Search results for: raw biological samples
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8203

Search results for: raw biological samples

1243 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 247
1242 Prevalence of Chlamydia Trachomatis Infection in Multiple Anatomical Sites among Patients at Stis Center, Thailand

Authors: Siwimol Phoomniyom, Pathom Karaipoom, Rossaphorn Kittyaowaman

Abstract:

Background: C. trachomatis is the most common bacterial sexually transmitted infections. Although infection with C. trachomatis can be treated with antibiotic, it is frequently asymptomatic, especially in extragenital sites. Hence, if screening tests are not performed, undetected and untreated is a crucial problem for C. trachomatis infection, especially in Thailand, which is less well studied. We sought to assess the prevalence of C. trachomatis infection in multiple anatomical sites among patients attending Bangrak STIs Center. Methods: We examined laboratory results of all patients at baseline visit from 3 January 2018 to 27 December 2019. These results were tested by a validated in-house real time PCR specify for the cryptic plasmid gene of C. trachomatis. The prevalence of C. trachomatis was analyzed by anatomical sites, sexes, and ages. Urogenital samples were obtained from urethral swab of men and cervical swab of women. The median ages of the patients were 32 years (range 13-89 years). Chi-square test by IBM SPSS statistic version 20 was used to assess difference in the distribution of variables between groups. Results: Among 3,789 patients, the prevalence for C. trachomatis infection was the highest in rectal (16.1%), followed by urogenital (11.2%) and pharyngeal (3.5%) sites. Rectal and urogenital infection in men was higher than in women, with the highest prevalence of 16.6% in rectal site. Both rectal and urogenital sites also showed statistically significant differences between sexes (P<0.001). Meanwhile, pharyngeal C. trachomatis infection rate was higher in women than men. Interestingly, the chlamydia prevalence was the highest in age 13-19 years of all three sites (18.5%, urogenital; 17.7%, rectal; 6.5%, pharyngeal), with statistically significant difference between age groups (P<0.001). Total of 45 C. trachomatis infections, 20.0%, 51.1%, and 6.7% were isolated from urogenital, rectal, and pharyngeal sites. In total, 75.6%, 26.7%, and 80.0% of chlamydia infections would have been missed, if only urogenital, rectal, or pharyngeal screening was performed. Conclusions: The highest source of C. trachomatis infection was the rectal site. While, the highest prevalence in men was at rectal site, that in women was at urogenital site. The highest chlamydia prevalence was found in adolescent age group, indicating that the pediatric population was a high-risk group. This finding also elucidated that a high proportion of C. trachomatis infection would be missed, if only single anatomical site screening was performed, especially in extragenital sites. Hence, extragenital screening is also required for the extensive C. trachomatis detection.

Keywords: chlamydia trachomatis, anatomical sites, sexes, ages

Procedia PDF Downloads 69
1241 The Response of Soil Biodiversity to Agriculture Practice in Rhizosphere

Authors: Yan Wang, Guowei Chen, Gang Wang

Abstract:

Soil microbial diversity is one of the important parameters to assess the soil fertility and soil health, even stability of the ecosystem. In this paper, we aim to reveal the soil microbial difference in rhizosphere and root zone, even to pick the special biomarkers influenced by the long term tillage practices, which included four treatments of no-tillage, ridge tillage, continuous cropping with corn and crop rotation with corn and soybean. Here, high-throughput sequencing was performed to investigate the difference of bacteria in rhizosphere and root zone. The results showed a very significant difference of species richness between rhizosphere and root zone soil at the same crop rotation system (p < 0.01), and also significant difference of species richness was found between continuous cropping with corn and corn-soybean rotation treatment in the rhizosphere statement, no-tillage and ridge tillage in root zone soils. Implied by further beta diversity analysis, both tillage methods and crop rotation systems influence the soil microbial diversity and community structure in varying degree. The composition and community structure of microbes in rhizosphere and root zone soils were clustered distinctly by the beta diversity (p < 0.05). Linear discriminant analysis coupled with effect size (LEfSe) analysis of total taxa in rhizosphere picked more than 100 bacterial taxa, which were significantly more abundant than that in root zone soils, whereas the number of biomarkers was lower between the continuous cropping with corn and crop rotation treatment, the same pattern was found at no-tillage and ridge tillage treatment. Bacterial communities were greatly influenced by main environmental factors in large scale, which is the result of biological adaptation and acclimation, hence it is beneficial for optimizing agricultural practices.

Keywords: tillage methods, biomarker, biodiversity, rhizosphere

Procedia PDF Downloads 162
1240 Evaluation of Radio Protective Potential of Indian Bamboo Leaves

Authors: Mansi Patel, Priti Mehta

Abstract:

Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation.

Keywords: bamboo leaf extract, Cytokinesis blocked micronuclei (CBMN) assay, ionizing radiation, radio protector

Procedia PDF Downloads 144
1239 Seed Yield and Quality of Late Planted Rabi Wheat Crop as Influenced by Basal and Foliar Application of Urea

Authors: Omvati Verma, Shyamashrre Roy

Abstract:

A field experiment was conducted with three basal nitrogen levels (90, 120 and 150 kg N/ha) and five foliar application of urea (absolute control, water spray, 3% urea spray at anthesis, 7 and 14 days after anthesis) at G.B. Pant University of Agriculture & Technology, Pantnagar, U.S. Nagar (Uttarakhand) during rabi season in a factorial randomized block design with three replications. Results revealed that nitrogen application of 150 kg/ha produced the highest seed yield, straw and biological yield and it was significantly superior to 90 kg N/ha and was at par with 120 kg N/ha. The number of tillers increased significantly with increase in nitrogen doses up to 150 kg N/ha. Spike length, number of grains per spike, grain weight per spike and thousand seed weight showed significantly higher values with 120 kg N/ha than 90 kg N/ha and were at par with that of 150 kg N/ha. Also, plant height showed similar trend. Leaf area index and chlorophyll content showed significant increase with an increase in nitrogen levels at different stages. In the case of foliar spray treatments, urea spray at anthesis showed highest value for yield and yield attributes. In case of spike length and thousand seed weight, it was similar with the urea spray at 7 and 14 days after anthesis, but for rest of the yield attributes, it was significantly higher than rest of the treatments. Among seed quality parameters protein and sedimentation value showed significant increase due to increase in nitrogen rates whereas, starch and hectolitre weight had a decreasing trend. Wet gluten content was not influenced by nitrogen levels. Foliar urea spray at anthesis resulted in highest value of protein and hectolitre weight whereas, urea spray at 7 days after anthesis showed highest value of sedimentation value and wet gluten content.

