Search results for: yeast enzymes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 905

Search results for: yeast enzymes

275 Influence of Different Ripening Agents on the Shelf-Life and Microbial Load of Organic and Inorganic Musaceae, during the Ripening Process, and the Health Implication for Food Security

Authors: Wisdom Robert Duruji

Abstract:

Local farmers and fruit processors in developing countries of West Africa use different ripening agents to accelerate the ripening process of plantain and banana. This study reports on the influence of different ripening agents on the shelf-life and microbial load of organic and inorganic plantain (Musa paradisiaca) and banana (Musa sapientum) during ripening process and the health implication for food security in Nigeria. The experiment consisted of four treatments, namely: Calcium carbide, Irvingia gabonensis fruits, Newbouldia laevis leaves and a control, where no ripening agent was applied to the fingers of plantain and banana. The unripe and ripened plantain and banana were subjected to microbial analysis by isolating their micro flora (Bacteria, Yeast and Mould) using pour plate method. Microbes present in the samples were enumerated, characterized and classified to genera and species. The result indicated that the microbial load of inorganic plantain from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 12.11 cfu/g for ripened; and the microbial load of organic plantain from Obafemi Awolowo University Teaching and Research Farm (OAUTRF) increased from 6.00 for unripe to 11.60 cfu/g for ripened. Also, the microbial load of inorganic banana from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 11.50 cfu/g for ripened; while the microbial load of organic banana from OAUTRF increased from 6.50 for unripe to 9.40 cfu/g for ripened. The microbial effects of the ripening agents increased from 10.00 for control to 16.00 cfu/g for treated (ripened) organic and inorganic plantain; while that of organic and inorganic banana increased from 7.50 for control to 14.50 cfu/g for ripened. Visual observation for the presence of fungal colonies and deterioration rates were monitored till seven days after the plantain and banana fingers have fully ripened. Inorganic plantain and banana from (Urban day) open market in Ile-Ife are more contaminated than organic plantain and banana fingers from OAUTRF. The ripening accelerators reduced the shelf life, increased senescence, and microbial load of plantain and banana. This study concluded that organic Agriculture is better and microbial friendlier than inorganic farming.

Keywords: organic agriculture, food security, Musaceae, calcium carbide, Irvingia gabonensis, Newbouldia laevis

Procedia PDF Downloads 527
274 Stimuli-Responsive Zwitterionic Dressings for Chronic Wounds Management

Authors: Konstans Ruseva, Kristina Ivanova, Katerina Todorova, Margarita Gabrashanska, Tzanko Tzanov, Elena Vassileva

Abstract:

Zwitterionic polymers (ZP) are well-known with their ultralow biofouling. They are successfully competing with poly(ethylene glycols) (PEG), which are considered as the “golden standard” in this respect. These unique properties are attributed to their strong hydration capacity, defined by the dipole-dipole interactions, arising between the ZP pendant groups as well as to the dipoles interaction with water molecules. Beside, ZP are highly resistant to bacterial adhesion thus ensuring an excellent anti-biofilm formation ability. Moreover, ZP are able to respond upon external stimuli such as temperature, pH, salt concentration changes which in combination with their anti-biofouling effect render this type of polymers as materials with a high potential in biomedical applications. The present work is focused on the development of zwitterionic hydrogels for efficient treatment of highly exudating and hard-to-heal chronic wounds. To this purpose, two types of ZP networks with different crosslinking degree were synthesized - polysulfobetaine (PSB) and polycarboxybetaine (PCB) ones. They were characterized in terms of their physico-mechanical properties, e.g. microhardness, swelling ability, smart behaviour. Furthermore, the potential of ZP networks to resist biofilm formation towards Staphylococcus aureus and Escherichia coli was studied. Their ability to reduce the high levels of myeloperoxidase and metalloproteinase, two enzymes that are part of the chronic wounds enviroenment, was revealed. Moreover, the in vitro cytotoxic assessment of PSB and PCB networks along with their in vivo performance in rats was also studied to reveal their high biocompatibility.

Keywords: absorption properties, biocompatibility, enzymatic inhibition activity, wound healing, zwitterionic polymers

Procedia PDF Downloads 171
273 Enhanced Anti-Dermatophytic Effect of Nanoparticles Stimulated by Laser and Cold Plasma Techniques

Authors: Salama A. Ouf, Amera A. El-Adly, Abdelaleam H. Mohamed

Abstract:

Dermatophytosis is the infection of keratinized tissues such as hair, nail and the stratum corneum of the skin by dermatophytic fungi. Infection is generally cutaneous and restricted to the non-living cornified layers because of the inability of the fungi to penetrate the deeper tissues or organs of immunocompetent hosts. In Saudi Arabia, Onychomycosis is the most frequent infection (40.3%), followed by tinea capitis (21.9%), tinea pedis (16%), tinea cruris (15.1%), and tinea corporis (6.7%). Several azole compounds have been tried to control dermatophytic infection, however, the azole-containing medicines may interfere with the activity of hepatic microsomal enzymes, sex and thyroid hormones, and testosterone biosynthesis. In this research, antibody-conjugated nanoparticles stimulated by cold plasma and laser were evaluated in vitro against some dermatophytes isolated from the common types of tinea. Different types of nanomaterials were tested but silver nanoparticles (AgNPs) were proved to be most effective against the dermatophytes under test. The use of cold plasma coupled with antibody-conjugated nano-particles has severe impact on dermatophytes where the inhibition of growth, spore germination keratinase activity was more than 88% in the case of Trichophyton rubrum, T. violaceum, Microsprum canis and M. gypseum. Complete inhibition of growth for all dermatophytes was brought about by the interaction of conjugated nanoparticles, with cold plasma and laser treatment. The in vivo test with inoculated guinea pigs achieved promising results where the recovery from the infection reached 95% in the case of M. canis –inoculated pigs treated with AgNPs pretreated with cold plasma and laser.

Keywords: cold plasma, dermatophytes, laser, silver nanoparticles

Procedia PDF Downloads 347
272 Antioxidant Responses and Malondialdehyde Levels in African Cat Fish (Clarias gariepinus) from Eleyele River in Nigeria

Authors: Oluwatosin Adetola Arojojoye, Olajumoke Olufunlayo Alao, Philip Odigili

Abstract:

This study investigated the extent of pollution in Eleyele River in Oyo State, Nigeria by investigating the antioxidant status and malondialdehyde levels (index of lipid peroxidation) in the organs of African Catfish, Clarias gariepinus from the river. Clarias gariepinus weighing between 250g-400g were collected from Eleyele River (a suspected polluted river) and Clarias gariepinus from a clean fish farm (Durantee fisheries) were used as the control. Levels of malondialdehyde, glutathione concentration (GSH) and activities of antioxidant enzymes - superoxide dismutase, catalase and glutathione-S-transferase (GST) were evaluated in the post-mitochondrial fractions of the liver, kidney and gills of the fishes. From the results, there were increases in malondialdehyde level and GSH concentration in the liver, kidney and gills of Clarias gariepinus from Eleyele River when compared with control. Glutathione-S-transferase activity was induced in the liver and kidney of Clarias gariepinus from Eleyele River when compared with control. However, the activity of this enzyme was depleted in the gills of fishes from Eleyele River compared with control. Also there was an induction in SOD activity in the liver of Clarias gariepinus from Eleyele River when compared with control but there was a decrease in the activity of this enzyme in the kidney and gills of fishes from Eleyele River compared with control. Increase in lipid peroxidation and alterations in antioxidant system in Clarias gariepinus from Eleyele River show that the fishes were under oxidative stress. These suggest that the river is polluted probably as a result of industrial, domestic and agricultural wastes frequently discharged into the river. This could pose serious health risks to consumers of water and aquatic organisms from the river.

