cases were included in the analyses. The present study showed an overall increased BC risk for high dietary vitamin D intake (HR: 1.14, 95% CI: 1.03-1.26). A similar increase BC risk with high vitamin D intake was observed among women and for the non-muscle invasive BC subtype, (HR: 1.41, 95% CI: 1.15-1.72, HR: 1.13, 95% CI: 1.01-1.27, respectively). High calcium intake decreased the BC risk among women (HR: 0.81, 95% CI: 0.67-0.97). A combined inverse effect on BC risk was observed for low vitamin D intake and high calcium intake (HR: 0.67, 95% CI: 0.48-0.93), while a positive effect was observed for high vitamin D intake in combination with low, moderate and high phosphorus (HR: 1.31, 95% CI: 1.09-1.59, HR: 1.17, 95% CI: 1.01-1.36, HR: 1.16, 95% CI: 1.03-1.31, respectively). Combining all nutrients showed a decreased BC risk for low vitamin D intake, high calcium and moderate phosphor intake (HR: 0.37, 95% CI: 0.18-0.75), and an increased BC risk for moderate intake of all the nutrients (HR: 1.18, 95% CI: 1.02-1.38), for high vitamin D and low calcium and phosphor intake (HR: 1.28, 95% CI: 1.01-1.62), and for moderate vitamin D and calcium and high phosphorus intake (HR: 1.27, 95% CI: 1.01-1.59). No significant dose-response analyses were observed. The findings of this study show an increased BC risk for high dietary vitamin D intake and a decreased risk for high calcium intake. Besides, the study highlights the importance of examining the effect of a nutrient in combination with complementary nutrients for risk assessment. Future research should focus on nutrients in a wider context and in nutritional patterns.Keywords: bladder cancer, nutritional oncology, pooled cohort analysis, vitamin D
Procedia PDF Downloads 84967 Investigation of Nucleation and Thermal Conductivity of Waxy Crude Oil on Pipe Wall via Particle Dynamics
Authors: Jinchen Cao, Tiantian Du
Abstract:
As waxy crude oil is easy to crystallization and deposition in the pipeline wall, it causes pipeline clogging and leads to the reduction of oil and gas gathering and transmission efficiency. In this paper, a mesoscopic scale dissipative particle dynamics method is employed, and constructed four pipe wall models, including smooth wall (SW), hydroxylated wall (HW), rough wall (RW), and single-layer graphene wall (GW). Snapshots of the simulation output trajectories show that paraffin molecules interact with each other to form a network structure that constrains water molecules as their nucleation sites. Meanwhile, it is observed that the paraffin molecules on the near-wall side are adsorbed horizontally between inter-lattice gaps of the solid wall. In the pressure range of 0 - 50 MPa, the pressure change has less effect on the affinity properties of SS, HS, and GS walls, but for RS walls, the contact angle between paraffin wax and water molecules was found to decrease with the increase in pressure, while the water molecules showed the opposite trend, the phenomenon is due to the change in pressure, leading to the transition of paraffin wax molecules from amorphous to crystalline state. Meanwhile, the minimum crystalline phase pressure (MCPP) was proposed to describe the lowest pressure at which crystallization of paraffin molecules occurs. The maximum number of crystalline clusters formed by paraffin molecules at MCPP in the system showed NSS (0.52 MPa) > NHS (0.55 MPa) > NRS (0.62 MPa) > NGS (0.75 MPa). The MCPP on the graphene surface, with the least number of clusters formed, indicates that the addition of graphene inhibited the crystallization process of paraffin deposition on the wall surface. Finally, the thermal conductivity was calculated, and the results show that on the near-wall side, the thermal conductivity changes drastically due to the occurrence of adsorption crystallization of paraffin waxes; on the fluid side the thermal conductivity gradually tends to stabilize, and the average thermal conductivity shows: ĸRS(0.254W/(m·K)) > ĸRS(0.249W/(m·K)) > ĸRS(0.218W/(m·K)) > ĸRS(0.188W/(m·K)).This study provides a theoretical basis for improving the transport efficiency and heat transfer characteristics of waxy crude oil in terms of wall type, wall roughness, and MCPP.Keywords: waxy crude oil, thermal conductivity, crystallization, dissipative particle dynamics, MCPP
Procedia PDF Downloads 72966 Gassing Tendency of Natural Ester Based Transformer oils: Low Alkane Generation in Stray Gassing Behaviour
Authors: Thummalapalli CSM Gupta, Banti Sidhiwala
Abstract:
Mineral oils of naphthenic and paraffinic type have been traditionally been used as insulating liquids in the transformer applications to protect the solid insulation from moisture and ensures effective heat transfer/cooling. The performance of these type of oils have been proven in the field over many decades and the condition monitoring and diagnosis of transformer performance have been successfully monitored through oil properties and dissolved gas analysis methods successfully. Different type of gases representing various types of faults due to components or operating conditions effectively. While large amount of data base has been generated in the industry on dissolved gas analysis for mineral oil based transformer oils and various models for predicting the fault and analysis, oil specifications and standards have also been modified to include stray gassing limits which cover the low temperature faults and becomes an effective preventative maintenance tool that can benefit greatly to know the reasons for the breakdown of electrical insulating