Keywords: foliar application, nitrogenous fertilizer, seed quality, yield

Procedia PDF Downloads 277
1238 Effect of Mindfulness Training on Psychological Well-Being: An Experimental Study Using a Mobile App as Intervention

Authors: Beeto W. C. Leung, Nicole C. Y. Lee

Abstract:

It was well known that college students experienced a high level of stress and anxiety. College athletes, a special group of college students, may even encounter a higher level of pressure and distress due to their dual endeavors in academic and athletic settings. Due to the high demands and costs of mental health services, easily accessible, web-based self-help interventions are getting more popular. The aim of the present experimental study was to examine the potential intervention effect of a mindfulness-based self-help mobile App, called 'Smiling Mind', on mindfulness and psychological well-being. Forty-six college athletes, recruited from athletic teams of two local universities in Hong Kong, were randomly assigned to the Mindfulness App Group (MAG) and the Control Group (CG). All participants were administered the Mindful Attention Awareness Scale, Geriatric Depression Scale, and Perceived Stress Scale-10 before the study (Time 1, T1) and after the 4-week intervention (Time 2, T2). MAG was requested to use the app and follow the instructions every day for at least 5 days per week. Participants were also asked to record their daily app usage time. Results showed that, for MAG, from T1 to T2, mindfulness has been increased from 3.25 to 3.92; depressive symptoms and stress has been significantly decreased from 8.6 to 5.1 and 24.8 to 13.5 respectively while for the CG, mindfulness has been decreased slightly from 3.29 to 3.13; depressive symptoms and stress has been slightly increased from 7.1 to 7.3 and 24.1 to 27.1 respectively. Three mixed-design ANOVAs with time (T1, T2) as the within-subjects factor and intervention group (MAG, CG) as the between-subjects factor revealed a main effect of time on mindfulness, F(1, 41) = 10.28, p < 0.01, depressive symptoms, F(1, 41) = 6.55, p < 0.02 and stress, F(1, 41) = 16.96, p < 0.001 respectively. Both predicted interaction between time and intervention group on mindfulness, F(1, 41) = 26.6, p < 0.001, ηp 2 =0.39, depressive symptoms, F(1, 41) = 8.00, p < 0.01, ηp 2 =0.16 and Stress F(1, 41) = 49.3, p < 0.001, ηp 2 =0.55 were significant meaning that participants using the Mindfulness Mobile App in the intervention did experienced a significant increase in mindfulness and significant decrease in depressive symptoms and perceived level of stress after the 4-week intervention when compared with the control group. The present study provided encouraging empirical support for using Smiling Mind, a self-help mobile app, to promote mindfulness and mental health in a cost-effective way. Further studies should examine the potential use of Smiling Mind in different samples, including children and adolescence, as well as, investigate the lasting effects of using the app on other psychosocial outcomes such as emotional regulations.

Keywords: college athletes, experimental study, mindfulness mobile apps, psychological well-being

Procedia PDF Downloads 117
1237 Biomechanical Perspectives on the Urinary Bladder: Insights from the Hydrostatic Skeleton Concept

Authors: Igor Vishnevskyi

Abstract:

Introduction: The urinary bladder undergoes repeated strain during its working cycle, suggesting the presence of an efficient support system, force transmission, and mechanical amplification. The concept of a "hydrostatic skeleton" (HS) could contribute to our understanding of the functional relationships among bladder constituents. Methods: A multidisciplinary literature review was conducted to identify key features of the HS and to gather evidence supporting its applicability in urinary bladder biomechanics. The collected evidence was synthesized to propose a framework for understanding the potential hydrostatic properties of the urinary bladder based on existing knowledge and HS principles. Results: Our analysis revealed similarities in biomechanical features between living fluid-filled structures and the urinary bladder. These similarities include the geodesic arrangement of fibres, the role of enclosed fluid (urine) in force transmission, prestress as a determinant of stiffness, and the ability to maintain shape integrity during various activities. From a biomechanical perspective, urine may be considered an essential component of the bladder. The hydrostatic skeleton, with its autonomy and flexibility, may provide insights for researchers involved in bladder engineering. Discussion: The concept of a hydrostatic skeleton offers a holistic perspective for understanding bladder function by considering multiple mechanical factors as a single structure with emergent properties. Incorporating viewpoints from various fields on HS can help identify how this concept applies to live fluid-filled structures or organs and reveal its broader relevance to biological systems, both natural and artificial. Conclusion: The hydrostatic skeleton (HS) design principle can be applied to the urinary bladder. Understanding the bladder as a structure with HS can be instrumental in biomechanical modelling and engineering. Further research is required to fully elucidate the cellular and molecular mechanisms underlying HS in the bladder.