Keywords: antioxidant, lipid peroxidation, Clarias gariepinus, Eleyele River

Procedia PDF Downloads 512
271 Microbial Degradation of Lignin for Production of Valuable Chemicals

Authors: Fnu Asina, Ivana Brzonova, Keith Voeller, Yun Ji, Alena Kubatova, Evguenii Kozliak

Abstract:

Lignin, a heterogeneous three-dimensional biopolymer, is one of the building blocks of lignocellulosic biomass. Due to its limited chemical reactivity, lignin is currently processed as a low-value by-product in pulp and paper mills. Among various industrial lignins, Kraft lignin represents a major source of by-products generated during the widely employed pulping process across the pulp and paper industry. Therefore, valorization of Kraft lignin holds great potential as this would provide a readily available source of aromatic compounds for various industrial applications. Microbial degradation is well known for using both highly specific ligninolytic enzymes secreted by microorganisms and mild operating conditions compared with conventional chemical approaches. In this study, the degradation of Indulin AT lignin was assessed by comparing the effects of Basidiomycetous fungi (Coriolus versicolour and Trametes gallica) and Actinobacteria (Mycobacterium sp. and Streptomyces sp.) to two commercial laccases, T. versicolour ( ≥ 10 U/mg) and C. versicolour ( ≥ 0.3 U/mg). After 54 days of cultivation, the extent of microbial degradation was significantly higher than that of commercial laccases, reaching a maximum of 38 wt% degradation for C. versicolour treated samples. Lignin degradation was further confirmed by thermal carbon analysis with a five-step temperature protocol. Compared with commercial laccases, a significant decrease in char formation at 850ºC was observed among all microbial-degraded lignins with a corresponding carbon percentage increase from 200ºC to 500ºC. To complement the carbon analysis result, chemical characterization of the degraded products at different stages of the delignification by microorganisms and commercial laccases was performed by Pyrolysis-GC-MS.

Keywords: lignin, microbial degradation, pyrolysis-GC-MS, thermal carbon analysis

Procedia PDF Downloads 392
270 Optimisation of Stored Alcoholic Beverage Joufinai with Reverse Phase HPLC Method and Its Antioxidant Activities: North- East India

Authors: Dibakar Chandra Deka, Anamika Kalita Deka

Abstract:

Fermented alcoholic beverage production has its own stand among the tribal communities of North-East India. This biological oxidation method is followed by Ahom, Dimasa, Nishi, Miri, Bodo, Rabha tribes of this region. Bodo tribes among them not only prepare fermented alcoholic beverage but also store it for various time periods like 3 months, 6 months, 9 months, 12 months and 15 months etc. They prepare alcoholic beverage Jou (rice beer) following the fermentation of Oryza sativa with traditional yeast culture Amao. Saccharomyces cerevisiae is the main domain strain present in Amao. Dongphangrakep (Scoparia dulcis), Mwkhna (Clerodendrum viscosum), Thalir (Musa balbisina) and Khantal Bilai (Ananas cosmos) are the main plants used for Amao preparation. The stored Jou is known as Joufinai. They store the fermented mixture (rice and Amao) in anaerobic conditions for the preparation of Joufinai. We observed a successive increase in alcohol content from 3 months of storage period with 11.79 ± 0.010 (%, v/v) to 15.48 ± 0.070 (%, v/v) at 15 months of storage by a simple, reproducible and solution based colorimetric method. A positive linear correlation was also observed between pH and ethanol content with storage having correlation coefficient 0.981. Here, we optimised the detection of change in constituents of Joufinai during storage using reverse phase HPLC method. We found acetone, ethanol, acetic acid, glycerol as main constituents present in Joufinai. A very good correlation was observed from 3 months to 15 months of storage periods with its constituents. Increase in glycerol content was also detected with storage periods and hence Joufinai can be use as a precursor of above stated compounds. We also observed antioxidant activities increase from 0.056 ±2.80 mg/mL for 3 months old to 0.078± 5.33 mg/mL (in ascorbic acid equivalents) for 15 month old beverage by DPPH radical scavenging method. Therefore, we aimed for scientific validation of storage procedure used by Bodos in Joufinai production and to convert the Bodos’ traditional alcoholic beverage to a commercial commodity through our study.

Keywords: Amao, correlation, beverage, joufinai

Procedia PDF Downloads 293
269 Functional Role of Tyr12 in the Catalytic Activity of Zeta-Like Glutathione S-Transferase from Acidovorax sp. KKS102

Authors: D. Shehu, Z. Alias

Abstract:

Glutathione S-transferases (GSTs) are family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. The gene for KKSG9 was cloned, purified and biochemically characterized. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide (CuOOH). The enzyme also displayed dehalogenation function against dichloroacetate (a common substrate for zeta class GSTs) in addition to permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.

Keywords: Acidovorax sp. KKS102, bioremediation, glutathione s-transferase, site-directed mutagenesis, zeta

Procedia PDF Downloads 135
268 Effects of Feed Forms on Growth Pattern, Behavioural Responses and Fecal Microbial Load of Pigs Fed Diets Supplemented with Saccaromyces cereviseae Probiotics

Authors: O. A. Adebiyi, A. O. Oni, A. O. K. Adeshehinwa, I. O. Adejumo

Abstract:

In forty nine (49) days, twenty four (24) growing pigs (Landrace x Large white) with an average weight of 17 ±2.1kg were allocated to four experimental treatments T1 (dry mash without probiotics), T2 (wet feed without probiotics), T3 (dry mash + Saccaromyces cereviseae probiotics) and T4 (wet feed + Saccaromyces cereviseae probiotics) which were replicated three times with two pigs per replicate in a completely randomised design. The basal feed (dry feed) was formulated to meet the nutritional requirement of the animal with crude protein of 18.00% and metabolisable energy of 2784.00kcal/kgME. Growth pattern, faecal microbial load and behavioural activities (eating, drinking, physical pen interaction and frequency of visiting the drinking troughs) were accessed. Pigs fed dry mash without probiotics (T1) had the highest daily feed intake among the experimental animals (1.10kg) while pigs on supplemented diets (T3 and T4) had an average daily feed intake of 0.95kg. However, the feed conversion ratio was significantly (p < 0.05) affected with pigs on T3 having least value of 6.26 compared those on T4 (wet feed + Saccaromyces cereviseae) with means of 7.41. Total organism counts varied significantly (p < 0.05) with pigs on T1, T2, T3 and T4 with mean values of 179.50 x106cfu; 132.00 x 106cfu; 32.00 x 106cfu and 64.50 x 106cfu respectively. Coliform count was also significantly (p < 0.05) different among the treatments with corresponding values of 117.50 x 106cfu; 49.00 x 106cfu, 8.00 x 106cfu for pigs in T1, T2 and T4 respectively. The faecal Saccaromyces cereviseae was significantly lower in pigs fed supplemented diets compared to their counterparts on unsupplemented diets. This could be due to the inability of yeast organisms to be voided easily through feaces. The pigs in T1 spent the most time eating (7.88%) while their counterparts on T3 spent the least time eating. The corresponding physical pen interaction times expressed in percentage of a day for pigs in T1, T2, T3 and T4 are 6.22%, 5.92%, 4.04% and 4.80% respectively. These behavioural responses exhibited by these pigs (T3) showed that little amount of dry feed supplemented with probiotics is needed for better performance. The water intake increases as a result of the dryness of the feed with consequent decrease in pen interaction and more time was spent resting than engaging in other possible vice-habit like fighting or tail biting. Pigs fed dry feed (T3) which was supplemented with Saccaromyces cereviseae probiotics had a better overall performance, least faecal microbial load than wet fed pigs either supplemented with Saccaromyces cereviseae or non-supplemented.

Keywords: behaviour, feed forms, feed utilization, growth, microbial

Procedia PDF Downloads 327
267 Food Losses Reducing by Extending the Minimum Durability Date of Thermally Processed Products

Authors: Dorota Zielińska, Monika Trząskowska, Anna Łepecka, Katarzyna Neffe-Skocińska, Beata Bilska, Marzena Tomaszewska, Danuta Kołożyn-Krajewska

Abstract:

Minimum durability date (MDD) labeled food is known to have a long shelf life. A properly stored or transported food retains its physical, chemical, microbiological, and sensory properties up to MDD. The aim of the study was to assess the sensory quality and microbiological safety of selected thermally processed products,i.e., mayonnaise, jam, and canned tuna within and after MDD. The scope of the study was to determine the markers of microbiological quality, i.e., the total viable count (TVC), the Enterobacteriaceae count and the total yeast and mold (TYMC) count on the last day of MDD and after 1 and 3 months of storage, after the MDD expired. In addition, the presence of Salmonella and Listeria monocytogenes was examined on the last day of MDD. The sensory quality of products was assessed by quantitative descriptive analysis (QDA), the intensity of differentiators (quality features), and overall quality were defined and determined. It was found that during three months storage of tested food products, after the MDD expired, the microbiological quality slightly decreased, however, regardless of the tested sample, TVC was at the level of <3 log cfu/g, similarly, the Enterobacretiaceae, what indicates the good microbiological quality of the tested foods. The TYMC increased during storage but did not exceed 2 logs cfu/g of product. Salmonella and Listeria monocytogenes were not found in any of the tested food samples. The sensory quality of mayonnaise negatively changed during storage. After three months from the expiry of MDD, a decrease in the "fat" and "egg" taste and aroma intensity, as well as the "density" were found. The "sour" taste intensity of blueberry jam after three months of storage was slightly higher, compared to the jam tested on the last day of MDD, without affecting the overall quality. In the case of tuna samples, an increase in the "fishy" taste and aroma intensity was observed during storage, and the overall quality did not change. Tested thermally processed products (mayonnaise, jam, and canned tuna) were characterized by good microbiological and sensory quality on the last day of MDD, as well as after three months of storage under conditions recommended by the producer. These findings indicate the possibility of reducing food losses by extending or completely abolishing the MDD of selected thermal processed food products.

Keywords: food wastes, food quality and safety, mayonnaise, jam, tuna

Procedia PDF Downloads 111
266 Characterization of a Broad Range Antimicrobial Substance from Pseudozyma aphidis

Authors: Raviv Harris, Maggie Levy

Abstract:

Natural product-based pesticides may serve as an alternative to the traditional synthetic pesticides, which have a potentially damaging effect, both to human health and for the environment. Along with plants, microorganisms are a prospective source of such biological pesticides. A unique and active strain of P. aphidis (designated isolate L12, Israel 2004), an epiphytic and non-pathogenic basidiomycete yeast, was isolated in our lab from strawberry leaves. P. aphidis L12 secretions were found to inhibit broad range of plant pathogens. This work demonstrates that metabolites isolated from the biocontrol agent P. aphidis (isolate L12) can inhibit varied fungal and bacterial phytopathogens. Biologically active metabolites were extracted from P. aphidis biomass, using the organic solvent ethyl acetate. The antimicrobial activity of the extract was demonstrated, both in vitro and in planta. Using disk diffusion assays, the following inhibition zones were obtained: 43cm² for Pseudomonas syringae pv. tomato, 28.5cm² for Xanthomonas campestris pv. vesicatoria, 59cm² for Clavibacter michiganensis subsp. michiganensis, 34cm² for Erwinia amylovora and 34cm² for Agrobacterium tumefaciens. Additionally, strong inhibitory activity of the extract against fungi mycelial growth was established, with IC₅₀ values of 606µg ml⁻¹ for Botrytis cinerea, 221µg ml⁻¹ for Pythium spp., 519µg ml⁻¹ for Rhizoctonia solani, 455µg ml⁻¹ for Sclerotinia sclerotiorum, 2270µg ml⁻¹ for Fusarium oxysporum f. sp. lycopersici, and 2038µg ml⁻¹ for Alternaria alternata. The results of the in planta experiments demonstrated a dose-dependent reduction in disease infection. Significant inhibition of B. cinerea lesions on tomato plants was obtained when a spore suspension of this pathogen was treated with extract concentrations higher than 4.2mg ml⁻¹. Concentration of 7mg ml⁻¹ caused a reduction of over 95% in the lesion size of B. cinerea on tomato plants. The strong antimicrobial activity demonstrated both in vitro and in planta against varied phytopathogens, may indicate that the extracted antimicrobial metabolites have potential to serve as natural pesticides in the field.

Keywords: antimicrobial, B. cinerea, metabolites, natural pesticides, P. aphidis

Procedia PDF Downloads 212
265 Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development

Authors: Patarasuda Chaisupa, R. Clay Wright

Abstract:

The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes.

