Search results for: oxidized silicon surfaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1688

Search results for: oxidized silicon surfaces

1028 Thermal Analysis of a Composite of Coco Fiber and Látex

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

Given the unquestionable need of environmental preservation, the natural fibers have been seen as a salutary alternative for production of composites in substitution to the synthetic fibers, vitreous and metallic. In this work, the behavior of a composite was analyzed done with fiber of the peel of the coconut as reinforcement and latex as head office, when submitted the source of heat. The temperature profiles were verified in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. It was also analyzed the behavior of this composite when submitted to a cold source. As consequence, in function of the answers of the system, conclusions were reached.

Keywords: natural fiber, composite, temperature, latex, gradient

Procedia PDF Downloads 799
1027 A Vertical Grating Coupler with High Efficiency and Broadband Operation

Authors: Md. Asaduzzaman

Abstract:

A Silicon-on-insulator (SOI) perfectly vertical fibre-to-chip grating coupler is proposed and designed based on engineered subwavelength structures. The high directionality of the coupler is achieved by implementing step gratings to realize asymmetric diffraction and by applying effective index variation with auxiliary ultra-subwavelength gratings. The proposed structure is numerically analysed by using two-dimensional Finite Difference Time Domain (2D FDTD) method and achieves 96% (-0.2 dB) coupling efficiency and 39 nm 1-dB bandwidth. This highly efficient GC is necessary for applications where coupling efficiency between the optical fibre and nanophotonics waveguide is critically important, for instance, experiments of the quantum photonics integrated circuits. Such efficient and broadband perfectly vertical grating couplers are also significantly advantageous in highly dense photonic packaging.

Keywords: diffraction grating, FDTD, grating couplers, nanophotonic

Procedia PDF Downloads 56
1026 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide

Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu

Abstract:

This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.

Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide

Procedia PDF Downloads 226
1025 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 440
1024 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device

Authors: Long Kim Vu

Abstract:

The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.

Keywords: CFD, FPGA, heat transfer, thermal analysis

Procedia PDF Downloads 173
1023 Experimental Study of Sahara Climat Effect in Photovoltaic Solar Module

Authors: A. Benatiallah, A. Hadjadj, D. Benatiallah, F. Abaidi, A. Harrouz

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system is very fluctuates and depend of meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work we have studies the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: photovoltaic, multi-crystal module, experimental, effect of dust, performances

Procedia PDF Downloads 296
1022 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat

Abstract:

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle

Procedia PDF Downloads 392
1021 Surface Topography Measurement by Confocal Spectral Interferometry

Authors: A. Manallah, C. Meier

Abstract:

Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.

Keywords: confocal spectral interferometry, nondestructive testing, optical metrology, surface topography, roughness

Procedia PDF Downloads 259
1020 Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor

Authors: Jan Doutreloigne

Abstract:

The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation.

Keywords: audio amplifier, multi-level switching amplifier, power efficiency, pulse width modulation, PWM, self-oscillating amplifier

Procedia PDF Downloads 329
1019 Impact of Surface Roughness on Light Absorption

Authors: V. Gareyan, Zh. Gevorkian

Abstract:

We study oblique incident light absorption in opaque media with rough surfaces. An analytical approach with modified boundary conditions taking into account the surface roughness in metallic or dielectric films has been discussed. Our approach reveals interference-linked terms that modify the absorption dependence on different characteristics. We have discussed the limits of our approach that hold valid from the visible to the microwave region. Polarization and angular dependences of roughness-induced absorption are revealed. The existence of an incident angle or a wavelength for which the absorptance of a rough surface becomes equal to that of a flat surface is predicted. Based on this phenomenon, a method of determining roughness correlation length is suggested.