Keywords: hydrostatic skeleton, urinary bladder morphology, shape integrity, prestress, biomechanical modelling

Procedia PDF Downloads 76
1236 Reactive Fabrics for Chemical Warfare Agent Decomposition Using Particle Crystallization

Authors: Myungkyu Park, Minkun Kim, Sunghoon Kim, Samgon Ryu

Abstract:

Recently, research for reactive fabrics which have the characteristics of CWA (Chemical Warfare Agent) decomposition is being performed actively. The performance level of decomposition for CWA decomposition in various environmental condition is one of the critical factors in applicability as protective materials for NBC (Nuclear, Biological, and Chemical) protective clothing. In this study, results of performance test for CWA decomposition by reactive fabric made of electrospinning web and reactive particle are presented. Currently, the MOF (metal organic framework) type of UiO-66-NH₂ is frequently being studied as material for decomposing CWA especially blister agent HD [Bis(2-chloroethyl) sulfide]. When we test decomposition rate with electrospinning web made of PVB (Polyvinyl Butiral) polymer and UiO-66-NH₂ particle, we can get very high protective performance than the case other particles are applied. Furthermore, if the repellant surface fabric is added on reactive material as the component of protective fabric, the performance of layer by layered reactive fabric could be approached to the level of current NBC protective fabric for HD decomposition rate. Reactive fabric we used in this study is manufactured by electrospinning process of polymer which contains the reactive particle of UiO-66-NH₂, and we performed crystalizing process once again on that polymer fiber web in solvent systems as a second step for manufacturing reactive fabric. Three kinds of polymer materials are used in this process, but PVB was most suitable as an electrospinning fiber polymer considering the shape of product. The density of particle on fiber web and HD decomposition rate is enhanced by secondary crystallization compared with the results which are not processed. The amount of HD penetration by 24hr AVLAG (Aerosol Vapor Liquid Assessment Group) swatch test through the reactive fabrics with secondary crystallization and without crystallization is 24 and 146μg/cm² respectively. Even though all of the reactive fiber webs for this test are combined with repellant surface layer at outer side of swatch, the effects of secondary crystallization of particle for the reactive fiber web are remarkable.

Keywords: CWA, Chemical Warfare Agent, gas decomposition, particle growth, protective clothing, reactive fabric, swatch test

Procedia PDF Downloads 293
1235 The Importance of a Coating and Architecture of the Surface Metal on the Survival of Uncemented Total Knee Arthroplasty

Authors: Raymond Puijk, Rachid Rassir, Inger N. Sierevelt, Anneke Spekenbrink-Sporen, Bart G. C. W. Pijls, Rob G. H. H. Nelissen, Peter A. Nolte

Abstract:

Background: Among uncemented total knee arthroplasty (TKA), a wide variety of metal surface structures (MSS) and coatings exist to enhance implants' biological properties (i.e., bone ingrowth). This study explores the variety of MSS-coating combinations and compares their mid-long-term survivorships with cemented TKAs, by using data from the Dutch Arthroplasty Register. Methods: A total of 235,500 cemented and 11,132 uncemented primary TKAs with a median follow-up of 5.1 years were included. MSS-coating combinations were (1) Porous-uncoated (n=8986), (2) Beaded-hydroxyapatite (HA)(n=1093), (3) Matte-uncoated (n=846), (4) Matte-Titanium-nitride (TiN) (n=207). Five- and 10-year revision-free survival for all-cause revisions, and aseptic loosening of the tibial component, were calculated and compared by using Kaplan-Meier, Log-rank tests, and multivariable Cox proportional hazard regression analyses. Results: Ten-year survival rates with all-cause revisions as an endpoint, were 94.2% for cement, and 94.7%, 96.3%, 92.1%, and 79.0% for porous-uncoated, beaded-HA, matte-uncoated, and Matte-TiN, respectively (p<0.01). Rates for aseptic loosening were 98.8% for cemented, and 98.7%, 99.8%, 97.2%, and 94.9% for the uncemented, respectively (p<0.01).The beaded-HA implants were half the risk for an all-cause revision compared to cemented implants (p<0.01). Matte-uncoated and matte-TiN implants were at more risk of an all-cause revision than cemented implants (p=0.01, p<0.01). Proportions of revisions for aseptic loosening were comparable among most groups. Conclusion: Based on Dutch registry data, four main MSS-coating combinations among uncemented TKAs were found. survivorships for all-cause revisions and aseptic release differed widely between groups. Beaded-HA and porous-uncoated implants had the best survival rates among the uncemented TKAs and were non-inferior to the cemented TKAs.

Keywords: total knee arthroplasty, cement, uncemented, cementless;, metal surface structure, coating

Procedia PDF Downloads 149
1234 Synthesis and Characterization of Heterogeneous Silver Nanoparticles for Protection of Ancient Egyptian Artifacts from Microbial Deterioration

Authors: Mohamed Abd Elfattah Ibraheem Elghrbawy

Abstract:

Biodeterioration of cultural heritage is a complex process which is caused by the interaction of many physical, chemical and biological agents; the growth of microorganisms can cause staining, cracking, powdering, disfigurement and displacement of monuments material, which leads to the permanent loss of monuments material. Organisms causing biodeterioration on monuments have usually been controlled by chemical products (biocides). In order to overcome the impact of biocides on the environment, human health and monument substrates, alternative tools such as antimicrobial agents from natural products can be used for monuments conservation and protection. The problem is how to formulate antibacterial agents with high efficiency and low toxicity. Various types of biodegradable metal nanoparticles (MNPs) have many applications in plant extract delivery. So, Nano-encapsulation of metal and natural antimicrobial agents using polymers such as chitosan increases their efficacy, specificity and targeting ability. Green synthesis and characterization of metal nanoparticles such as silver with natural products extracted from some plants having antimicrobial properties, using the ecofriendly method one pot synthesis. Encapsulation of the new synthesized mixture using some biopolymers such as chitosan nanoparticles. The dispersions and homogeneity of the antimicrobial heterogeneous metal nanoparticles encapsulated by biopolymers will be characterized and confirmed by Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Zeta seizer. The effect of the antimicrobial biopolymer metal nano-formulations on normal human cell lines will be investigated to evaluate the environmental safety of these formulations. The antimicrobial toxic activity of the biopolymeric antimicrobial metal nanoparticles formulations will be will be investigated to evaluate their efficiency towards different pathogenic bacteria and fungi.

Keywords: antimicrobial, biodeterioration, chitosan, cultural heritage, silver

Procedia PDF Downloads 79
1233 Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film

Authors: Nalla Somaiah, Praveen Kumar

Abstract:

Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation.