Keywords: synthetic biology, bioengineering, molecular biology, biotechnology

Procedia PDF Downloads 68
264 Use of High Hydrostatic Pressure as an Alternative Preservation Method in Camels Milk

Authors: Fahad Aljasass, Hamza Abu-Tarboush, Salah Aleid, Siddig Hamad

Abstract:

The effects of different high hydrostatic pressure treatments on the shelf life of camel’s milk were studied. Treatments at 300 to 350 MPa for 5 minutes at 40°C reduced microbial contamination to levels that prolonged the shelf life of refrigerated (3° C) milk up to 28 days. The treatment resulted in a decrease in the proteolytic activity of the milk. The content of proteolytic enzymes in the untreated milk sample was 4.23 µM/ml. This content decreased significantly to 3.61 µM/ml when the sample was treated at 250 MPa. Treatment at 300 MPa decreased the content to 3.90 which was not significantly different from the content of the untreated sample. The content of the sample treated at 350 MPa dropped to 2.98 µM/ml which was significantly lower than the contents of all other treated and untreated samples. High pressure treatment caused a slight but statistically significant increase in the pH of camel’s milk. The pH of the untreated sample was 6.63, which increased significantly to 6.70, in the samples treated at 250 and 350 MPa, but insignificantly in the sample treated at 300 MPa. High pressure treatment resulted in some degree of milk fat oxidation. The thiobarbituric acid (TBA) value of the untreated sample was 0.86 mg malonaldehyde/kg milk. This value remained unchanged in the sample treated at 250 MPa, but then it increased significantly to 1.25 and 1.33 mg/kg in the samples treated at 300 and 350 MPa, respectively. High pressure treatment caused a small increase in the greenness (a* value) of camel’s milk. The value of a* was reduced from -1.17 for the untreated sample to -1.26, -1.21 and -1.30 for the samples treated at 250, 300 and 350 MPa, respectively. Δa* at the 250 MPa treatment was -0.09, which then decreased to -0.04 at the 300 MPa treatment to increase again to -0.13 at the 350 MPa treatment. The yellowness (b* value) of camel’s milk increased significantly as a result of high pressure treatment. The b* value of the untreated sample was 1.40, this value increased to 2.73, 2.31 and 2.18 after treatments at 250, 300 and 350 MPa, respectively. The Δb* value was +1.33 at the treatment 250 MPa, decreased to +0.91 at 300 MPa and further to +0.78 at 350 MPa. The pressure treatment caused slight effect on color, slight decrease in protease activity and a slight increase in the oxidation products of lipids.

Keywords: high hydrostatic pressure, camel’s milk, mesophilic aerobic bacteria, clotting, protease

Procedia PDF Downloads 246
263 Protective Effect of Saponin Extract from the Root of Garcinia kola (Bitter Kola) against Paracetamol-Induced Hepatotoxicity in Albino Rats

Authors: Alli Smith Yemisi Rufina, Adanlawo Isaac Gbadura

Abstract:

Liver disorders are one of the major problems of the world. Despite its frequent occurrence, high morbidity, and high mortality, its medical management is currently inadequate. This study was designed to evaluate the Hepatoprotective effect of saponin extract of the root of Garcinia kola on the integrity of the liver of paracetamol induced Wistar albino rats. Twenty-five male adult Wistar albino rats were divided into five (5) groups. Group I, was the Control group that received distilled water only, group II was the negative control that received 2 g/kg of paracetamol on the 13th day, and group III, IV, and V were pre-treated with 100, 200 and 400 mg/kg of the saponin extract before inducing the liver damage on the 13th day with 2 g/kg of paracetamol. Twenty-four hours after administration, the rats were sacrificed, and blood samples were collected. The serum Alanine Transaminase (ALT), Aspartate Transaminase (AST), Alkaline Phosphatase (ALP) activities, Bilirubin and Conjugated Bilirubin, Glucose and Protein concentrations were evaluated. The liver was fixed immediately in Formalin and was processed and stained with Haematoxylin and Eosin (H&E). Administration of saponin extract from the root of Garcinia kola significantly decreased paracetamol induced elevated enzymes in the test group. Also, histological observations showed that saponin extract of the root of Garcinia kola exhibited a significant liver protection against the toxicant as evident by the cells trying to return to normal. Saponin extract from the root of Garcinia kola indicated a protection of the structural integrity of the hepatocytic cell membrane and regeneration of the damaged liver.

Keywords: hepatoprotective, liver damage, Garcinia kola, saponin, paracetamol

Procedia PDF Downloads 245
262 Histopathological and Biochemical Investigations of Protective Role of Honey in Rats with Experimental Aflatoxicosis

Authors: Turan Yaman, Zabit Yener, Ismail Celik

Abstract:

The aim of this study was to investigate the antioxidant properties and protective role of honey, considered a part of traditional medicine, against carcinogen chemical aflatoxin (AF) exposure in rats, which were evaluated by histopathological changes in liver and kidney, measuring level of serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), gamma glutamil transpeptidase (GGT)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)], and lipid peroxidation content in liver, erythrocyte, brain, kidney, heart and lungs. For this purpose, a total of eighteen healthy Sprague-Dawley rats were randomly allocated into three experimental groups: A (Control), B (AF-treated) and C (AF+honey-treated). While rats in group A were fed with a diet without AF, B, and C groups received 25 µg of AF/rat/day, where C group additionally received 1 mL/kg of honey by gavage for 90 days. At the end of the 90-day experimental period, we found that the honey supplementation decreased the lipid peroxidation and the levels of enzyme associated with liver damage, increased enzymatic and non-enzymatic antioxidants in the AF+honey-treated rats. Hepatoprotective and nephroprotective effects of honey is further substantiated by showing almost normal histological architecture in AF+honey-treated group, compared to degenerative changes in the liver and kidney of AF-treated rats. Additionally, honey supplementation ameliorated antioxidant defense systems and lipid peroxidation content in other tissues of AF+honey-treated rats. In conclusion, the present study indicates that honey has a hepatoprotective and nephroprotective effect in rats with experimental aflatoxicosis due to its antioxidant activity.

Keywords: aflatoxicosis, honey, histopathology, malondialdehyde, antioxidant, rat

Procedia PDF Downloads 311
261 Evaluation of Gene Expression after in Vitro Differentiation of Human Bone Marrow-Derived Stem Cells to Insulin-Producing Cells

Authors: Mahmoud M. Zakaria, Omnia F. Elmoursi, Mahmoud M. Gabr, Camelia A. AbdelMalak, Mohamed A. Ghoneim

Abstract:

Many protocols were publicized for differentiation of human mesenchymal stem cells (MSCS) into insulin-producing cells (IPCs) in order to excrete insulin hormone ingoing to treat diabetes disease. Our aim is to evaluate relative gene expression for each independent protocol. Human bone marrow cells were derived from three volunteers that suffer diabetes disease. After expansion of mesenchymal stem cells, differentiation of these cells was done by three different protocols (the one-step protocol was used conophylline protein, the two steps protocol was depending on trichostatin-A, and the three-step protocol was started by beta-mercaptoethanol). Evaluation of gene expression was carried out by real-time PCR: Pancreatic endocrine genes, transcription factors, glucose transporter, precursor markers, pancreatic enzymes, proteolytic cleavage, extracellular matrix and cell surface protein. Quantitation of insulin secretion was detected by immunofluorescence technique in 24-well plate. Most of the genes studied were up-regulated in the in vitro differentiated cells, and also insulin production was observed in the three independent protocols. There were some slight increases in expression of endocrine mRNA of two-step protocol and its insulin production. So, the two-step protocol was showed a more efficient in expressing of pancreatic endocrine genes and its insulin production than the other two protocols.