Keywords: light, absorption, surface, roughness

Procedia PDF Downloads 42
1018 Effectiveness of Catalysis in Ozonation for the Removal of Herbizide 2,4 Dichlorophenoxyacetic Acid from Contaminated Water

Authors: S. Shanthi

Abstract:

Catalyzed oxidation processes show extraordinary guarantee for application in numerous wastewater treatment ranges. Advanced oxidation processes are emerging innovation that might be utilized for particular objectives in wastewater treatment. This research work provides a solution for removal a refractory organic compound 2,4-dichlorophenoxyaceticacid a common water pollutant. All studies were done in batch mode in a constantly stirred reactor. Alternative ozonation processes catalysed by transition metals or granular activated carbon have been investigated for degradation of organics. Catalytic ozonation under study are homogeneous catalytic ozonation, which is based on ozone activation by transition metal ions present in aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of Granular Activated Carbon (GAC). The present studies reveal that heterogeneous catalytic ozonation using GAC favour the ozonation of 2,4-dichlorophenoxyaceticacid by increasing the rate of ozonation and a much higher degradation of substrates were obtained in a given time. Be that it may, Fe2+and Fe3+ ions decreased the rate of degradation of 2,4-dichlorophenoxyaceticacid indicating that it acts as a negative catalyst. In case of heterogeneous catalytic ozonation using GAC catalyst it was found that during the initial 5 minutes of contact solution concentration decreased significantly as the pollutants were adsorbed initially. Thereafter the substrate started getting oxidized and ozonation became a dominates the treatment process. The exhausted GAC was found to be regenerated in situ. The percentage reduction of the substrate was maximum achieved in minimum possible time when GAC catalyst is employed.

Keywords: ozonation, homogeneous catalysis, heterogeneous catalysis, granular activated carbon

Procedia PDF Downloads 236
1017 Utilization of Treated Spend Pot Lining by Product from the Primary Aluminum Production in Cement and Concrete

Authors: Hang Tran, Victor Brial, Luca Sorelli, Claudiane Ouellet-Plamondon, David Conciatori, Laurent Birry

Abstract:

Spend pot lining (SPL) is a by-product generated from primary aluminum production. SPL consists of two parts, the first cut is rich in carbonaceous materials, and the second cut is rich in aluminum and silicon oxides. After treating by the hydrometallurgical Low Caustic Leaching and Liming process, the refractory part of SPL becomes an inert material, called LCLL ash in this project. LCLL ash was calcined at different temperatures (800 and 1000°C) and Calcined LCLL ash ground as fines of cement and replacement a part of cement in concrete production. The effect of LCLL ash on the chemical properties, mechanical properties and fresh behavior of concrete was evaluated by isothermal calorimetry, compressive test, and slump test. These results were compared to the reference mixture.

Keywords: spend pot lining, concrete, cement, compressive strength, calorimetry

Procedia PDF Downloads 205
1016 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst

Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha

Abstract:

Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.

Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst

Procedia PDF Downloads 160
1015 Nanostructured Multi-Responsive Coatings for Tuning Surface Properties

Authors: Suzanne Giasson, Alberto Guerron

Abstract:

Stimuli-responsive polymer coatings can be used as functional elements in nanotechnologies, such as valves in microfluidic devices, as membranes in biomedical engineering, as substrates for the culture of biological tissues or in developing nanomaterials for targeted therapies in different diseases. However, such coatings usually suffer from major shortcomings, such as a lack of selectivity and poor environmental stability. The study will present multi-responsive hierarchical and hybrid polymer-based coatings aiming to overcome some of these limitations. Hierarchical polymer coatings, consisting of two-dimensional arrays of thermo-responsive cationic PNIPAM-based microgels and surface-functionalized with non-responsive or pH-responsive polymers, were covalently grafted to substrates to tune the surface chemistry and the elasticity of the surface independently using different stimuli. The characteristic dimensions (i.e., layer thickness) and surface properties (i.e., adhesion, friction) of the microgel coatings were assessed using the Surface Forces Apparatus. The ability to independently control the swelling and surface properties using temperature and pH as triggers were investigated for microgels in aqueous suspension and microgels immobilized on substrates. Polymer chain grafting did not impede the ability of cationic PNIPAM microgels to undergo a volume phase transition above the VPTT, either in suspension or immobilized on a substrate. Due to the presence of amino groups throughout the entirety of the microgel polymer network, the swelling behavior was also pH dependent. However, the thermo-responsive swelling was more significant than the pH-triggered one. The microgels functionalized with PEG exhibited the most promising behavior. Indeed, the thermo-triggered swelling of microgel-co-PEG did not give rise to changes in the microgel surface properties (i.e., surface potential and adhesion) within a wide range of pH values. It was possible for the immobilized microgel-co-PEG to undergo a volume transition (swelling/shrinking) with no change in adhesion, suggesting that the surface of the thermal-responsive microgels remains rather hydrophilic above the VPTT. This work confirms the possibility of tuning the swelling behavior of microgels without changing the adhesive properties. Responsive surfaces whose swelling properties can be reversibly and externally altered over space and time regardless of the surface chemistry are very innovative and will enable revolutionary advances in technologies, particularly in biomedical surface engineering and microfluidics, where advanced assembly of functional components is increasingly required.