Keywords: Blech structure, electromigration, temperature gradient, thin films

Procedia PDF Downloads 253
1232 Technology Futures in Global Militaries: A Forecasting Method Using Abstraction Hierarchies

Authors: Mark Andrew

Abstract:

Geopolitical tensions are at a thirty-year high, and the pace of technological innovation is driving asymmetry in force capabilities between nation states and between non-state actors. Technology futures are a vital component of defence capability growth, and investments in technology futures need to be informed by accurate and reliable forecasts of the options for ‘systems of systems’ innovation, development, and deployment. This paper describes a method for forecasting technology futures developed through an analysis of four key systems’ development stages, namely: technology domain categorisation, scanning results examining novel systems’ signals and signs, potential system-of systems’ implications in warfare theatres, and political ramifications in terms of funding and development priorities. The method has been applied to several technology domains, including physical systems (e.g., nano weapons, loitering munitions, inflight charging, and hypersonic missiles), biological systems (e.g., molecular virus weaponry, genetic engineering, brain-computer interfaces, and trans-human augmentation), and information systems (e.g., sensor technologies supporting situation awareness, cyber-driven social attacks, and goal-specification challenges to proliferation and alliance testing). Although the current application of the method has been team-centred using paper-based rapid prototyping and iteration, the application of autonomous language models (such as GPT-3) is anticipated as a next-stage operating platform. The importance of forecasting accuracy and reliability is considered a vital element in guiding technology development to afford stronger contingencies as ideological changes are forecast to expand threats to ecology and earth systems, possibly eclipsing the traditional vulnerabilities of nation states. The early results from the method will be subjected to ground truthing using longitudinal investigation.

Keywords: forecasting, technology futures, uncertainty, complexity

Procedia PDF Downloads 113
1231 Predictive Factors of Exercise Behaviors of Junior High School Students in Chonburi Province

Authors: Tanida Julvanichpong

Abstract:

Exercise has been regarded as a necessary and important aspect to enhance physical performance and psychology health. Body weight statistics of students in junior high school students in Chonburi Province beyond a standard risk of obesity. Promoting exercise among Junior high school students in Chonburi Province, essential knowledge concerning factors influencing exercise is needed. Therefore, this study aims to (1) determine the levels of perceived exercise behavior, exercise behavior in the past, perceived barriers to exercise, perceived benefits of exercise, perceived self-efficacy to exercise, feelings associated with exercise behavior, influence of the family to exercise, influence of friends to exercise, and the perceived influence of the environment on exercise. (2) examine the predicting ability of each of the above factors while including personal factors (sex, educational level) for exercise behavior. Pender’s Health Promotion Model was used as a guide for the study. Sample included 652 students in junior high schools, Chonburi Provience. The samples were selected by Multi-Stage Random Sampling. Data Collection has been done by using self-administered questionnaires. Data were analyzed using descriptive statistics, Pearson’s product moment correlation coefficient, Eta, and stepwise multiple regression analysis. The research results showed that: 1. Perceived benefits of exercise, influence of teacher, influence of environmental, feelings associated with exercise behavior were at a high level. Influence of the family to exercise, exercise behavior, exercise behavior in the past, perceived self-efficacy to exercise and influence of friends were at a moderate level. Perceived barriers to exercise were at a low level. 2. Exercise behavior was positively significant related to perceived benefits of exercise, influence of the family to exercise, exercise behavior in the past, perceived self-efficacy to exercise, influence of friends, influence of teacher, influence of environmental and feelings associated with exercise behavior (p < .01, respectively) and was negatively significant related to educational level and perceived barriers to exercise (p < .01, respectively). Exercise behavior was significant related to sex (Eta = 0.243, p=.000). 3. Exercise behavior in the past, influence of the family to exercise significantly contributed 60.10 percent of the variance to the prediction of exercise behavior in male students (p < .01). Exercise behavior in the past, perceived self-efficacy to exercise, perceived barriers to exercise, and educational level significantly contributed 52.60 percent of the variance to the prediction of exercise behavior in female students (p < .01).

Keywords: predictive factors, exercise behaviors, Junior high school, Chonburi Province

Procedia PDF Downloads 613
1230 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.

Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding

Procedia PDF Downloads 290
1229 Formulation of the N-Acylethanolamine, Linoleoylethanolamide into Cubosomes for Delivery across the Blood-Brain Barrier

Authors: Younus Mohammad, Anita B. Fallah, Ben J. Boyd, Shakila B. Rizwan

Abstract:

N-acylethanolamines (NAEs) are endogenous lipids, which have neuromodulatory properties. NAEs have shown neuroprotective properties in various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and ischemic stroke. However, NAEs are eliminated rapidly in vivo by enzymatic hydrolysis. We propose to encapsulate NAEs in liquid crystalline nanoparticles (cubosomes) to increase their biological half-life and explore their therapeutic potential. Recently, we have reported the co-formulation and nanostructural characterization of cubosomes containing the NAE, oleoylethanolamide and a synthetic cubosome forming lipid phytantriol. Here, we report on the formulation of cubosomes with the NAE, linoleoylethanolamide (LEA) as the core cubosome forming lipid. LEA-cubosomes were formulated in the presence of three different steric stabilisers: two brain targeting ligands, Tween 80 and Pluronic P188 and a control, Pluronic F127. Size, morphology and internal structure of formulations were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo–TEM) and small angle X–ray scattering (SAXS), respectively. Chemical stability of LEA in formulations was investigated using high-performance liquid chromatography (HPLC). Cytotoxicity of formulations towards human cerebral microvascular endothelial cell line (hCMEC/D3) was also investigated using an MTT (3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay. All cubosome formulations had mean particle size of less than 250 nm and were uniformly distributed with polydispersity indices less than 0.2. Cubosomes produced had a bicontinuous cubic internal structure with an Im3m space group but different lattice parameters, indicating the different modes of interaction between the stabilisers and LEA. LEA in formulations was found to be chemically stable. At concentrations of up to 20 µg/mL LEA in the presence of all the stabilisers, greater than 80% cell viability was observed.