Keywords: mesenchymal stem cells, insulin producing cells, conophylline protein, trichostatin-A, beta-mercaptoethanol, gene expression, immunofluorescence technique

Procedia PDF Downloads 193
260 Exploring the Safety of Sodium Glucose Co-Transporter-2 Inhibitors at the Imperial College London Diabetes Centre, UAE

Authors: Raad Nari, Maura Moriaty, Maha T. Barakat

Abstract:

Introduction: Sodium-glucose co-transporter-2 (SGLT2) inhibitors are a new class of oral anti-diabetic drugs with a unique mechanism of action. They are used to improve glycaemic control in adults with type 2 diabetes by enhancing urinary glucose excretion. In the UAE, there has been certainly an increased use of these medications. As with any new medication, there are safety considerations related to their use in patients with type two diabetes. A retrospective study was conducted at the three main centres of the Imperial College London Diabetes Centre. Methodology: All patients in electronic database (Diamond) from October 2014 to October 2017 were included with a minimum of six months usage of sodium glucose co-transporter inhibitors that comprise canagliflozin, dapagliflozin and empagliflozin. There were 15 paired sample biochemical and clinical correlations. The analysis was done at the start of the study, three months and six months apart. SPSS version 24 was used for this study. Conclusion: This study of sodium glucose co-transporter-2 inhibitors used showed significant reductions in weight, glycated haemoglobin A1C, systolic and diastolic blood pressures. As the case with systematic reviews, there were similar changes in liver enzymes, raised total cholesterol, low density lipopoptein and high density lipoprotein. There was slight improvement in estimated glomerular filtration rate too. Our analysis also showed that they increased in the incidence of urinary tract symptoms and incidence of urinary tract infections.

Keywords: SGLT2 inhibitors dapagliflozin empagliflozin canagliflozin, adverse effects, amputation diabetic ketoacidosis DKA, urinary tract infection

Procedia PDF Downloads 206
259 Adaptive Strategies of European Sea Bass (Dicentrarchus labrax) to Ocean Acidification and Salinity Stress

Authors: Nitin Pipralia, Amit Kmar Sinha, Gudrun de Boeck

Abstract:

Atmospheric carbon dioxide (CO2) concentrations have been increasing since the beginning of the industrial revolution due to combustion of fossils fuel and many anthropogenic means. As the number of scenarios assembled by the International Panel on Climate Change (IPCC) predict a rise of pCO2 from today’s 380 μatm to approximately 900 μatm until the year 2100 and a further rise of up to 1900 μatm by the year 2300. A rise in pCO2 results in more dissolution in ocean surface water which lead to cange in water pH, This phenomena of decrease in ocean pH due to increase on pCO2 is ocean acidification is considered a potential threat to the marine ecosystems and expected to affect fish as well as calcerious organisms. The situation may get worste when the stress of salinity adds on, due to migratory movement of fishes, where fish moves to different salinity region for various specific activities likes spawning and other. Therefore, to understand the interactive impact of these whole range of two important environmental abiotic stresses (viz. pCO2 ranging from 380 μatm, 900 μatm and 1900 μatm, along with salinity gradients of 32ppt, 10 ppt and 2.5ppt) on the ecophysiologal performance of fish, we investigated various biological adaptive response in European sea bass (Dicentrarchus labrax), a model estuarine teleost. Overall, we hypothesize that effect of ocean acidification would be exacerbate with shift in ambient salinity. Oxygen consumption, ammonia metabolism, iono-osmoregulation, energy budget, ion-regulatory enzymes, hormones and pH amendments in plasma were assayed as the potential indices of compensatory responses.

Keywords: ocean acidification, sea bass, pH climate change, salinity

Procedia PDF Downloads 205
258 Levansucrase from Zymomonas Mobilis KIBGE-IB14: Production Optimization and Characterization for High Enzyme Yield

Authors: Sidra Shaheen, Nadir Naveed Siddiqui, Shah Ali Ul Qader

Abstract:

In recent years, significant progress has been made in discovering and developing new bacterial polysaccharides producing organisms possessing extremely functional properties. Levan is a natural biopolymer of fructose which is produced by transfructosylation reaction in the presence of levansucrase. It is one of the industrially promising enzymes that offer a variety of industrial applications in the field of cosmetics, foods and pharmaceuticals. Although levan has significant applications but the yield of levan produced is not equal to other biopolymers due to the inefficiency of producer microorganism. Among wide range of levansucrase producing microorganisms, Zymomonas mobilis is considered as a potential candidate for large scale production of this natural polysaccharide. The present investigation is concerned with the isolation of levansucrase producing natural isolate having maximum enzyme production. Furthermore, production parameters were optimized to get higher enzyme yield. Levansucrase was partially purified and characterized to study its applicability on industrial scale. The results of this study revealed that the bacterial strain Z. mobilis KIBGE-IB14 was the best producer of levansucrase. Bacterial growth and enzyme production was greatly influenced by physical and chemical parameters. Maximum levansucrase production was achieved after 24 hours of fermentation at 30°C using modified medium of pH-6.5. Contrary to other levansucrases, the one presented in the current study is able to produce high amount of products in relatively short period of time with optimum temperature at 35°C. Due to these advantages, this enzyme can be used on large scale for commercial production of levan and other important metabolites.

Keywords: levansucrase, metabolites, polysaccharides, transfructosylation

Procedia PDF Downloads 482
257 Polymerization of Epsilon-Caprolactone Using Lipase Enzyme for Medical Applications

Authors: Sukanya Devi Ramachandran, Vaishnavi Muralidharan, Kavya Chandrasekaran

Abstract:

Polycaprolactone is polymer belonging to the polyester family that has noticeable characteristics of biodegradability and biocompatibility which is essential for medical applications. Polycaprolactone is produced by the ring opening polymerization of the monomer epsilon-Caprolactone (ε-CL) which is a closed ester, comprising of seven-membered ring. This process is normally catalysed by metallic components such as stannous octoate. It is difficult to remove the catalysts after the reaction, and they are also toxic to the human body. An alternate route of using enzymes as catalysts is being employed to reduce the toxicity. Lipase enzyme is a subclass of esterase that can easily attack the ester bonds of ε-CL. This research paper throws light on the extraction of lipase from germinating sunflower seeds and the activity of the biocatalyst in the polymerization of ε-CL. Germinating Sunflower seeds were crushed with fine sand in phosphate buffer of pH 6.5 into a fine paste which was centrifuged at 5000rpm for 10 minutes. The clear solution of the enzyme was tested for activity at various pH ranging from 5 to 7 and temperature ranging from 40oC to 70oC. The enzyme was active at pH6.0 and at 600C temperature. Polymerization of ε-CL was done using toluene as solvent with the catalysis of lipase enzyme, after which chloroform was added to terminate the reaction and was washed in cold methanol to obtain the polymer. The polymerization was done by varying the time from 72 hours to 6 days and tested for the molecular weight and the conversion of the monomer. The molecular weight obtained at 6 days is comparably higher. This method will be very effective, economical and eco-friendly to produce as the enzyme used can be regenerated as such at the end of the reaction and can be reused. The obtained polymers can be used for drug delivery and other medical applications.