materials and related components. Natural esters have seen a rise in popularity in recent years due to their "green" credentials. Some of its benefits include biodegradability, a higher fire point, improvement in load capability of transformer and improved solid insulation life than mineral oils. However, the Stray gases evolution like hydrogen and hydrocarbons like methane (CH4) and ethane (C2H6) show very high values which are much higher than the limits of mineral oil standards. Though the standards for these type esters are yet to be evolved, the higher values of hydrocarbon gases that are available in the market is of concern which might be interpreted as a fault in transformer operation. The current paper focuses on developing a natural ester based transformer oil which shows very levels of stray gassing by standard test methods show much lower values compared to the products available currently and experimental results on various test conditions and the underlying mechanism explained.Keywords: biodegadability, fire point, dissolved gassing analysis, stray gassing
Procedia PDF Downloads 97965 Multiscale Process Modeling of Ceramic Matrix Composites
Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya
Abstract:
Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.Keywords: digital engineering, finite elements, manufacturing, molecular dynamics
Procedia PDF Downloads 98964 Gender Differences in Morphological Predictors of Running Ability: A Comprehensive Analysis of Male and Female Athletes in Cape Coast Metropolis, Ghana
Authors: Stephen Anim, Emmanuel O. Sarpong, Daniel Apaak
Abstract:
This study investigates the relationship between morphological predictors and running ability, emphasizing gender-specific variations among male and female athletes in Cape Coast Metropolis (CCM), Ghana. The dynamic interplay between an athlete's physique and their performance capabilities holds particular relevance in the realm of sports science, influencing training methodologies and talent identification processes. The research aims to contribute comprehensive insights into the morphological determinants of running proficiency, with a specific focus on the local athletic community in Cape Coast Metropolis. Utilizing a correlational research design, a thorough analysis of morphological features, encompassing 22 morphological features including body weight, 6 measurements related to body length, 7 body girth, and knee diameter, and 7 skinfold measurements against 50m dash, among male and female athletes, was conducted. The study involved 420 athletes both male (N=210) and female (N=210) aged 16-22 from 10 Senior High Schools (SHS) in the Cape Coast Metropolis, providing a representative sample of the local athletic community. The collected data were statistically analysed using means and standard deviation, and stepwise multiple regression to determine how morphological variables contribute to and predict running proficiency outcomes. The investigation revealed that athletes from Senior High Schools (SHS) in Cape Coast Metropolis (CCM) exhibit well-developed physiques and sufficient fitness levels suitable for overall athletic performance, taking into account gender differences. Moreover, the findings suggested that approximately 77% of running ability could be attributed to morphological factors, leading to diverse predictive models for male and female athletes within SHS in CCM, Ghana. Consequently, these formulated equations hold promise for predicting running ability among young athletes, particularly in the context of SHS environments.Keywords: body fat, body girth, body length, morphological features, running ability, senior high school
Procedia PDF Downloads 67963 Assessment of Acute Oral Toxicity Studies and Anti Diabetic Activity of Herbal Mediated Nanomedicine
Authors: Shanker Kalakotla, Krishna Mohan Gottumukkala
Abstract:
Diabetes is a metabolic disorder characterized by hyperglycemia, carbohydrates, altered lipids and proteins metabolism. In recent research nanotechnology is a blazing field for the researchers; latterly there has been prodigious excitement in the nanomedicine and nano pharmacological area for the study of silver nanoparticles synthesis using natural products. Biological methods have been used to synthesize silver nanoparticles in presence of medicinally active antidiabetic plants, and this intention made us assess the biologically synthesized silver nanoparticles from the seed extract of Psoralea corylfolia using 1 mM silver nitrate solution. The synthesized herbal mediated silver nanoparticles (HMSNP’s) then subjected to various characterization techniques such as XRD, SEM, EDX, TEM, DLS, UV and FT-IR respectively. In current study, the silver nanoparticles tested for in-vitro anti-diabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines-425. Herbal mediated silver nanoparticles were successfully obtained from bioreduction of silver nitrate using Psoralea corylifolia plant extract. Silver nanoparticles have been appropriately characterized and confirmed using different types of equipment viz., UV-vis spectroscopy, XRD, FTIR, DLS, SEM and EDX analysis. From the behavioral observations of the study, the female albino mice did not show sedation, respiratory arrest, and convulsions. Test compounds did not cause any mortality at the dose level tested (i.e., 2000 mg/kg body weight) doses till the end of 14 days of observation and were considered safe. It may be concluded that LD50 of the HMSNPs was 2000mg/kg body weight. Since LD50 of the HMSNPs was 2000mg/kg body weight, so the preferred dose range for HMSNPs falls between the levels of 200 and 400 mg/kg. Further In-vivo pharmacological models and biochemical investigations will clearly elucidate the mechanism of action and will be helpful in projecting the currently synthesized silver nanoparticles as a therapeutic target in treating chronic ailments.Keywords: herbal mediated silver nanoparticles, HMSNPs, toxicity of silver nanoparticles, PTP1B in-vitro anti-diabetic assay female albino mice, 425 OECD guidelines