Keywords: blood-brain barrier, cubosomes, linoleoyl ethanolamide, N-acylethanolamines (NAEs)

Procedia PDF Downloads 202
1228 Significance of Molecular Autophagic Pathway in Gaucher Disease Pathology

Authors: Ozlem Oral, Emre Taskin, Aysel Yuce, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is an evolutionary conserved lysosome-dependent catabolic pathway, responsible for the degradation of long-lived proteins, abnormal aggregates and damaged organelles which cannot be degraded by the ubiquitin-proteasome system. Lysosomes degrade the substrates through the activity of lysosomal hydrolases and lysosomal membrane-bound proteins. Mutations in the coding region of these proteins cause malfunctional lysosomes, which contributes to the pathogenesis of lysosomal storage diseases. Gaucher disease is a lysosomal storage disease resulting from the mutation of a lysosomal membrane-associated glycoprotein called glucocerebrosidase and its cofactor saposin C. The disease leads to intracellular accumulation of glucosylceramide and other glycolipids. Because of the essential role of lysosomes in autophagic degradation, Gaucher disease may directly be linked to this pathway. In this study, we investigated the expression of autophagy and/or lysosome-related genes and proteins in fibroblast cells isolated from patients with different mutations. We carried out confocal microscopy analysis and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. We also evaluated lysosomal pH by active lysosome staining and lysosomal enzyme activity. Beside lysosomes, we also performed proteasomal activity and cell death analysis in patient samples. Our data showed significant attenuation in the expression of key autophagy-related genes and accumulation of their proteins in mutant cells. We found decreased the ability of autophagosomes to fuse with lysosomes, associated with elevated lysosomal pH and reduced lysosomal enzyme activity. Proteasomal degradation and cell death analysis showed reduced proteolytic activity of the proteasome, which consequently leads to increased susceptibility to cell death. Our data indicate that the major degradation pathways are affected by multifunctional lysosomes in mutant patient cells and may underlie in the mechanism of clinical severity of Gaucher patients. (This project is supported by TUBITAK-3501-National Young Researchers Career Development Program, Project No: 112T130).

Keywords: autophagy, Gaucher's disease, glucocerebrosidase, mutant fibroblasts

Procedia PDF Downloads 323
1227 Possible Endocrinal and Liver Enzymes Toxicities Associated with Long Term Exposure to Benzene in Saudi Arabia

Authors: Faizah Asiri, Mohammed Fathy, Saeed Alghamdi, Nahlah Ayoub, Faisal Asiri

Abstract:

Background: - The strategies for this study were based on the toxic effect of long-term inhalation of Benzene on hormones and liver enzymes and various parameters related to it. The following databases were searched: benzene, hepatotoxic, benzene metabolism, hormones, testosterone, hemotoxic, and prolonged exposure. A systematic strategy is designed to search the literature that links benzene with the multiplicity and different types of intoxication or the medical abbreviations of diseases relevant to benzene exposure. Evidence suggests that getting rid of inhaled gasoline is by exhalation. Absorbed benzene is metabolized by giving phenolic acid as well as meconic acid, followed by urinary excretion of conjugate sulfates and glucuronides. Materials and Methods :- This work was conducted in the Al-Khadra laboratory in Taif 2020/2021 and aimed to measure some of the possible endocrinal and liver toxicities associated with benzene's long-term exposure in Saudi Arabia at the station workers who are considered the most exposed category to gasoline. One hundred ten station workers were included in this study. They were divided into four patient groups according to the chronic exposure rate to benzene, one control group, and three other groups of exposures. As follows: patient Group 1 (controlled group), patient Group 2 (exposed less than 1y), patient Group 3 (exposed 1-5 y), patient Group 4 (more than 5). Each group is compared with blood sample parameters (ALT, FSH and Testosterone, TSH). Blood samples were drawn from the participants, and statistical tests were performed. Significant change (p≤0.05) was examined compared to the control group. Workers' exposure to benzene led to a significant change in hematological, hormonal, and hepatic factors compared to the control group. Results:- The results obtained a relationship between long-term exposure to benzene and a decrease in the level of testosterone and FSH hormones, including that it poses a toxic risk in the long term (p≤0.05) when compared to the control. We obtained results confirming that there is no significant coloration between years of exposure and TSH level (p≤0.05) when compared to the control. Conclusion:- We conclude that some hormones and liver enzymes are affected by chronic doses of benzene through inhalation after our study was on the group most exposed to benzene, which is gas station workers.

Keywords: toxicities, benzene, hormones, station workers

Procedia PDF Downloads 86
1226 Isolate-Specific Variations among Clinical Isolates of Brucella Identified by Whole-Genome Sequencing, Bioinformatics and Comparative Genomics

Authors: Abu S. Mustafa, Mohammad W. Khan, Faraz Shaheed Khan, Nazima Habibi

Abstract:

Brucellosis is a zoonotic disease of worldwide prevalence. There are at least four species and several strains of Brucella that cause human disease. Brucella genomes have very limited variation across strains, which hinder strain identification using classical molecular techniques, including PCR and 16 S rDNA sequencing. The aim of this study was to perform whole genome sequencing of clinical isolates of Brucella and perform bioinformatics and comparative genomics analyses to determine the existence of genetic differences across the isolates of a single Brucella species and strain. The draft sequence data were generated from 15 clinical isolates of Brucella melitensis (biovar 2 strain 63/9) using MiSeq next generation sequencing platform. The generated reads were used for further assembly and analysis. All the analysis was performed using Bioinformatics work station (8 core i7 processor, 8GB RAM with Bio-Linux operating system). FastQC was used to determine the quality of reads and low quality reads were trimmed or eliminated using Fastx_trimmer. Assembly was done by using Velvet and ABySS softwares. The ordering of assembled contigs was performed by Mauve. An online server RAST was employed to annotate the contigs assembly. Annotated genomes were compared using Mauve and ACT tools. The QC score for DNA sequence data, generated by MiSeq, was higher than 30 for 80% of reads with more than 100x coverage, which suggested that data could be utilized for further analysis. However when analyzed by FastQC, quality of four reads was not good enough for creating a complete genome draft so remaining 11 samples were used for further analysis. The comparative genome analyses showed that despite sharing same gene sets, single nucleotide polymorphisms and insertions/deletions existed across different genomes, which provided a variable extent of diversity to these bacteria. In conclusion, the next generation sequencing, bioinformatics, and comparative genome analysis can be utilized to find variations (point mutations, insertions and deletions) across different genomes of Brucella within a single strain. This information could be useful in surveillance and epidemiological studies supported by Kuwait University Research Sector grants MI04/15 and SRUL02/13.