Keywords: lipase, monomer, polycaprolactone, polymerization

Procedia PDF Downloads 276
256 Evaluating the Hepato-Protective Activities of Combination of Aqueous Extract of Roots of Tinospora cordifolia and Rhizomes of Curcuma longa against Paracetamol Induced Hepatic Damage in Rats

Authors: Amberkar Mohanbabu Vittalrao, Avin, Meena Kumari Kamalkishore, Padmanabha Udupa, Vinaykumar Bavimane, Honnegouda

Abstract:

Objective: To evaluate the hepato-protective activity of Tinospora cordiofolia (Tc) against paracetamol induced hepatic damage in rats. Methods: The plant stem (test drug) was procured locally, shade dried, powdered and extracted with water. Silymarin was used as standard hepatoprotective drugs and 2% gum acacia as a control (vehicle) against paracetamol (PCT) induced hepatotoxicity. Results and Discussion: The hepato-protective activity of aqueous stem extract was assessed by paracetamol induced hepatotoxicity preventive model in rats. Alteration in the levels of biochemical markers of hepatic damage like AST, ALT, ALP and lipid peroxides were tested in both paracetamol treated and untreated groups. Paracetamol (3g/kg) had enhanced the AST, ALT, ALP and the lipid peroxides in the serum. Treatment of silymarin and aqueous stem extract of Tc (200 and 400mg/kg) extract showed significant hepatoprotective activity by altering biochemical marker levels to the near normal. Preliminary phytochemical tests were done. Aqueous Tc extract showed presence of phenolic compound and flavonoids. Our findings suggested that Tc extract possessed hepatoprotective activity in a dose dependent manner. Conclusions: Tc was found to possess significant hepatoprotective property when treated with PCT. This was evident by decreasing the liver enzymes significantly when treated with PCT as compared to PCT only treated group (P < 0.05). Hence Tinospora cardiofolia could be a good, promising, preventive agent against PCT induced hepatotoxicity.

Keywords: Tinospora cardiofolia, hepatoprotection, paracetamol, silymarin

Procedia PDF Downloads 184
255 Glycerol-Based Bio-Solvents for Organic Synthesis

Authors: Dorith Tavor, Adi Wolfson

Abstract:

In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.

Keywords: glycerol, green chemistry, sustainability, catalysis

Procedia PDF Downloads 602
254 Novel Bioinspired Design to Capture Smoky CO2 by Reactive Absorption with Aqueous Scrubber

Authors: J. E. O. Hernandez

Abstract:

In the next 20 years, energy production by burning fuels will increase and so will the atmospheric concentration of CO2 and its well-known threats to life on Earth. The technologies available for capturing CO2 are still dubious and this keeps fostering an interest in bio-inspired approaches. The leading one is the application of carbonic anhydrase (CA) –a superfast biocatalyst able to convert up to one million molecules of CO2 into carbonates in water. However, natural CA underperforms when applied to real smoky CO2 in chimneys and, so far, the efforts to create superior CAs in the lab rely on screening methods running under pristine conditions at the micro level, which are far from resembling those in chimneys. For the evolution of man-made enzymes, selection rather than screening would be ideal but this is challenging because of the need for a suitable artificial environment that is also sustainable for our society. Herein we present the stepwise design and construction of a bioprocess (from bench-scale to semi-pilot) for evolutionary selection experiments. In this bioprocess, reaction and adsorption took place simultaneously at atmospheric pressure in a spray tower. The scrubbing solution was fed countercurrently by reusing municipal pressure and it was mainly prepared with water, carbonic anhydrase and calcium chloride. This bioprocess allowed for the enzymatic carbonation of smoky CO2; the reuse of process water and the recovery of solid carbonates without cooling of smoke, pretreatments, solvent amines and compression of CO2. The average yield of solid carbonates was 0.54 g min-1 or 12-fold the amount produced in serum bottles at lab bench scale. This bioprocess could be used as a tailor-made environment for driving the selection of superior CAs. The bioprocess and its match CA could be sustainably used to reduce global warming by CO2 emissions from exhausts.

Keywords: biological carbon capture and sequestration, carbonic anhydrase, directed evolution, global warming

Procedia PDF Downloads 176
253 Septin 11, Cytoskeletal Protein Involved in the Regulation of Lipid Metabolism in Adipocytes

Authors: Natalia Moreno-Castellanos, Amaia Rodriguez, Gema Frühbeck

Abstract:

Introduction: In adipocytes, the cytoskeleton undergoes important expression and distribution in adipocytes rearrangements during adipogenesis and in obesity. Indeed, a role for these proteins in the regulation of adipocyte differentiation and response to insulin has been demonstrated. Recently, septins have been considered as new components of the cytoskeletal network that interact with other cytoskeletal elements (actin and tubulin) profoundly modifying their dynamics. However, these proteins have not been characterized as yet in adipose tissue. In this work, were examined the cellular, molecular and functional features of a member of this family, septin 11 (SEPT11), in adipocytes and evaluated the impact of obesity on the expression of this protein in human adipose tissue. Methods: Adipose gene and protein expression levels of SEPT11 were analysed in human samples. SEPT11 distribution was evaluated by immunocytochemistry, electronic microscopy, and subcellular fractionation techniques. GST-pull down, immunoprecipitation and a Yeast-Two Hybrid (Y2H) screening were used to identify the SEPT11 interactome. Gene silencing was employed to assess the role of SEPT11 in the regulation of insulin signaling and lipid metabolism in adipocytes. Results: SEPT11 is expressed in human adipocytes, and its levels increased in both omental and subcutaneous adipose tissue in obesity, with SEPT11 mRNA content positively correlating with parameters of insulin resistance in subcutaneous fat. In non-stimulated adipocytes, SEPT11 immunoreactivity showed a ring-like distribution at the cell surface and associated to caveolae. Biochemical analyses showed that SEPT11 interacted with the main component of caveolae, caveolin-1 (CAV1) as well as with the fatty acid-binding protein, FABP5. Notably, the three proteins redistributed and co-localized at the surface of lipid droplets upon exposure of adipocytes to oleate. In this line, SEPT11 silencing in 3T3-L1 adipocytes impaired insulin signaling and decreased insulin-induced lipogenesis. Conclusions: Those findings demonstrate that SEPT11 is a novel component of the adipocyte cytoskeleton that plays an important role in the regulation of lipid traffic, metabolism and can thus represent a potential biomarker of insulin resistance in obesity in adipocytes through its interaction with both CAV1 and FABP5.