Procedia PDF Downloads 273962 ROCK Signaling and Radio Resistance: The Association and the Effect
Authors: P. Annapurna, Cecil Ross, Sudhir Krishna, Sweta Srivastava
Abstract:
Irradiation plays a pivotal role in cervical cancer treatment, however some tumors exhibit resistance to therapy while some exhibit relapse, due to better repair and enhanced resistance mechanisms operational in their cells. The present study aims to understand the signaling mechanism operational in resistance phenotype and in the present study we report the role of Rho GTPase associated protein kinase (ROCK) signaling in cervical carcinoma radio-resistance. ROCK signaling has been implicated in several tumor progressions and is important for DNA repair. Irradiation of spheroid cultures of SiHa cervical carcinoma derived cell line at 6Gy resulted in generation of resistant cells in vitro which had better clonogenic abilities and formed larger and more colonies, in soft agar colony formation assay, as compared to the non-irradiated cells. These cells also exhibited an enhanced motility phenotype. Cell cycle profiling showed the cells to be blocked in G2M phase with enhanced pCDC2 levels indicating onset of possible DNA repair mechanism. Notably, 3 days post-irradiation, irradiated cells showed increased ROCK2 translocation to the nucleus with enhanced protein expression as compared to the non-irradiated cells. Radio-sensitization of the resistant cells was enhanced using Y27632, an inhibitor to ROCK signaling. The treatment of resistant cells with Y27632 resulted in increased cell death upon further irradiation. This observation has been confirmed using inhibitory antibodies to ROCK1/2. Result show that both ROCK1/2 have a functional contribution in radiation resistance of cervical cancer cells derived from cell lines. Interestingly enrichment of stem like cells (Hoechst negative cells) was also observed upon irradiation and these cells were markedly sensitive to Y27632 treatment. Our results thus suggest the role of ROCK signaling in radio-resistance in cervical carcinoma. Further studies with human biopsies, mice models and mechanistic of ROCK signaling in the context of radio-resistance will clarify the role of this molecule further and allow for therapeutics development.Keywords: cervical carcinoma, radio-resistance, ROCK signaling, cancer treatment
Procedia PDF Downloads 331961 Robotic Exoskeleton Response During Infant Physiological Knee Kinematics
Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno
Abstract:
Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics
Procedia PDF Downloads 118960 Bridging Healthcare Information Systems and Customer Relationship Management for Effective Pandemic Response
Authors: Sharda Kumari
Abstract:
As the Covid-19 pandemic continues to leave its mark on the global business landscape, companies have had to adapt to new realities and find ways to sustain their operations amid social distancing measures, government restrictions, and heightened public health concerns. This unprecedented situation has placed considerable stress on both employees and employers, underscoring the need for innovative approaches to manage the risks associated with Covid-19 transmission in the workplace. In response to these challenges, the pandemic has accelerated the adoption of digital technologies, with an increasing preference for remote interactions and virtual collaboration. Customer relationship management (CRM) systems have risen to prominence as a vital resource for organizations navigating the post-pandemic world, providing a range of benefits that include acquiring new customers, generating insightful consumer data, enhancing customer relationships, and growing market share. In the context of pandemic management, CRM systems offer three primary advantages: (1) integration features that streamline operations and reduce the need for multiple, costly software systems; (2) worldwide accessibility from any internet-enabled device, facilitating efficient remote workforce management during a pandemic; and (3) the capacity for rapid adaptation to changing business conditions, given that most CRM platforms boast a wide array of remotely deployable business growth solutions, a critical attribute when dealing with a dispersed workforce in a pandemic-impacted environment. These advantages highlight the pivotal role of CRM systems in helping organizations remain resilient and adaptive in the face of ongoing global challenges.Keywords: healthcare, CRM, customer relationship management, customer experience, digital transformation, pandemic response, patient monitoring, patient management, healthcare automation, electronic health record, patient billing, healthcare information systems, remote workforce, virtual collaboration, resilience, adaptable business models, integration features, CRM in healthcare, telehealth, pandemic management
Procedia PDF Downloads 101959 Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model