Keywords: brucella, bioinformatics, comparative genomics, whole genome sequencing

Procedia PDF Downloads 380
1225 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 118
1224 Development of Strategy for Enhanced Production of Industrial Enzymes by Microscopic Fungi in Submerged Fermentation

Authors: Zhanara Suleimenova, Raushan Blieva, Aigerim Zhakipbekova, Inkar Tapenbayeva, Zhanar Narmuratova

Abstract:

Green processes are based on innovative technologies that do not negatively affect the environment. Industrial enzymes originated from biological systems can effectively contribute to sustainable development through being isolated from microorganisms which are fermented using primarily renewable resources. Many widespread microorganisms secrete a significant amount of biocatalysts into the environment, which greatly facilitates the task of their isolation and purification. The ability to control the enzyme production through the regulation of their biosynthesis and the selection of nutrient media and cultivation conditions allows not only to increase the yield of enzymes but also to obtain enzymes with certain properties. In this regard, large potentialities are embedded in immobilized cells. Enzyme production technology in a secreted active form enabling industrial application on an economically feasible scale has been developed. This method is based on the immobilization of enzyme producers on a solid career. Immobilizing has a range of advantages: decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, the ability of various enzymes' simultaneous production, etc. Design of proposed equipment gives the opportunity to increase the activity of immobilized cell culture filtrate comparing to free cells, growing in periodic culture conditions. Such technology allows giving a 10-times raise in culture productivity, to prolong the process of fungi cultivation and periods of active culture liquid generation. Also, it gives the way to improve the quality of filtrates (to make them more clear) and exclude time-consuming processes of recharging fermentative vials, that require manual removing of mycelium.

Keywords: industrial enzymes, immobilization, submerged fermentation, microscopic fungi

Procedia PDF Downloads 140
1223 ‘Social Health’, ‘Physical Health’ and Wellbeing: Analyzing the Interplay between the Practices of Heavy Drinking and Exercise among Young People with Bourdieusian Concepts

Authors: Jukka Törrönen

Abstract:

In the article, we examine the interplay between the practices of heavy drinking and exercise among young people as patterned around the ‘social’ and ‘physical health’ approaches. The comparison helps us to clarify why young people are currently drinking less than earlier and how the neoliberal healthism discourse, as well as the feminine tradition of taking care of one’s body, are modifying young people’s heavy drinking practices. The data is based on interviews (n = 56) in Sweden among 15-16-year-olds and 18˗19-year-olds. By drawing on Pierre Bourdieu’s concepts of habitus, field, and capital, we examine what kinds of resources of wellbeing young people accumulate in the fields of heavy drinking and exercise, how these resources carry symbolic value for distinction, and what kind of health-related habitus they imply. The analysis suggests that as heavy drinking is no longer able to stand as a practice through which one may acquire capital that is more valuable than the capital acquired in other fields, this lessens peer pressure to drink among young people. Our analysis further shows that the healthism discourse modifies young people’s heavy drinking practices both from inside and from outside. The interviewees translate the symbolic value of healthism discourse to social vulnerability and deploy it for the purposes of increasing one’s social status among peers. Moreover, our analysis demonstrates that the social spaces and positions in intoxication and exercise are shaped by gendered dualisms of masculine dominance. However, while the interviewees naturalize the gender binaries in intoxication as based on biological drives, they understand gender binaries in exercise as normative social constructions of neoliberal society. As these binaries emphasize the struggle for recognition of the symbolic value of bodily look, they may shift young men’s attention from risk-taking to issues that traditionally have been female concerns.

Keywords: young people, decline in drinking , health, intoxication, exercise, Bourdieu

Procedia PDF Downloads 117
1222 Assessment of Selected Marine Organisms from Malaysian Coastal Areas for Inhibitory Activity against the Chikungunya Virus

Authors: Yik Sin Chan, Nam Weng Sit, Fook Yee Chye, van Ofwegen Leen, de Voogd Nicole, Kong Soo Khoo

Abstract:

Chikungunya fever is an arboviral disease transmitted by the Aedes mosquitoes. It has resulted in epidemics of the disease in tropical countries in the Indian Ocean and South East Asian regions. The recent spread of this disease to the temperate countries such as France and Italy, coupled with the absence of vaccines and effective antiviral drugs make chikungunya fever a worldwide health threat. This study aims to investigate the anti-chikungunya virus activity of selected marine organism samples collected from Malaysian coastal areas, including seaweeds (Caulerpa racemosa, Caulerpa sertularioides and Kappaphycus alvarezii), a soft coral (Lobophytum microlobulatum) and a sponge (Spheciospongia vagabunda). Following lyophilization (oven drying at 40C for K. alvarezii) and grinding to powder form, each sample was subjected to sequential solvent extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and distilled water in order to extract bioactive compounds. The antiviral activity was evaluated using monkey kidney epithelial (Vero) cells infected with the virus (multiplicity of infection=1). The cell viability was determined by Neutral Red uptake assay. 70% of the 30 extracts showed weak inhibitory activity with cell viability ≤30%. Seven of the extracts exhibited moderate inhibitory activity (cell viability: 31%-69%). These were the chloroform, ethyl acetate, ethanol and methanol extracts of C. racemosa; chloroform and ethyl acetate extracts of L. microlobulatum; and the chloroform extract of C. sertularioides. Only the hexane and ethanol extracts of L. microlobulatum showed strong inhibitory activity against the virus, resulting in cell viabilities (mean±SD; n=3) of 73.3±2.6% and 79.2±0.9%, respectively. The corresponding mean 50% effective concentrations (EC50) for the extracts were 14.2±0.2 and 115.3±1.2 µg/mL, respectively. The ethanol extract of the soft coral L. microlobulatum appears to hold the most promise for further characterization of active principles as it possessed greater selectivity index (SI>5.6) compared to the hexane extract (SI=2.1).

