Search results for: climate data validation
26870 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 8726869 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 7626868 Air Quality Analysis Using Machine Learning Models Under Python Environment
Authors: Salahaeddine Sbai
Abstract:
Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.Keywords: air quality, machine learning models, pollution, pollutant emissions
Procedia PDF Downloads 9126867 Estimation of Ribb Dam Catchment Sediment Yield and Reservoir Effective Life Using Soil and Water Assessment Tool Model and Empirical Methods
Authors: Getalem E. Haylia
Abstract:
The Ribb dam is one of the irrigation projects in the Upper Blue Nile basin, Ethiopia, to irrigate the Fogera plain. Reservoir sedimentation is a major problem because it reduces the useful reservoir capacity by the accumulation of sediments coming from the watersheds. Estimates of sediment yield are needed for studies of reservoir sedimentation and planning of soil and water conservation measures. The objective of this study was to simulate the Ribb dam catchment sediment yield using SWAT model and to estimate Ribb reservoir effective life according to trap efficiency methods. The Ribb dam catchment is found in North Western part of Ethiopia highlands, and it belongs to the upper Blue Nile and Lake Tana basins. Soil and Water Assessment Tool (SWAT) was selected to simulate flow and sediment yield in the Ribb dam catchment. The model sensitivity, calibration, and validation analysis at Ambo Bahir site were performed with Sequential Uncertainty Fitting (SUFI-2). The flow data at this site was obtained by transforming the Lower Ribb gauge station (2002-2013) flow data using Area Ratio Method. The sediment load was derived based on the sediment concentration yield curve of Ambo site. Stream flow results showed that the Nash-Sutcliffe efficiency coefficient (NSE) was 0.81 and the coefficient of determination (R²) was 0.86 in calibration period (2004-2010) and, 0.74 and 0.77 in validation period (2011-2013), respectively. Using the same periods, the NS and R² for the sediment load calibration were 0.85 and 0.79 and, for the validation, it became 0.83 and 0.78, respectively. The simulated average daily flow rate and sediment yield generated from Ribb dam watershed were 3.38 m³/s and 1772.96 tons/km²/yr, respectively. The effective life of Ribb reservoir was estimated using the developed empirical methods of the Brune (1953), Churchill (1948) and Brown (1958) methods and found to be 30, 38 and 29 years respectively. To conclude, massive sediment comes from the steep slope agricultural areas, and approximately 98-100% of this incoming annual sediment loads have been trapped by the Ribb reservoir. In Ribb catchment, as well as reservoir systematic and thorough consideration of technical, social, environmental, and catchment managements and practices should be made to lengthen the useful life of Ribb reservoir.Keywords: catchment, reservoir effective life, reservoir sedimentation, Ribb, sediment yield, SWAT model
Procedia PDF Downloads 18726866 Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain
Authors: Kazım Kaba, Erdem Erdi, M. Akif Erdoğan, H. Mustafa Kandırmaz
Abstract:
Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly.Keywords: meteosat, radar, rainfall, rain-gauge, Turkey
Procedia PDF Downloads 32826865 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on
Authors: Mahesh Kumar Jat, Manisha Choudhary
Abstract:
Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.Keywords: remote sensing, GIS, object based, classification
Procedia PDF Downloads 13026864 Risk and Vulnerability Assessment of Agriculture on Climate Change: Bangnampriao District, Thailand
Authors: Charuvan Kasemsap
Abstract:
This research was studied in Bangnampriao District, Chachernsao Province, Thailand. The primary data relating to flooding, drought, and saline intrusion problem on agriculture were collected by surveying, focus group, and in-depth interview with agricultural officers, technical officers of irrigation department, and local government leader of Bangnampriao District. The likelihood and consequence of risk were determined the risk index by risk assessment matrix. In addition, the risk index and the total coping capacity scores were investigated the vulnerability index by vulnerability matrix. It was found that the high-risk drought and saline intrusion was dramatically along Bang Pakong River owing to the end destination of Chao Phraya Irrigation system of Central Thailand. This leads yearly the damage of rice paddy, mango tree, orchard, and fish pond. Therefore, some agriculture avoids rice growing during January to May, and also pumps fresh water from a canal into individual storage pond. However, Bangnampriao District will be strongly affected by the impacts of climate change. Monthly precipitations are expected to decrease in number; dry seasons are expected to be more in number and longer in duration. Thus, the risk and vulnerability of agriculture are also increasing. Adaptation strategies need to be put in place in order to enhance the resilience of the agriculture.Keywords: agriculture, bangnampriao, climate change, risk assessment
Procedia PDF Downloads 43026863 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm
Authors: Muhammad Bilal, Zhongfeng Qiu
Abstract:
Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.Keywords: AEORNET, AOD, SARA, GOCI, Beijing
Procedia PDF Downloads 17126862 Effects of Climate Change on Floods of Pakistan, and Gap Analysis of Existing Policies with Vision 2025
Authors: Saima Akbar, Tahseen Ullah Khan
Abstract:
The analysis of the climate change impact on flood frequency represents an important issue for water resource management and flood risk mitigation. This research was conducted to address the effects of climate change on flood incidents of Pakistan and find out gaps in existing policies to reducing the environmental aspects on floods and effects of global warming. The main objective of this research was to critically analyses the National Climate Change Policy (NCCP), National Disaster Management Authority (NDMA), Federal Flood Commission (FFC) and Vision 2025, as an effective policy document which is not only hitting the target of a climate resilient Pakistan but provides room for efficient and flexible policy implementation. The methodology integrates projected changes in monsoon patterns (since last 20 years and overall change in rainfall pattern since 1901 to 2015 from Pakistan Metrological Department), glacier melting, decreasing dam capacity and lacks in existing policies by using SWOT (Strength, Weakness, Opportunities, Threats) model in order to explore the relative impacts of global warming on the system performance. Results indicate the impacts of climate change are significant, but probably not large enough to justify a major effort for adapting the physical infrastructure to expected climatic conditions in Vision 2025 which is our shared destination to progress, ultimate aspiration to see Pakistan among the ten largest economies of the world by 2047– the centennial year of our independence. The conclusion of this research was to adapt sustainable measures to reduce flood impacts and make policies as neighboring countries are adapting for their sustainability.Keywords: climatic factors, monsoon, Pakistan, sustainability
Procedia PDF Downloads 14026861 Indoor and Outdoor Forest Farming for Year-Round Food and Medicine Production, Carbon Sequestration, Soil-Building, and Climate Change Mitigation
Authors: Jerome Osentowski
Abstract:
The objective at Central Rocky Mountain Permaculture Institute has been to put in practice a sustainable way of life while growing food, medicine, and providing education. This has been done by applying methods of farming such as agroforestry, forest farming, and perennial polycultures. These methods have been found to be regenerative to the environment through carbon sequestration, soil-building, climate change mitigation, and the provision of food security. After 30 years of implementing carbon farming methods, the results are agro-diversity, self-sustaining systems, and a consistent provision of food and medicine. These results are exhibited through polyculture plantings in an outdoor forest garden spanning roughly an acre containing about 200 varieties of fruits, nuts, nitrogen-fixing trees, and medicinal herbs, and two indoor forest garden greenhouses (one Mediterranean and one Tropical) containing about 50 varieties of tropical fruits, beans, herbaceous plants and more. While the climate zone outside the greenhouse is 6, the tropical forest garden greenhouse retains an indoor climate zone of 11 with near-net-zero energy consumption through the use of a climate battery, allowing the greenhouse to serve as a year-round food producer. The effort to source food from the forest gardens is minimal compared to annual crop production. The findings at Central Rocky Mountain Permaculture Institute conclude that agroecological methods are not only beneficial but necessary in order to revive and regenerate the environment and food security.Keywords: agroecology, agroforestry, carbon farming, carbon sequestration, climate battery, food security, forest farming, forest garden, greenhouse, near-net-zero, perennial polycultures
Procedia PDF Downloads 44226860 Fly ash Contamination in Groundwater and its Implications on Local Climate Change
Authors: Rajkumar Ghosh
Abstract:
Fly ash, a byproduct of coal combustion, has become a prevalent environmental concern due to its potential impact on both groundwater quality and local climate change. This study aims to provide an in-depth analysis of the various mechanisms through which fly ash contaminates groundwater, as well as the possible consequences of this contamination on local climate change. The presence of fly ash in groundwater not only poses a risk to human health but also has the potential to influence local climate change through complex interactions. Although fly ash has various applications in construction and other industries, improper disposal and lack of containment measures have led to its infiltration into groundwater systems. Through a comprehensive review of existing literature and case studies, the interactions between fly ash and groundwater systems, assess the effects on hydrology, and discuss the implications for the broader climate. This section reviews the pathways through which fly ash enters groundwater, including leaching from disposal sites, infiltration through soil, and migration from surface water