Authors: Muhammad Ali Siddiquee, Md. Alauddin, Md. Omar Faruque, Zakir Hossain Howlader, Mohammad Asaduzzaman
Abstract:
Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health.Keywords: fermented rice bran, crude rice bran oil, amino acids, proximate composition, gamma-oryzanol, fatty acids, heavy metals, physiochemical parameters
Procedia PDF Downloads 66958 Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases
Authors: Jae-Yong Park, Yeo-Kyeong Lee, Hee-Sun Kim
Abstract:
Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth.Keywords: cranium, finite element analysis, mandible, masticatory action, occlusal force
Procedia PDF Downloads 392957 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications
Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell
Abstract:
Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting
Procedia PDF Downloads 270956 Airborne Particulate Matter Passive Samplers for Indoor and Outdoor Exposure Monitoring: Development and Evaluation
Authors: Kholoud Abdulaziz, Kholoud Al-Najdi, Abdullah Kadri, Konstantinos E. Kakosimos
Abstract:
The Middle East area is highly affected by air pollution induced by anthropogenic and natural phenomena. There is evidence that air pollution, especially particulates, greatly affects the population health. Many studies have raised a warning of the high concentration of particulates and their affect not just around industrial and construction areas but also in the immediate working and living environment. One of the methods to study air quality is continuous and periodic monitoring using active or passive samplers. Active monitoring and sampling are the default procedures per the European and US standards. However, in many cases they have been inefficient to accurately capture the spatial variability of air pollution due to the small number of installations; which eventually is attributed to the high cost of the equipment and the limited availability of users with expertise and scientific background. Another alternative has been found to account for the limitations of the active methods that is the passive sampling. It is inexpensive, requires no continuous power supply, and easy to assemble which makes it a more flexible option, though less accurate. This study aims to investigate and evaluate the use of passive sampling for particulate matter pollution monitoring in dry tropical climates, like in the Middle East. More specifically, a number of field measurements have be conducted, both indoors and outdoors, at Qatar and the results have been compared with active sampling equipment and the reference methods. The samples have been analyzed, that is to obtain particle size distribution, by applying existing laboratory techniques (optical microscopy) and by exploring new approaches like the white light interferometry to. Then the new parameters of the well-established model have been calculated in order to estimate the atmospheric concentration of particulates. Additionally, an extended literature review will investigate for new and better models. The outcome of this project is expected to have an impact on the public, as well, as it will raise awareness among people about the quality of life and about the importance of implementing research culture in the community.Keywords: air pollution, passive samplers, interferometry, indoor, outdoor
Procedia PDF Downloads 398955 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT
Authors: Jae Ni Jang, Young Uk Kim
Abstract:
Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT
Procedia PDF Downloads 48954 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 101953 Structural Strength Evaluation and Wear Prediction of Double Helix Steel Wire Ropes for Heavy Machinery
Authors: Krunal Thakar
Abstract:
Wire ropes combine high tensile strength and flexibility as compared to other general steel products. They are used in various application areas such as cranes, mining, elevators, bridges, cable cars, etc. The earliest reported use of wire ropes was for mining hoist application in 1830s. Over the period, there have been substantial advancement in the design of wire ropes for various application areas. Under operational conditions, wire ropes are subjected to varying tensile loads and bending loads resulting in material wear and eventual structural failure due to fretting fatigue. The conventional inspection methods to determine wire failure is only limited to outer wires of rope. However, till date, there is no effective mathematical model to examine the inter wire contact forces and wear characteristics. The scope of this paper is to present a computational simulation technique to evaluate inter wire contact forces and wear, which are in many cases responsible for rope failure. Two different type of ropes, IWRC-6xFi(29) and U3xSeS(48) were taken for structural strength evaluation and wear prediction. Both ropes have a double helix twisted wire profile as per JIS standards and are mainly used in cranes. CAD models of both ropes were developed in general purpose design software using in house developed formulation to generate double helix profile. Numerical simulation was done under two different load cases (a) Axial Tension and (b) Bending over Sheave. Different parameters such as stresses, contact forces, wear depth, load-elongation, etc., were investigated and compared between both ropes. Numerical simulation method facilitates the detailed investigation of inter wire contact and wear characteristics. In addition, various selection parameters like sheave diameter, rope diameter, helix angle, swaging, maximum load carrying capacity, etc., can be quickly analyzed.Keywords: steel wire ropes, numerical simulation, material wear, structural strength, axial tension, bending over sheave