Keywords: antiviral, seaweed, sponge, soft coral, vero cell

Procedia PDF Downloads 287
1221 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 320
1220 The Structural Analysis of Out-of-Sequence Thrust: Insights from Chaura Thrust of Higher Himalaya in Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

This paper focuses on the structural analysis of Chaura Thrust in Himachal Pradesh, India. It investigates mylonitised zones under microscopic observation, characterizes the box fold and its signature in the regional geology of Himachal Himalaya, and documents the Higher Himalayan Out-of-Sequence Thrust (OOST) in the region. The study aims to provide field evidence and documentation for Chaura Thrust (CT), which was previously considered a blind thrust. The research methodology involves geological field observation, microscopic studies, and strain analysis of oriented samples collected along the Jhakri-Chaura transect. The study presents findings such as the activation ages of MCT and STDS, the identification of mylonitised zones and various types of crenulated schistosity, and the manifestation of box folds and OOST. The presence of meso- and micro-scale box folds around Chaura suggests structural upliftment, while kink folds and shear sense indicators were identified. The research highlights the importance of microscopic studies and contributes to the understanding of the structural analysis of CT and its implications in the regional geology of the Himachal Himalaya. Mylonitised zones with S-C fabric were observed under the microscope, along with dynamic and bulging recrystallization and sub-grain formation. Various types of crenulated schistosity were documented, including a rare case of crenulation cleavage and sigmoid Muscovite occurring together. The conclusions emphasize the non-blind nature of Chaura Thrust, the characterization of box folds, the activation timing of different thrusts, and the significance of microscopic observations. Jhakri/Chaura/Sarahan thrusts are the zone of tectonic imbrication that transport Higher Himalayan gneissic rock on Rampur Quartzite. The evidence of frequent earthquakes and landslides in the Jhakri region confirm the study of morphometric conclusion that there is considerable neo-tectonic activity along an active fault in the Sutlej river basin. The study also documents the presence of OOST in Himachal Pradesh and its potential impact on strain accumulation.

Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust

Procedia PDF Downloads 85
1219 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 97
1218 Ionic Liquids as Substrates for Metal-Organic Framework Synthesis

Authors: Julian Mehler, Marcus Fischer, Martin Hartmann, Peter S. Schulz

Abstract:

During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors.

Keywords: ionic liquids, ionothermal synthesis, material synthesis, MIL-53, MOFs

Procedia PDF Downloads 206
1217 Micro-Nutrient Bio-Fortification in Sprouts Grown on Fortified Fiber Mats

Authors: J. Nyenhuis, J. Drelich

Abstract:

This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease (CVD), metabolic syndrome (MetS), diabetes and related complications. Recycled cellulose fibers and clay saturated with micro-nutrient ions can be converted to a novel mineral-metal hybrid material in which the fiber mat becomes a carrier of essential micro-nutrients. The reduction of ionic to metallic copper was accomplished using hydrogen at temperatures ranging from 400o to 600oC. Copper particles with diameters ranging from ~1 to 400-500 nm reside on the recycled fibers that make up the mats. Seeds purchased from a commercial, organic supplier were germinated on the specially engineered cellulose fiber mats that incorporated w10 wt% clay fillers saturated with either copper particles or ionic copper. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed 1.5 to 1.6 increase in Cu of the sprouts grown on the fiber mats with copper particles, and 2.3 to 2.5 increase on mats with ionic copper as compared to the control samples. The antibacterial properties of materials saturated with copper ions at room temperature and at temperatures up to 400°C have been verified with halo method tests against Escherichia Coli in previous studies. E. coli is a known pathogenic risk in sprout production. Copper exhibits excellent antibacterial properties when tested on S. aureus, a pathogenic gram-positive bacterium. This has also been confirmed for the fiber-copper hybrid material in this study. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.

Keywords: bio-fortification, copper nutrient analysis, micro-nutrient uptake, sprouts and mineral-fortified mats

Procedia PDF Downloads 353
1216 The Subcellular Localisation of EhRRP6 and Its Involvement in Pre-Ribosomal RNA Processing in Growth-Stressed Entamoeba histolytica

Authors: S. S. Singh, A. Bhattacharya, S. Bhattacharya

Abstract:

The eukaryotic exosome complex plays a pivotal role in RNA biogenesis, maturation, surveillance and differential expression of various RNAs in response to varying environmental signals. The exosome is composed of evolutionary conserved nine core subunits and the associated exonucleases Rrp6 and Rrp44. Rrp6p is crucial for the processing of rRNAs, other non-coding RNAs, regulation of polyA tail length and termination of transcription. Rrp6p, a 3’-5’ exonuclease is required for degradation of 5’-external transcribed spacer (ETS) released from the rRNA precursors during the early steps of pre-rRNA processing. In the parasitic protist Entamoeba histolytica in response to growth stress, there occurs the accumulation of unprocessed pre-rRNA and 5’ ETS sub fragment. To understand the processes leading to this accumulation, we looked for Rrp6 and the exosome subunits in E. histolytica, by in silico approaches. Of the nine core exosomal subunits, seven had high percentage of sequence similarity with the yeast and human. The EhRrp6 homolog contained exoribonuclease and HRDC domains like yeast but its N- terminus lacked the PMC2NT domain. EhRrp6 complemented the temperature sensitive phenotype of yeast rrp6Δ cells suggesting conservation of biological activity. We showed 3’-5’ exoribonuclease activity of EhRrp6p with in vitro-synthesized appropriate RNAs substrates. Like the yeast enzyme, EhRrp6p degraded unstructured RNA, but could degrade the stem-loops slowly. Furthermore, immunolocalization revealed that EhRrp6 was nuclear-localized in normal cells but was diminished from nucleus during serum starvation, which could explain the accumulation of 5’ETS during stress. Our study shows functional conservation of EhRrp6p in E.histolytica, an early-branching eukaryote, and will help to understand the evolution of exosomal components and their regulatory function.