Keywords: responsive materials, polymers, surfaces, cell culture

Procedia PDF Downloads 68
1014 Dry Friction Fluctuations in Plain Journal Bearings

Authors: James Moran, Anusarn Permsuwan

Abstract:

This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon.

Keywords: Coulomb friction, dynamic friction, non-lubricated bearings, frictional oscillations

Procedia PDF Downloads 354
1013 Effect of Strontium on Surface Roughness and Chip Morphology When Turning Al-Si Cast Alloy Using Carbide Tool Insert

Authors: Mohsen Marani Barzani, Ahmed A. D. Sarhan, Saeed Farahany, Ramesh Singh

Abstract:

Surface roughness and chip morphology are important output in manufacturing product. In this paper, an experimental investigation was conducted to determine the effects of various cutting speeds and feed rates on surface roughness and chip morphology in turning the Al-Si cast alloy and Sr-containing. Experimental trials carried out using coated carbide inserts. Experiments accomplished under oblique dry cutting when various cutting speeds 70, 130 and 250 m/min and feed rates of 0.05, 0.1 and 0.15 mm/rev were used, whereas depth of cut kept constant at 0.05 mm. The results showed that Sr-containing Al-Si alloy have poor surface roughness in comparison to Al-Si alloy (base alloy). The surface roughness values reduce with cutting speed increment from 70 to 250 m/min. the size of chip changed with changing silicon shape in Al matrix. Also, the surface finish deteriorated with increase in feed rate from 0.5 mm/rev to 0.15 mm/rev.

Keywords: strontium, surface roughness, chip, morphology, turning

Procedia PDF Downloads 373
1012 Multiple-Channel Coulter Counter for Cell Sizing and Enumeration

Authors: Yu Chen, Seong-Jin Kim, Jaehoon Chung

Abstract:

High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated.

Keywords: Coulter counter, cell enumeration, high through-put, cell sizing

Procedia PDF Downloads 602
1011 The Response of Optical Properties to Temperature in Three-Layer Micro Device Under Influence of Casimir Force

Authors: Motahare Aali, Fatemeh Tajik

Abstract:

Here, we investigate the sensitivity the Casimir force and consequently dynamical actuation of a three-layer microswitch to some ambient conditions. In fact, we have considered the effect of optical properties on the stable operation of the microswitch for both good (e.g. metals) and poor conductors via a three layer Casimir oscillator. Indeed, gold (Au) has been chosen as a good conductor which is widely used for Casimir force measurements, and highly doped conductive silicon carbide (SiC) has been considered as a poor conductor which is a promising material for device operating under harsh environments. Also, the intervening stratum is considered ethanol or water. It is also supposed that the microswitches are frictionless and autonomous. Using reduction factor diagrams and bifurcation curves, it has been shown how performance of the microswitches is sensitive to temperature and intervening stratum, moreover it is investigated how the conductivity of the components can affect this sensitivity.

Keywords: Casimir force, optical properties, Lifshitz theory, dielectric function

Procedia PDF Downloads 76
1010 Tribological Behavior of Hybrid Nanolubricants for Internal Combustion Engines

Authors: José M. Liñeira Del Río, Ramón Rial, Khodor Nasser, María J.G. Guimarey

Abstract:

The need to develop new lubricants that offer better anti-friction and anti-wear performance in internal combustion vehicles is one of the great challenges of lubrication in the automotive field. The addition of nanoparticles has emerged as a possible solution and, combined with the lubricating power of ionic liquids, may become one of the alternatives to reduce friction losses and wear of the contact surfaces in the conditions to which tribo-pairs are subjected, especially in the contact of the piston rings and the cylinder liner surface. In this study, the improvement in SAE 10W-40 engine oil tribological performance after the addition of magnesium oxide (MgO) nanoadditives and two different phosphonium-based ionic liquids (ILs) was investigated. The nanoparticle characterization was performed by means of transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The tribological properties, friction coefficients and wear parameters of the formulated oil modified with 0.01 wt.% MgO and 1 wt.% ILs compared with the neat 10W-40 oil were performed and analyzed using a ball-on-three-pins tribometer and a 3D optical profilometer, respectively. Further analysis on the worn surface was carried out by Raman spectroscopy and SEM microscopy, illustrating the formation of the protective IL and MgO tribo-films as hybrid additives. In friction tests with sliding steel-steel tribo-pairs, IL3-based hybrid nanolubricant decreased the friction coefficient and wear volume by 7% and 59%, respectively, in comparison with the neat SAE 10W-40, while the one based on IL1 only achieved a reduction of these parameters by 6% and 39%, respectively. Thus, the tribological characterization also revealed that the MgO and IL3 addition has a positive synergy over the commercial lubricant, adequately meeting the requirements for their use in internal combustion engines. In summary, this study has shown that the addition of ionic liquids to MgO nanoparticles can improve the stability and lubrication behavior of MgO nanolubricant and encourages more investigations on using nanoparticle additives with green solvents such as ionic liquids to protect the environment as well as prolong the lifetime of machinery. The improvement in the lubricant properties was attributed to the following wear mechanisms: the formation of a protective tribo-film and the ability of nanoparticles to fill out valleys between asperities, thereby effectively smoothing out the shearing surfaces.

Keywords: lubricant, nanoparticles, phosphonium-based ionic liquids, tribology

Procedia PDF Downloads 75
1009 Demarcating Wetting States in Pressure-Driven Flows by Poiseuille Number

Authors: Anvesh Gaddam, Amit Agrawal, Suhas Joshi, Mark Thompson

Abstract:

An increase in surface area to volume ratio with a decrease in characteristic length scale, leads to a rapid increase in pressure drop across the microchannel. Texturing the microchannel surfaces reduce the effective surface area, thereby decreasing the pressured drop. Surface texturing introduces two wetting states: a metastable Cassie-Baxter state and stable Wenzel state. Predicting wetting transition in textured microchannels is essential for identifying optimal parameters leading to maximum drag reduction. Optical methods allow visualization only in confined areas, therefore, obtaining whole-field information on wetting transition is challenging. In this work, we propose a non-invasive method to capture wetting transitions in textured microchannels under flow conditions. To this end, we tracked the behavior of the Poiseuille number Po = f.Re, (with f the friction factor and Re the Reynolds number), for a range of flow rates (5 < Re < 50), and different wetting states were qualitatively demarcated by observing the inflection points in the f.Re curve. Microchannels with both longitudinal and transverse ribs with a fixed gas fraction (δ, a ratio of shear-free area to total area) and at a different confinement ratios (ε, a ratio of rib height to channel height) were fabricated. The measured pressure drop values for all the flow rates across the textured microchannels were converted into Poiseuille number. Transient behavior of the pressure drop across the textured microchannels revealed the collapse of liquid-gas interface into the gas cavities. Three wetting states were observed at ε = 0.65 for both longitudinal and transverse ribs, whereas, an early transition occurred at Re ~ 35 for longitudinal ribs at ε = 0.5, due to spontaneous flooding of the gas cavities as the liquid-gas interface ruptured at the inlet. In addition, the pressure drop in the Wenzel state was found to be less than the Cassie-Baxter state. Three-dimensional numerical simulations confirmed the initiation of the completely wetted Wenzel state in the textured microchannels. Furthermore, laser confocal microscopy was employed to identify the location of the liquid-gas interface in the Cassie-Baxter state. In conclusion, the present method can overcome the limitations posed by existing techniques, to conveniently capture wetting transition in textured microchannels.

Keywords: drag reduction, Poiseuille number, textured surfaces, wetting transition

Procedia PDF Downloads 149
1008 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study

Authors: Richard Renou, Laurent Soulard

Abstract:

Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.

Keywords: densification, molecular dynamics simulations, shock loading, silica glass

Procedia PDF Downloads 214
1007 Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism

Authors: Yuri S. Djikaev

Abstract:

A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate.