Keywords: caveolae, lipid metabolism, obesity, septins

Procedia PDF Downloads 180
252 Transcriptomic Response of Calmodulin Encoding Gene (CaM) in Pesticide Utilizing Talaromyces Fungal Strains

Authors: M. D. Asemoloye, S. G. Jonathan, A. Rafiq, O. J. Olawuyi, D. O. Adejoye

Abstract:

Calmodulin is one of the intracellular calcium proteins that regulates large spectrum of enzymes and cellular functions including metabolism of cyclic nucleotides and glycogen. The potentials of calmodulin gene in fungi necessitates their genetic response and their strong cassette of enzyme secretions for pesticide degradation. Therefore, this study was carried out to investigate the ‘Transcriptomic’ response of calmodulin encoding genes in Talaromyces fungi in response to 2, 2-dichlorovinyl dimethyl phosphate (DDVP or Dichlorvos) an organophosphate pesticide and γ-Hexachlorocyclohexane (Lindane) an organochlorine pesticide. Fungi strains isolated from rhizosphere from grasses rhizosphere in pesticide polluted sites were subjected to percentage incidence test. Two most frequent fungi were further characterized using ITS gene amplification (ITS1 and ITS4 combinations), they were thereafter subjected to In-vitro DDVP and lindane tolerance tests at different concentrations. They were also screened for presence and expression of calmodulin gene (caM) using RT-PCR technique. The two Talaromyces strains had the highest incidence of 50-72% in pesticide polluted site, they were both identified as Talaromyces astroroseus asemoG and Talaromyces purpurogenum asemoN submitted in NCBI gene-bank with accession numbers KY488464 and KY488468 respectively. T. astroroseus KY488464 tolerated DDVP (1.23±0.023 cm) and lindane (1.11±0.018 cm) at 25 % concentration while T. purpurogenum KY488468 tolerated DDVP (1.33±0.061 cm) and lindane (1.54±0.077 cm) at this concentration. Calmodulin gene was detected in both strains, but RT-PCR expression of caM gene revealed at 900-1000 bp showed an under-expression of caM in T. astrorosues KY488464 but overexpressed in T. purpurogenum KY488464. Thus, the calmodulin gene response of these fungal strains to both pesticides could be considered in monitoring the potentials of fungal strains to pesticide tolerance and bioremediation of pesticide in polluted soil.

Keywords: Calmodulin gene, pesticide, RT-PCR, talaromyces, tolerance

Procedia PDF Downloads 201
251 Effects of Copper Oxide Nanoparticles on the Growth Performance, Antioxidant Enzymes Activity and Gut Morphology of Broiler Chickens

Authors: Mohammad Nassiri, Farhad Ahmadi

Abstract:

This research was carried out to investigate the effects of copper oxide nanoparticles (nano-CuO) on performance and gut morphology of broiler chickens. A total of 240 one-day-old male chickens (Ross-308) were randomly divided in a completely randomized design, the inclusion of 4 groups of 60 birds with 4 replicates and 15 birds in each. Experimental diets were as follow: T1 control (basal diets, without nano-CuO but contain 9.1 mg Cu/kg from CuO), T2, T3, and T4 basal diet supplementation with 30, 60, and 90 mg nano-CuO/kg, respectively. Feed intake (FI) and gain weight as weekly recorded and on d 21 feed conversion ratio (FCR) were calculated. Furthermore, at the end of the trial (21 d), four birds per treatment (one bird/replicate) randomly selected and after removed blood samples, they slaughtered and then to the analysis of gut morphological. A segment (10 cm) from the middle part of duodenum and jejunum was removed and put in the formalin 10% (pH = 7). The results revealed that nano-CuO had significantly increased body weight (P = 0.029, but feed intake (P = 0.017), and feed conversion ratio (P = 0.031) decreased in the birds that fed 90 mg nano-CuO when compared to control and the other groups. Total antioxidant capacity (P = 0.041), superoxide dismutase (P = 0.036), and glutathione peroxidase (P = 0.048) were more in the birds fed diet inclusion of 60 and 90 mg nano-CuO (T4) than other treatments. The lowest malonaldehyde (MDA) level was observed in T3 (P = 0.23) and T4 (P = 0.028) decreased (P = 0.17). The villi height and villi height to crypt depth (VH/CD ratio) numerically increased (P = 0.09) in the bird fed 90 mg nano-CuO in comparison with other treatments. According to present results, it could be concluded that dietary nano-CuO improved performance parameters and antioxidant status of broiler chickens during starter period. As well, the optimum improvement observed in the birds fed diet inclusion of 90 mg nano-CuO/kg.

Keywords: antioxidant, broilers, copper, performance, nanoparticles

Procedia PDF Downloads 522
250 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs

Authors: Iman Farasat, Howard M. Salis

Abstract:

The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.

Keywords: biophysical model, CRISPR, Cas9, genome editing

Procedia PDF Downloads 382
249 Ergosterol Regulated Functioning of Rubisco in Tomato

Authors: Prabir Kumar Paul, Joyeeta Mitra

Abstract:

Ergosterol, is an important fungal metabolite on phylloplane which is not synthesised by plants. However, the functional requirement of ergosterol to the plants is still an enigma. Being ubiquitously present in all plants except algae needs an insight into its physiological implication. The present study aimed at understanding if and how ergosterol influences the physiology of chloroplast particularly the activity of RuBisCo and carbonic anhydrase. The concept of the study was based on one of our earlier observation of enhanced Hills reaction in plants treated with fungal metabolites which contained ergosterol. The fungal metabolite treated plants had a significantly high concentration of photosynthetic pigments. Eight-week-old tomato plants raised under aseptic conditions at 25 + 10 C, 75 % relative humidity and 12 hour L/D photoperiod. Metabolites of Aspergillus niger and Fusarium oxysporum were sprayed on plants either singly or in a 1: 1 combination. A separate group of plants was also treated with 0.5, 1.0, 3.0, 5.0. 7.0 mg ergosterol / ml of n- heptane. Control plants were treated with sterile distilled water only. Plants were sampled at 24, 48, 72 and 96 hours of treatment. RuBisCo and carbonic anhydrase was estimated from sampled leaves. RuBisCo was separated on 1D SDS-PAGE and subjected to MALDI – TOF- TOF – MS analysis. The presence of ergosterol in fungal metabolites was confirmed. Fungal metabolites significantly enhanced the concentration and activity of RuBisCo and carbonic anhydrase. The Vmax activity of the enzymes was significantly high in metabolite treated plants. 1:1 mix of metabolite was more effective than when applied individually. Insilico analysis revealed, RuBisCo subunits had a binding site for ergosterol and in its presence affinity of Co2 to the enzyme increased by several folds. Invivo activity of RuBisCo was significantly elicited by ergosterol. Results of the present study indicate that ergosterol from phylloplane microfungi probably regulates the binding of Co2 to RuBisCo along with activity of carbonic anhydrase thereby modulating the physiology of choloroplast.