Procedia PDF Downloads 152952 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest
Procedia PDF Downloads 121951 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics
Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno
Abstract:
Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics
Procedia PDF Downloads 83950 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis
Authors: Eric Lacoste
Abstract:
Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging
Procedia PDF Downloads 132949 Understanding Help Seeking among Black Women with Clinically Significant Posttraumatic Stress Symptoms
Authors: Glenda Wrenn, Juliet Muzere, Meldra Hall, Allyson Belton, Kisha Holden, Chanita Hughes-Halbert, Martha Kent, Bekh Bradley
Abstract:
Understanding the help seeking decision making process and experiences of health disparity populations with posttraumatic stress disorder (PTSD) is central to development of trauma-informed, culturally centered, and patient focused services. Yet, little is known about the decision making process among adult Black women who are non-treatment seekers as they are, by definition, not engaged in services. Methods: Audiotaped interviews were conducted with 30 African American adult women with clinically significant PTSD symptoms who were engaged in primary care, but not in treatment for PTSD despite symptom burden. A qualitative interview guide was used to elucidate key themes. Independent coding of themes mapped to theory and identification of emergent themes were conducted using qualitative methods. An existing quantitative dataset was analyzed to contextualize responses and provide a descriptive summary of the sample. Results: Emergent themes revealed that active mental avoidance, the intermittent nature of distress, ambivalence, and self-identified resilience as undermining to help seeking decisions. Participants were stuck within the help-seeking phase of ‘recognition’ of illness and retained a sense of “it is my decision” despite endorsing significant social and environmental negative influencers. Participants distinguished ‘help acceptance’ from ‘help seeking’ with greater willingness to accept help and importance placed on being of help to others. Conclusions: Elucidation of the decision-making process from the perspective of non-treatment seekers has implications for outreach and treatment within models of integrated and specialty systems care. The salience of responses to trauma symptoms and stagnation in the help seeking recognition phase are findings relevant to integrated care service design and community engagement.Keywords: culture, help-seeking, integrated care, PTSD
Procedia PDF Downloads 235948 Repetitive Compulsions of Trauma: Critically Analyzing Damages Done When Perpetuating Heroic White Masculinity at Federally Managed United States Civil War Battlefields
Authors: Cait M. Henry, Sarah Jackson
Abstract:
Abstract-This study is built from the culmination of four years of research into the cultural interpretation of Civil War heritage at a National Park Service (NPS) site, namely the Manassas National Battlefield Park, within an increasingly contentious political landscape surrounding the U.S. Civil War. Originating as questions regarding the relevancy of historic battlefields to the current culture within the United States soon evolved into more philosophical questions about what it means to feel welcome at a battlefield site, and what are considered appropriate actions and behaviors at what was once a mass gravesite. In trying to answer these questions, this work aims to critically analyze the confluence between the cultural authority of the NPS and collective memories of the U.S. Civil War. Operationalizing trauma as repeated violent acts within public spaces, the authors posit that the normalization of violence from white or white-passing men partially stems from the glorification of heroic white masculinity at National Park Service Civil War battlefield sites—especially those which also commemorate Confederate military strategy and prowess. From here the study moves outward to focus on the prevalence of heroic white masculinity within the nation’s current social zeitgeist, and particularly the notion that to take back masculinity one must utilize violence as a means of symbolic restoration from perceptions of white victimhood. The study ends with case studies of dark tourism framing at international battlefields as models for expanding heritage interpretation at the NPS site to foster narratives of empathy and responsibility within an increasingly contentious political landscape within the United States of America. Visitors do not leave Manassas National Battlefield Park with answers about the social and moral implications of the U.S. Civil War, but the tools for championing their own (predominantly white) heroic masculinity. As such, it is only logical that one common reaction when masculinity is symbolically threatened is to enact violence against Others as a restorative force within the United States.Keywords: confederate heritage, military history, national park service, trauma, United States civil war
Procedia PDF Downloads 12947 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving
Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian
Abstract:
In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning
Procedia PDF Downloads 148