bodies. The physical and chemical characteristics of fly ash that contribute to its mobility and persistence in groundwater. The introduction of fly ash into groundwater can alter its chemical composition, leading to an increase in the concentration of heavy metals, metalloids, and other potentially toxic elements. The mechanisms of contaminant transport and highlight the potential risks to human health and ecosystems. Fly ash contamination in groundwater may influence the hydrological cycle through changes in groundwater recharge, discharge, and flow dynamics. This section examines the implications of altered hydrology on local water availability, aquatic habitats, and overall ecosystem health. The presence of fly ash in groundwater may have direct and indirect effects on local climate change. The role of fly ash as a potent greenhouse gas absorber and its contribution to radiative forcing. Additionally, investigation of the possible feedback mechanisms between groundwater contamination and climate change, such as altered vegetation patterns and changes in local temperature and precipitation patterns. In this section, potential mitigation and remediation techniques to minimize fly ash contamination in groundwater are analyzed. These may include improved waste management practices, engineered barriers, groundwater remediation technologies, and sustainable fly ash utilization. This paper highlights the critical link between fly ash contamination in groundwater and its potential contribution to local climate change. It emphasizes the importance of addressing this issue promptly through a combination of preventive measures, effective management strategies, and continuous monitoring. By understanding the interconnections between fly ash contamination, groundwater quality, and local climate, towards creating a more resilient and sustainable environment for future generations. The findings of this research can assist policymakers and environmental managers in formulating sustainable strategies to mitigate fly ash contamination and minimize its contribution to climate change.Keywords: groundwater, climate, sustainable environment, fly ash contamination
Procedia PDF Downloads 8626859 Leveraging Remote Sensing Information for Drought Disaster Risk Management
Authors: Israel Ropo Orimoloye, Johanes A. Belle, Olusola Adeyemi, Olusola O. Ololade
Abstract:
With more than 100,000 orbits during the past 20 years, Terra has significantly improved our knowledge of the Earth's climate and its implications on societies and ecosystems of human activity and natural disasters, including drought events. With Terra instrument's performance and the free distribution of its products, this study utilised Terra MOD13Q1 satellite data to assess drought disaster events and its spatiotemporal patterns over the Free State Province of South Africa between 2001 and 2019 for summer, autumn, winter, and spring seasons. The study also used high-resolution downscaled climate change projections under three representative concentration pathways (RCP). Three future periods comprising the short (the 2030s), medium (2040s), and long term (2050s) compared to the current period are analysed to understand the potential magnitude of projected climate change-related drought. The study revealed that the year 2001 and 2016 witnessed extreme drought conditions where the drought index is between 0 and 20% across the entire province during summer, while the year 2003, 2004, 2007, and 2015 observed severe drought conditions across the region with variation from one part to the another. The result shows that from -24.5 to -25.5 latitude, the area witnessed a decrease in precipitation (80 to 120mm) across the time slice and an increase in the latitude -26° to -28° S for summer seasons, which is more prominent in the year 2041 to 2050. This study emphasizes the strong spatio-environmental impacts within the province and highlights the associated factors that characterise high drought stress risk, especially on the environment and ecosystems. This study contributes to a disaster risk framework to identify areas for specific research and adaptation activities on drought disaster risk and for environmental planning in the study area, which is characterised by both rural and urban contexts, to address climate change-related drought impacts.Keywords: remote sensing, drought disaster, climate scenario, assessment
Procedia PDF Downloads 18726858 Optimal Evaluation of Weather Risk Insurance for Wheat
Authors: Slim Amami
Abstract:
A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.Keywords: agriculture, database, meteorological factors, production model, optimal price
Procedia PDF Downloads 22226857 A Performance Study of Fixed, Single-Axis and Dual-Axis Photovoltaic Systems in Kuwait
Authors: A. Al-Rashidi, A. El-Hamalawi
Abstract:
In this paper, a performance study was conducted to investigate single and dual-axis PV systems to generate electricity in five different sites in Kuwait. Relevant data were obtained by using two sources for validation purposes. A commercial software, PVsyst, was used to analyse the data, such as metrological data and other input parameters, and compute the performance parameters such as capacity factor (CF) and final yield (YF). The results indicated that single and dual-axis PV systems would be very beneficial to electricity generation in Kuwait as an alternative source to conventional power plants, especially with the increased demand over time. The ranges were also found to be competitive in comparison to leading countries using similar systems. A significant increase in CF and YF values around 24% and 28.8% was achieved related to the use of single and dual systems, respectively.Keywords: single-axis and dual-axis photovoltaic systems, capacity factor, final yield, Kuwait
Procedia PDF Downloads 29626856 An Investigation on Climate Responsive Design Strategies of Apartment Buildings in Athens of the Period 1920-1960s
Authors: Angeliki Chronopoulou, Eleni Alexandrou
Abstract:
This paper thoroughly investigates residential buildings of the period 1920 – 1960 in Athens and evaluates their bioclimatic response and energy performance. A methodology adapted to the specific context of the city is proposed and applied in order to assess and extract results related to the climate analysis of the city of Athens, the general/architectural design and construction characteristics of the apartment buildings constructed during the period 1920 – 1960, the bioclimatic strategies applied on them, and the achieved thermal comfort based on questionnaires answered by their users. The results of the current study indicate that the residential architecture of that period in the city of Athens is adapted to an extend to the local climate with various climate responsive strategies. As an outcome of the analysis, the most frequently applied depending on the period of construction are presented. For this reason, the examined period is divided into 3 sub – periods: 1st period 1920s – 1930s (late neoclassicism & eclecticism), 2nd period 1930s – 1940s (modernism), 3rd period 1940s – 1960s (postwar modernism).Keywords: Athens, climatic design strategies, residential buildings, middle war and post war architecture, thermal comfort
Procedia PDF Downloads 10226855 Climate Adaptations to Traditional Milpa Farming Practices in Mayan Communities of Southern Belize: A Socio-Ecological Systems Approach
Authors: Kristin Drexler
Abstract:
Climate change has exacerbated food and livelihood insecurity for Mayan milpa farmers in Central America. For centuries, milpa farming has been sustainable for subsistence; however, in the last 50 years, milpas have become less reliable due to accelerating climate change, resource degradation, declining markets, poverty, and other factors. Using interviews with extension leaders and milpa farmers in Belize, this qualitative study examines the capacity for increasing climate-smart agriculture (CSA) aspects of existing traditional milpa practices, specifically no-burn mulching, soil enrichment, and the use of cover plants. Applying community capitals and socio-ecological systems frameworks, this study finds four key capitals were perceived by farmers and agriculture extension leaders as barriers for increasing CSA practices: (1) human-capacity, (2) financial, (3) infrastructure, and (4) governance-justice capitals. The key barriers include a lack of CSA technology and pest management knowledge-sharing (human-capacity), unreliable roads and utility services (infrastructure), the closure of small markets and crop-buying programs in Belize (financial), and constraints on extension services and exacerbating a sense of marginalization in Maya communities (governance-justice). Recommendations are presented for government action to reduce barriers and facilitate an increase in milpa crop productivity, promote food and livelihood security, and enable climate resilience of Mayan milpa communities in Belize.Keywords: socio-ecological systems, community capitals, climate-smart agriculture, food security, milpa, Belize
Procedia PDF Downloads 9126854 Instrument Development and Validation for Quality Early Childhood Curriculum in the Malaysian Context
Authors: Sadiah Baharom, Che Nidzam Che Ahmad, Saipol Barin Ramli, Asmayati Yahaya, Sopia Md Yassin
Abstract:
The early childhood care and education (ECCE) in Malaysia aspire to develop children who are intellectually, emotionally, physically and spiritually balanced. This aspiration can only materialise if the early childhood program developed comprehensive and is of high quality comparable to international standards. As such, there is a pressing need to assess the quality of the program in an all-encompassing manner. The overall research project aims at developing a comprehensive and integrated model of high-quality Malaysian ECCE. One of the major objectives of this project is to assess and evaluate the scope and quality of the existing ECCE programs in Malaysia. To this end, a specific aspect of this objective is to develop and validate an instrument to assess and evaluate the ECCE curriculum of the country. Thus this paper describes the development and validation of an instrument to explore the quality of early childhood care and education curriculum currently implemented in the country’s ECCE centres. The generation of the constructs and items were based on a set of criteria mapped against existing ECCE practice, document analyses, expert interviews and panel discussions. The items went through expert validation and were field tested on 597 ECCE teachers. The data obtained went through an exploratory factor analysis to validate the constructs of the instrument followed by reliability studies on internal consistency based on the Cronbach Alpha values. The final set of items for the ECCE curriculum instrument, earmarked for the main study, consists of four constructs namely philosophy and core values, curriculum content, curriculum review and unique features. Each construct consists of between 21 to 3 items with a total of 36 items in all. The reliability coefficients for each construct range from 0.65 to 0.961. These values are within the acceptable limits for a reliable instrument to be used in the main study.Keywords: early childhood and care education, instrument development, reliability studies, validity studies