Keywords: aqueous aerosols, organic coating, chemical aging, cloud condensation nuclei, Kohler activation, cloud droplets

Procedia PDF Downloads 382
1006 Wet Sliding Wear and Frictional Behavior of Commercially Available Perspex

Authors: S. Reaz Ahmed, M. S. Kaiser

Abstract:

The tribological behavior of commercially used Perspex was evaluated under dry and wet sliding condition using a pin-on-disc wear tester with different applied loads ranging from 2.5 to 20 N. Experiments were conducted with varying sliding distance from 0.2 km to 4.6 km, wherein the sliding velocity was kept constant, 0.64 ms-1. The results reveal that the weight loss increases with applied load and the sliding distance. The nature of the wear rate was very similar in both the sliding environments in which initially the wear rate increased very rapidly with increasing sliding distance and then progressed to a slower rate. Moreover, the wear rate in wet sliding environment was significantly lower than that under dry sliding condition. The worn surfaces were characterized by optical microscope and SEM. It is found that surface modification has significant effect on sliding wear performance of Perspex.

Keywords: Perspex, wear, friction, SEM

Procedia PDF Downloads 263
1005 Low-Cost Reusable Thermal Energy Storage Particle for Concentrating Solar Power

Authors: Kyu Bum Han, Eunjin Jeon, Kimberly Watts, Brenda Payan Medina

Abstract:

Gen3 Concentrating Solar Power (CSP) high-temperature thermal systems have the potential to lower the cost of a CSP system. When compared to the other systems (chloride salt blends and supercritical fluids), the particle transport system can avoid many of the issues associated with high fluid temperature systems at high temperature because of its ability to operate at ambient pressure with limited corrosion or thermal stability risk. Furthermore, identifying and demonstrating low-cost particles that have excellent optical properties and durability can significantly reduce the levelized cost of electricity (LCOE) of particle receivers. The currently available thermal transfer particle in the study and market is oxidized at about 700oC, which reduces its durability, generates particle loss by high friction loads, and causes the color change. To meet the CSP SunShot goal, the durability of particles must be improved by identifying particles that are less abrasive to other structural materials. Furthermore, the particles must be economically affordable and the solar absorptance of the particles must be increased while minimizing thermal emittance. We are studying a novel thermal transfer particle, which has low cost, high durability, and high solar absorptance at high temperatures. The particle minimizes thermal emittance and will be less abrasive to other structural materials. Additionally, the particle demonstrates reusability, which significantly lowers the LCOE. This study will contribute to two principal disciplines of energy science: materials synthesis and manufacturing. Developing this particle for thermal transfer will have a positive impact on the ceramic study and industry as well as the society.

Keywords: concentrating solar power, thermal energy storage, particle, reusability, economics

Procedia PDF Downloads 213
1004 Effect of Environmental Stress Factors on the Degradation of Display Glass

Authors: Jinyoung Choi, Hyun-A Kim, Sunmook Lee

Abstract:

The effects of environmental stress factors such as storage conditions on the deterioration phenomenon and the characteristic of the display glass were studied. In order to investigate the effect of chemical stress on the glass during the period of storage, the respective components of commercial glass were first identified by XRF (X-ray fluorescence). The glass was exposed in the acid, alkali, neutral environment for about one month. Thin film formed on the glass surface was analyzed by XRD (X-ray diffraction) and FT-IR (Fourier transform infrared). The degree of corrosion and the rate of deterioration of each sample were confirmed by measuring the concentrations of silicon, calcium and chromium with ICP-OES (Inductively coupled plasma-optical emission spectrometry). The optical properties of the glass surface were confirmed by SEM (Scanning electron microscope) before and after the treatment. Acknowledgement—The authors gratefully acknowledge the financial support from the Ministry of Trade, Industry and Energy (Grant Number: 10076817)

Keywords: corrosion, degradation test, display glass, environmental stress factor

Procedia PDF Downloads 442
1003 Lamb Waves in Plates Subjected to Uniaxial Stresses

Authors: Munawwar Mohabuth, Andrei Kotousov, Ching-Tai Ng

Abstract:

On the basis of the finite deformation theory, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses.