Keywords: entamoeba histolytica, exosome complex, rRNA processing, Rrp6

Procedia PDF Downloads 200
1215 MAOD Is Estimated by Sum of Contributions

Authors: David W. Hill, Linda W. Glass, Jakob L. Vingren

Abstract:

Maximal accumulated oxygen deficit (MAOD), the gold standard measure of anaerobic capacity, is the difference between the oxygen cost of exhaustive severe intensity exercise and the accumulated oxygen consumption (O2; mL·kg–1). In theory, MAOD can be estimated as the sum of independent estimates of the phosphocreatine and glycolysis contributions, which we refer to as PCr+glycolysis. Purpose: The purpose was to test the hypothesis that PCr+glycolysis provides a valid measure of anaerobic capacity in cycling and running. Methods: The participants were 27 women (mean ± SD, age 22 ±1 y, height 165 ± 7 cm, weight 63.4 ± 9.7 kg) and 25 men (age 22 ± 1 y, height 179 ± 6 cm, weight 80.8 ± 14.8 kg). They performed two exhaustive cycling and running tests, at speeds and work rates that were tolerable for ~5 min. The rate of oxygen consumption (VO2; mL·kg–1·min–1) was measured in warmups, in the tests, and during 7 min of recovery. Fingerprick blood samples obtained after exercise were analysed to determine peak blood lactate concentration (PeakLac). The VO2 response in exercise was fitted to a model, with a fast ‘primary’ phase followed by a delayed ‘slow’ component, from which was calculated the accumulated O2 and the excess O2 attributable to the slow component. The VO2 response in recovery was fitted to a model with a fast phase and slow component, sharing a common time delay. Oxygen demand (in mL·kg–1·min–1) was determined by extrapolation from steady-state VO2 in warmups; the total oxygen cost (in mL·kg–1) was determined by multiplying this demand by time to exhaustion and adding the excess O2; then, MAOD was calculated as total oxygen cost minus accumulated O2. The phosphocreatine contribution (area under the fast phase of the post-exercise VO2) and the glycolytic contribution (converted from PeakLac) were summed to give PCr+glycolysis. There was not an interaction effect involving sex, so values for anaerobic capacity were examined using a two-way ANOVA, with repeated measures across method (PCr+glycolysis vs MAOD) and mode (cycling vs running). Results: There was a significant effect only for exercise mode. There was no difference between MAOD and PCr+glycolysis: values were 59 ± 6 mL·kg–1 and 61 ± 8 mL·kg–1 in cycling and 78 ± 7 mL·kg–1 and 75 ± 8 mL·kg–1 in running. Discussion: PCr+glycolysis is a valid measure of anaerobic capacity in cycling and running, and it is as valid for women as for men.

Keywords: alactic, anaerobic, cycling, ergometer, glycolysis, lactic, lactate, oxygen deficit, phosphocreatine, running, treadmill

Procedia PDF Downloads 135
1214 Sulforaphane Alleviates Muscular Dystrophy in Mdx Mice by Activation of Nrf2

Authors: Chengcao Sun, Cuili Yang, Shujun Li, Ruilin Xue, Liang Wang, Yongyong Xi, Dejia Li

Abstract:

Backgrounds: Sulforaphane, one of the most important isothiocyanates in the human diet, is known to have chemopreventive and antioxidant activities in different tissues via activation of NF-E2-related factor 2 (Nrf2)-mediated induction of antioxidant/phase II enzymes, such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). However, its effects on muscular dystrophy remain unknown. This work was undertaken to evaluate the effects of Sulforaphane on Duchenne muscular dystrophy (DMD). Methods: 4-week-old mdx mice were treated with SFN by gavage (2 mg/kg body weight per day) for 8 weeks. Blood was collected from eye socket every week, and tibial anterior, extensor digitorum longus, gastrocnemius, soleus, triceps brachii muscles and heart samples were collected after 8-week gavage. Force measurements and mice exercise capacity assays were detected. GSH/GSSG ratio, TBARS, CK and LDH levels were analyzed by spectrophotometric methods. H&E staining was used to analyze histological and morphometric of skeletal muscles of mdx mice, and Evas blue dye staining was made to detect sarcolemmal integrity of mdx mice. Further, the role of Sulforaphane on Nrf2/ARE signaling pathway was analyzed by ELISA, western blot and qRT-PCR. Results: Our results demonstrated that SFN treatment increased the expression and activity of muscle phase II enzymes NQO1 and HO-1 with Nrf2 dependent manner. SFN significantly increased skeletal muscle mass, muscle force (~30%), running distance (~20%) and GSH/GSSG ratio (~3.2 folds) of mdx mice, and decreased the activities of plasma creatine phosphokinase (CK) (~45%) and lactate dehydrogenase (LDH) (~40%), gastrocnemius hypertrophy (~25%), myocardial hypertrophy (~20%) and MDA levels (~60%). Further, SFN treatment also reduced the central nucleation (~40%), fiber size variability, inflammation and improved the sarcolemmal integrity of mdx mice. Conclusions: Collectively, these results show that SFN can improve muscle function, pathology and protect dystrophic muscle from oxidative damage in mdx mice through Nrf2 signaling pathway, which indicate Nrf2 may have clinical implications for the treatment of patients with muscular dystrophy.

Keywords: sulforaphane, duchenne muscular dystrophy, Nrf2, oxidative stress

Procedia PDF Downloads 321