Procedia PDF Downloads 20126853 Optimising Urban Climate at Mesoscale: The Case of Floor-Area-Ratio Modelling and Energy Planning Integration
Authors: Ali Cheshmehzangi, Ayotunde Dawodu
Abstract:
In urban planning, Floor Area Ratio (FAR) of the site plays a major role in the multiplicity of performances, from humane living environments to energy performance. When one considers the astounding volume of new housing that is going to be constructed across the globe during the next few decades due to growing urbanisation (e.g. particularly in developing world), it is imperative that we have an empirically grounded grasp of which building configurations are more energy efficient. As a common planning metric, it would be helpful to know exactly how managing FAR connects with energy efficiency. Hence, this study puts together a set of modelling of various FARs for a typical residential compound and address the considerations of energy planning integration in the practice of building configuration and urban planning. Such decision makings at the planning and design stage enable us to provide pathways of optimising urban climate at mesoscale of the built environment, i.e. the neighbourhood or community level. In this study, a comparative study is conducted using Eco-Tect Software, using a case study in the City of Ningbo, China. Findings of the study contribute to identifying scenarios of various FAR use and energy planning at mesoscale. The final results contribute to studies in urban climate, from the perspectives of urban planning, energy planning, and urban modelling.Keywords: China, energy planning, FAR, floor-area-ratio, mesoscale, urban climate, urban modelling
Procedia PDF Downloads 16426852 Estimation of Snow and Ice Melt Contributions to Discharge from the Glacierized Hunza River Basin, Karakoram, Pakistan
Authors: Syed Hammad Ali, Rijan Bhakta Kayastha, Danial Hashmi, Richard Armstrong, Ahuti Shrestha, Iram Bano, Javed Hassan
Abstract:
This paper presents the results of a semi-distributed modified positive degree-day model (MPDDM) for estimating snow and ice melt contributions to discharge from the glacierized Hunza River basin, Pakistan. The model uses daily temperature data, daily precipitation data, and positive degree day factors for snow and ice melt. The model is calibrated for the period 1995-2001 and validated for 2002-2013, and demonstrates close agreements between observed and simulated discharge with Nash–Sutcliffe Efficiencies of 0.90 and 0.88, respectively. Furthermore, the Weather Research and Forecasting model projected temperature, and precipitation data from 2016-2050 are used for representative concentration pathways RCP4.5 and RCP8.5, and bias correction was done using a statistical approach for future discharge estimation. No drastic changes in future discharge are predicted for the emissions scenarios. The aggregate snow-ice melt contribution is 39% of total discharge in the period 1993-2013. Snow-ice melt contribution ranges from 35% to 63% during the high flow period (May to October), which constitutes 89% of annual discharge; in the low flow period (November to April) it ranges from 0.02% to 17%, which constitutes 11 % of the annual discharge. The snow-ice melt contribution to total discharge will increase gradually in the future and reach up to 45% in 2041-2050. From a sensitivity analysis, it is found that the combination of a 2°C temperature rise and 20% increase in precipitation shows a 10% increase in discharge. The study allows us to evaluate the impact of climate change in such basins and is also useful for the future prediction of discharge to define hydropower potential, inform other water resource management in the area, to understand future changes in snow-ice melt contribution to discharge, and offer a possible evaluation of future water quantity and availability.Keywords: climate variability, future discharge projection, positive degree day, regional climate model, water resource management
Procedia PDF Downloads 29026851 Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin in Western Ethiopia
Authors: Elias Jemal Abdella
Abstract:
The Blue Nile River is an important shared resource of Ethiopia, Sudan and also, because it is the major contributor of water to the main Nile River, Egypt. Despite the potential benefits of regional cooperation and integrated joint basin management, all three countries continue to pursue unilateral plans for development. Besides, there is great uncertainty about the likely impacts of climate change in water availability for existing as well as proposed irrigation and hydropower projects in the Blue Nile Basin. The main objective of this study is to quantitatively assess the impact of climate change on the hydrological regime of the upper Blue Nile basin, western Ethiopia. Three models were combined, a dynamic Coordinated Regional Climate Downscaling Experiment (CORDEX) regional climate model (RCM) that is used to determine climate projections for the Upper Blue Nile basin for Representative Concentration Pathways (RCPs) 4.5 and 8.5 greenhouse gas emissions scenarios for the period 2021-2050. The outputs generated from multimodel ensemble of four (4) CORDEX-RCMs (i.e., rainfall and temperature) were used as input to a Soil and Water Assessment Tool (SWAT) hydrological model which was setup, calibrated and validated with observed climate and hydrological data. The outputs from the SWAT model (i.e., projections in river flow) were used as input to a Water Evaluation and Planning (WEAP) water resources model which was used to determine the water resources implications of the changes in climate. The WEAP model was set-up to simulate three development scenarios. Current Development scenario was the existing water resource development situation, Medium-term Development scenario was planned water resource development that is expected to be commissioned (i.e. before 2025) and Long-term full Development scenario were all planned water resource development likely to be commissioned (i.e. before 2050). The projected change of mean annual temperature for period (2021 – 2050) in most of the basin are warmer than the baseline (1982 -2005) average in the range of 1 to 1.4oC, implying that an increase in evapotranspiration loss. Subbasins which already distressed from drought may endure to face even greater challenges in the future. Projected mean annual precipitation varies from subbasin to subbasin; in the Eastern, North Eastern and South western highland of the basin a likely increase of mean annual precipitation up to 7% whereas in the western lowland part of the basin mean annual precipitation projected to decrease by 3%. The water use simulation indicates that currently irrigation demand in the basin is 1.29 Bm3y-1 for 122,765 ha of irrigation area. By 2025, with new schemes being developed, irrigation demand is estimated to increase to 2.5 Bm3y-1 for 277,779 ha. By 2050, irrigation demand in the basin is estimated to increase to 3.4 Bm3y-1 for 372,779 ha. The hydropower generation simulation indicates that 98 % of hydroelectricity potential could be produced if all planned dams are constructed.Keywords: Blue Nile River, climate change, hydropower, SWAT, WEAP
Procedia PDF Downloads 35526850 Multi Data Management Systems in a Cluster Randomized Trial in Poor Resource Setting: The Pneumococcal Vaccine Schedules Trial
Authors: Abdoullah Nyassi, Golam Sarwar, Sarra Baldeh, Mamadou S. K. Jallow, Bai Lamin Dondeh, Isaac Osei, Grant A. Mackenzie
Abstract:
A randomized controlled trial is the "gold standard" for evaluating the efficacy of an intervention. Large-scale, cluster-randomized trials are expensive and difficult to conduct, though. To guarantee the validity and generalizability of findings, high-quality, dependable, and accurate data management systems are necessary. Robust data management systems are crucial for optimizing and validating the quality, accuracy, and dependability of trial data. Regarding the difficulties of data gathering in clinical trials in low-resource areas, there is a scarcity of literature on this subject, which may raise concerns. Effective data management systems and implementation goals should be part of trial procedures. Publicizing the creative clinical data management techniques used in clinical trials should boost public confidence in the study's conclusions and encourage further replication. In the ongoing pneumococcal vaccine schedule study in rural Gambia, this report details the development and deployment of multi-data management systems and methodologies. We implemented six different data management, synchronization, and reporting systems using Microsoft Access, RedCap, SQL, Visual Basic, Ruby, and ASP.NET. Additionally, data synchronization tools were developed to integrate data from these systems into the central server for reporting systems. Clinician, lab, and field data validation systems and methodologies are the main topics of this report. Our process development efforts across all domains were driven by the complexity of research project data collected in real-time data, online reporting, data synchronization, and ways for cleaning and verifying data. Consequently, we effectively used multi-data management systems, demonstrating the value of creative approaches in enhancing the consistency, accuracy, and reporting of trial data in a poor resource setting.Keywords: data management, data collection, data cleaning, cluster-randomized trial
Procedia PDF Downloads 2726849 Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India
Authors: Mahesh Kothari, K. D. Gharde
Abstract:
The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river.Keywords: transferred function, sigmoid, backpropagation, membership function, defuzzification