Keywords: acoustoelasticity, dispersion, finite deformation, lamb waves

Procedia PDF Downloads 457
1002 Determination of Steel Cleanliness of Non-Grain Oriented Electrical Steels

Authors: Emre Alan, Zafer Cetin

Abstract:

Electrical steels are widely used as a magnetic core materials in many electrical applications such as transformers, electric motors, and generators. Core loss property of these magnetic materials refers to dissipation of electrical energy during magnetization in service conditions. Therefore, in order to minimize the magnetic core loss, certain precautions are taken from steel producers; “Steel Cleanliness” is one of the major points among them. For obtaining lower core loss values, increasing proper elements in chemical composition such as silicon is a must. Therefore, impurities of these alloys are a key value for producing a cleaner steel. In this study, effects of impurity levels of different FeSi alloying materials to the steel cleanliness will be investigated. One of the important element content in FeSi alloy materials is Calcium. A SEM investigation will be done in order to present if Ca content in FeSi alloy is enough for proper inclusion modification or an additional Ca-treatment is required.

Keywords: electrical steels, FeSi alloy, impurities, steel cleanliness

Procedia PDF Downloads 323
1001 Analytical Solutions for Geodesic Acoustic Eigenmodes in Tokamak Plasmas

Authors: Victor I. Ilgisonis, Ludmila V. Konovaltseva, Vladimir P. Lakhin, Ekaterina A. Sorokina

Abstract:

The analytical solutions for geodesic acoustic eigenmodes in tokamak plasmas with circular concentric magnetic surfaces are found. In the frame of ideal magnetohydrodynamics the dispersion relation taking into account the toroidal coupling between electrostatic perturbations and electromagnetic perturbations with poloidal mode number |m| = 2 is derived. In the absence of such a coupling the dispersion relation gives the standard continuous spectrum of geodesic acoustic modes. The analysis of the existence of global eigenmodes for plasma equilibria with both off-axis and on-axis maximum of the local geodesic acoustic frequency is performed.

Keywords: tokamak, MHD, geodesic acoustic mode, eigenmode

Procedia PDF Downloads 723
1000 Quantitative Analysis of Carcinoembryonic Antigen (CEA) Using Micromechanical Piezoresistive Cantilever

Authors: Meisam Omidi, M. Mirijalili, Mohammadmehdi Choolaei, Z. Sharifi, F. Haghiralsadat, F. Yazdian

Abstract:

In this work, we have used arrays of micromechanical piezoresistive cantilever with different geometries to detect carcinoembryonic antigen (CEA), which is known as an important biomarker associated with various cancers such as the colorectal, lung, breast, pancreatic, and bladder cancer. The sensing principle is based on the surface stress changes induced by antigen–antibody interaction on the microcantilevers surfaces. Different concentrations of CEA in a human serum albumin (HSA) solution were detected as a function of the deflection of the beams. According to the experiments, it was revealed that microcantilevers have surface stress sensitivities in the order of 8 (mJ/m). This matter allows them to detect CEA concentrations as low as 3 ng/mL or 18 pM. This indicates the fact that the self-sensing microcantilever approach is beneficial for pathological tests.

Keywords: micromechanical biosensors, carcinoembryonic antigen (CEA), surface stress

Procedia PDF Downloads 458
999 The Development of Micro Patterns Using Benchtop Lithography for Marine Antifouling Applications

Authors: Felicia Wong Yen Myan, James Walker

Abstract:

Development of micro topographies usually begins with the fabrication of a master stamp. Fabrication of such small structures can be technically challenging and expensive. These techniques are often used for applications where patterns only cover a small surface area (e.g. semiconductors, microfluidic channels). This research investigated the use of benchtop lithography to fabricate patterns with average widths of 50 and 100 microns on silicon wafer substrates. Further development of this method will attempt to layer patterns to create hierarchical structures. Photomasks consisted of patterns printed onto transparency films with a high resolution printer and a fully patterned 10cm by 10cm area has been successfully developed. UV exposure was carried out with a self-made array of ultraviolet LEDs that was positioned a distance above a glass diffuser. Observations under a light microscope and SEM showed that developed patterns exhibit an adequate degree of fidelity with patterns from the master stamp.

Keywords: lithography, antifouling, marine, microtopography

Procedia PDF Downloads 279