Keywords: carbonic anhydrase, ergosterol, phylloplane, RuBisCo

Procedia PDF Downloads 210
248 Rheological Properties of Red Beet Root Juice Squeezed from Ultrasounicated Red Beet Root Slices

Authors: M. Çevik, S. Sabancı, D. Tezcan, C. Çelebi, F. İçier

Abstract:

Ultrasound technology is the one of the non-thermal food processing method in recent years which has been used widely in the food industry. Ultrasound application in the food industry is divided into two groups: low and high intensity ultrasound application. While low intensity ultrasound is used to obtain information about physicochemical properties of foods, high intensity ultrasound is used to extract bioactive components and to inactivate microorganisms and enzymes. In this study, the ultrasound pre-treatment at a constant power (1500 W) and fixed frequency (20 kHz) was applied to the red beetroot slices having the dimension of 25×25×50 mm at the constant temperature (25°C) for different application times (0, 5, 10, 15 and 20 min). The red beet root slices pretreated with ultrasonication was squeezed immediately. The changes on rheological properties of red beet root juice depending on ultrasonication duration applied to slices were investigated. Rheological measurements were conducted by using Brookfield viscometer (LVDV-II Pro, USA). Shear stress-shear rate data was obtained from experimental measurements for 0-200 rpm range by using spindle 18. Rheological properties of juice were determined by fitting this data to some rheological models (Newtonian, Bingham, Power Law, Herschel Bulkley). It was investigated that the best model was Power Law model for both untreated red beet root juice (R2=0.991, χ2=0.0007, RMSE=0.0247) and red beetroot juice produced from ultrasonicated slices (R2=0.993, χ2=0.0006, RMSE=0.0216 for 20 min pre-treatment). k (consistency coefficient) and n (flow behavior index) values of red beetroot juices were not affected from the duration of ultrasonication applied to the slices. Ultrasound treatment does not result in any changes on the rheological properties of red beetroot juice. This can be explained by lack of ability to homogenize of the intensity of applied ultrasound.

Keywords: ultrasonication, rheology, red beet root slice, juice

Procedia PDF Downloads 385
247 Effects of in Ovo Injection of Royal Jelly on Hatchability, One-Day Old Chickens Quality, Total Antioxidant Status and Blood Lipoproteins

Authors: Amin Adeli, Maryam Zarei

Abstract:

Background and purpose: Royal jelly (RJ) is a natural product with anti-hyperlipidemic and antioxidant properties. In ovo administration of RJ may improve lipid profile and antioxidant properties. This study was conducted to evaluate, for first time, the effects of in ovo injection of the RJ on hatchability, one-day old chick quality, total antioxidant status and blood lipoproteins. Methods: 400 incubating eggs produced by Ross 308 strain (52 weeks of age in first stage of production) were prepared and assigned into 4 groups (n=100) and 4 replications per group (n=25). These 4 groups were injected by the following pattern: 1) 0.1 ml normal saline (control), 2) 0.1 mg RJ+0.1 ml normal saline, 3) 0.2 mg RJ+0.1 ml normal saline, and 4) 0.3 mg RJ+0.1 ml normal saline. Injections were performed using a laminar flow system Lipid profile, antioxidant properties, hatchability, and one-day old chicken quality were assessed. Results: The administration of RJ at concentration of 0.1increased the percentage of hatchability compared to concentration of 0.2 and control, significant differences have not been observed among groups for quality scores (P>0.05). The results showed that in ovo injection of the RJ did not have any significant effects on lipid profile; but administration of the RJ only decreased High-density lipoprotein (HDL cholesterol, HDL-C) (P<0.05). The results showed that injection of the RJ at concentration of 0.3 increased total antioxidant capacity (TAC) compared to control group (p<0.05). Injection of the RJ progressively increased gluthation peroxidase (GPx) activity (p<0.05). The results showed that injection of the RJ decreased superoxide dismutase (SOD) compared to control group (p<0.05). Conclusion: In ovo injection of the RJ at the highest concentration increased TAC and GPx, but it did not have significant effects on lipid profile. Future studies are needed to investigate the effects of the RJ on the above-mentioned mechanisms.

Keywords: antioxidant enzymes, chicken quality, hatchability, royal jelly

Procedia PDF Downloads 65
246 Molecular Mechanism on Inflammation and Antioxidant Role of Pterocarpus Marsupiumin in Experimental Hyperglycaemia

Authors: Leelavinothan Pari , Ayyasamy Rathinam

Abstract:

Diabetes mellitus (DM) is a major and growing public health problem throughout the world. Pterocarpus marsupium (Roxb.) (Family: Fabaceae) is widely used as a traditional medicine to treat various diseases including diabetes. However, the molecular mechanism of Pterocarpus marsupium has not been investigated so far. Two fractions (2.5% and 5%) of extract from the medicinal plant, Pterocarpus marsupium (PME) were conducted in a dose dependent manner in streptozotocin (45 mg/kg b.w.) induced type 2 diabetic rats. Each fraction of PME was administered to diabetic rats intragastrically at a dose of 50, 100 and 200 mg/kg b.w for 45 days. The effective dose 200 mg/kg b.w of 5% fraction was more pronounced in reducing the levels of blood glucose (95.65 mg/dL) and glycosylated hemoglobin (HbA1c) (0.41 mg/g Hb), and increasing the plasma insulin (16.20 µU/mL) level. Moreover, PME (200 mg/kg b.w) significantly ameliorated lipid peroxidation products (thiobarbituric reactive substances, lipid hydroperoxides) enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E and reduced glutathione) levels. The altered activities of the key enzymes of lipid metabolism along with the lipid profile in diabetic rats were significantly reverted to near normal levels by the administration of PME 5% 200 mg/kg b.w fraction. PME (200 mg/kg b.w) has the ability to reduce the inflammatory cytokines, such as TNF-α, IL-6 mRNA, as well as protein expression and apoptotic marker, such as caspase-3 enzyme in diabetic hepatic tissue. The above biochemical findings were also supported by histological studies such as improvement in pancreas and liver. Pterocarpus marsupium could effectively reduce the hyperglycemia, oxidative-stress, inflammation and hyperlipedimea in diabetic rats; hence it could be a useful drug in the management of diabetes without any side effects.

Keywords: diabetes mellitus, streptozotocin, Pterocarpus marsupium, lipid peroxidation, Antioxidants, inflammatory cytokines

Procedia PDF Downloads 354