Procedia PDF Downloads 56926848 Temporal Transformation of Built-up Area and its Impact on Urban Flooding in Hyderabad, India
Authors: Subbarao Pichuka, Amar Balakrishna Tej, Vikas Vemula
Abstract:
In recent years, the frequency and intensity of urban floods have increased due to climate change all over the world provoking a significant loss in terms of human lives and property. This study investigates the effect of Land Use and Land Cover (LULC) changes and population growth on the urban environmental conditions in the Indian metropolitan city namely Hyderabad. The centennial built-up area data have been downloaded from the Global Human Settlement Layer (GHSL) web portal for various periods (1975 to 2014). The ArcGIS version 10.8 software is employed to convert the GHSL data into shape files and also to calculate the amount of built-up area in the study locations. The decadal population data are obtained from the Census from 1971 to 2011 and forecasted for the required years (1975 and 2014) utilizing the Geometric Increase Method. Next, the analysis has been carried out with respect to the increase in population and the corresponding rise in the built-up area. Further the effects of extreme rainfall events, which exacerbate urban flooding have also been reviewed. Results demonstrate that the population growth was the primary cause of the increase in impervious surfaces in the urban regions. It in turn leads to the intensification of surface runoff and thereby leads to Urban flooding. The built-up area has been doubled from 1975 to 2014 and the population growth has been observed between 109.24% to 400% for the past four decades (1971 to 2014) in the study area (Hyderabad). Overall, this study provides the hindsight on the current urban flooding scenarios, and the findings of this study can be used in the future planning of cities.Keywords: urban LULC change, urban flooding, GHSL built-up data, climate change, ArcGIS
Procedia PDF Downloads 8126847 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health
Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang
Abstract:
The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.Keywords: climate change, health impact, health adaptation, Erren River Basin
Procedia PDF Downloads 30426846 Investigation into the Socio-ecological Impact of Migration of Fulani Herders in Anambra State of Nigeria Through a Climate Justice Lens
Authors: Anselm Ego Onyimonyi, Maduako Johnpaul O.
Abstract:
The study was designed to investigate into the socio-ecological impact of migration of Fulani herders in Anambra state of Nigeria, through a climate justice lens. Nigeria is one of the world’s most densely populated countries with a population of over 284 million people, half of which are considered to be in abject poverty. There is no doubt that livestock production provides sustainable contributions to food security and poverty reduction to Nigeria economy, but not without some environmental implications like any other economic activities. Nigeria is recognized as being vulnerable to climate change. Climate change and global warming if left unchecked will cause adverse effects on livelihoods in Nigeria, such as livestock production, crop production, fisheries, forestry and post-harvest activities, because the rainfall regimes and patterns will be altered, floods which devastate farmlands would occur, increase in temperature and humidity which increases pest and disease would occur and other natural disasters like desertification, drought, floods, ocean and storm surges, which not only damage Nigerians’ livelihood but also cause harm to life and property, would occur. This and other climatic issue as it affects Fulani herdsmen was what this study investigated. In carrying out this research, a survey research design was adopted. A simple sampling technique was used. One local government area (LGA) was selected purposively from each of the four agricultural zone in the state based on its predominance of Fulani herders. For appropriate sampling, 25 respondents from each of the four Agricultural zones in the state were randomly selected making up the 100 respondent being sampled. Primary data were generated by using a set of structured 5-likert scale questionnaire. Data generated were analyzed using SPSS and the result presented using descriptive statistics. From the data analyzed, the study indentified; Unpredicted rainfall (mean = 3.56), Forest fire (mean = 4.63), Drying Water Source (mean = 3.99), Dwindling Grazing (mean 4.43), Desertification (mean = 4.44), Fertile land scarcity (mean = 3.42) as major factor predisposing Fulani herders to migrate southward while rejecting Natural inclination to migrate (mean = 2.38) and migration to cause trouble as a factor. On the reason why Fulani herders are trying to establish a permanent camp in Anambra state; Moderate temperature (mean= 3.60), Avoiding overgrazing (4.42), Search for fodder and water (mean = 4.81) and (mean = 4.70) respectively, Need for market (4.28), Favorable environment (mean = 3.99) and Access to fertile land (3.96) were identified. It was concluded that changing climatic variables necessitated the migration of herders from Northern Nigeria to areas in the South were the variables are most favorable to the herders and their animals.Keywords: socio-ecological, migration, fulani, climate, justice, lens
Procedia PDF Downloads 4226845 National Digital Soil Mapping Initiatives in Europe: A Review and Some Examples
Authors: Dominique Arrouays, Songchao Chen, Anne C. Richer-De-Forges
Abstract:
Soils are at the crossing of many issues such as food and water security, sustainable energy, climate change mitigation and adaptation, biodiversity protection, human health and well-being. They deliver many ecosystem services that are essential to life on Earth. Therefore, there is a growing demand for soil information on a national and global scale. Unfortunately, many countries do not have detailed soil maps, and, when existing, these maps are generally based on more or less complex and often non-harmonized soil classifications. An estimate of their uncertainty is also often missing. Thus, there are not easy to understand and often not properly used by end-users. Therefore, there is an urgent need to provide end-users with spatially exhaustive grids of essential soil properties, together with an estimate of their uncertainty. One way to achieve this is digital soil mapping (DSM). The concept of DSM relies on the hypothesis that soils and their properties are not randomly distributed, but that they depend on the main soil-forming factors that are climate, organisms, relief, parent material, time (age), and position in space. All these forming factors can be approximated using several exhaustive spatial products such as climatic grids, remote sensing products or vegetation maps, digital elevation models, geological or lithological maps, spatial coordinates of soil information, etc. Thus, DSM generally relies on models calibrated with existing observed soil data (point observations or maps) and so-called “ancillary co-variates” that come from other available spatial products. Then the model is generalized on grids where soil parameters are unknown in order to predict them, and the prediction performances are validated using various methods. With the growing demand for soil information at a national and global scale and the increase of available spatial co-variates national and continental DSM initiatives are continuously increasing. This short review illustrates the main national and continental advances in Europe, the diversity of the approaches and the databases that are used, the validation techniques and the main scientific and other issues. Examples from several countries illustrate the variety of products that were delivered during the last ten years. The scientific production on this topic is continuously increasing and new models and approaches are developed at an incredible speed. Most of the digital soil mapping (DSM) products rely mainly on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs or for existing conventional maps. However, some scientific issues remain to be solved and also political and legal ones related, for instance, to data sharing and to different laws in different countries. Other issues related to communication to end-users and education, especially on the use of uncertainty. Overall, the progress is very important and the willingness of institutes and countries to join their efforts is increasing. Harmonization issues are still remaining, mainly due to differences in classifications or in laboratory standards between countries. However numerous initiatives are ongoing at the EU level and also at the global level. All these progress are scientifically stimulating and also promissing to provide tools to improve and monitor soil quality in countries, EU and at the global level.Keywords: digital soil mapping, global soil mapping, national and European initiatives, global soil mapping products, mini-review
Procedia PDF Downloads 18426844 Contextual Paper on Green Finance: Analysis of the Green Bonds Market
Authors: Dina H. Gabr, Mona A. El Bannan
Abstract:
With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021.Keywords: climate change, GHG emissions, green bonds, green finance, sustainable finance
Procedia PDF Downloads 11926843 Climate Impact-Minimizing Road Infrastructure Layout for Growing Cities
Authors: Stanislovas Buteliauskas, Aušrius Juozapavičius
Abstract:
City road transport contributes significantly to climate change, and the ongoing world urbanization is only increasing the problem. The paper describes a city planning concept minimizing the number of vehicles on the roads while increasing overall mobility. This becomes possible by utilizing a recently invented two-level road junction with a unique property of serving both as an intersection of uninterrupted traffic and an easily accessible transport hub capable of accumulating private vehicles, and therefore becoming an especially effective park-and-ride solution, and a logistics or business center. Optimized layouts of city road infrastructure, living and work areas, and major roads are presented. The layouts are suitable both for the development of new cities as well as for the expansion of existing ones. Costs of the infrastructure and a positive impact on climate are evaluated in comparison to current city growth patterns.Keywords: congestion, city infrastructure, park-and-ride, road junctions
Procedia PDF Downloads 30526842 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 6426841 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 80