Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6

Search results for: meteosat

6 A High Compression Ratio for a Losseless Image Compression Based on the Arithmetic Coding with the Sorted Run Length Coding: Meteosat Second Generation Image Compression

Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane

Abstract:

Image compression is the heart of several multimedia techniques. It is used to reduce the number of bits required to represent an image. Meteosat Second Generation (MSG) satellite allows the acquisition of 12 image files every 15 minutes and that results in a large databases sizes. In this paper, a novel image compression method based on the arithmetic coding with the sorted Run Length Coding (SRLC) for MSG images is proposed. The SRLC allows us to find the occurrence of the consecutive pixels of the original image to create a sorted run. The arithmetic coding allows the encoding of the sorted data of the previous stage to retrieve a unique code word that represents a binary code stream in the sorted order to boost the compression ratio. Through this article, we show that our method can perform the best results concerning compression ratio and bit rate unlike the method based on the Run Length Coding (RLC) and the arithmetic coding. Evaluation criteria like the compression ratio and the bit rate allow the confirmation of the efficiency of our method of image compression.

Keywords: image compression, arithmetic coding, Run Length Coding, RLC, Sorted Run Length Coding, SRLC, Meteosat Second Generation, MSG

Procedia PDF Downloads 266
5 Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance

Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane

Abstract:

Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression.

Keywords: image compression, radon transform, linear predictive coding (LPC), run lengthcoding (RLC), meteosat second generation (MSG)

Procedia PDF Downloads 349
4 Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain

Authors: Kazım Kaba, Erdem Erdi, M. Akif Erdoğan, H. Mustafa Kandırmaz

Abstract:

Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly.

Keywords: meteosat, radar, rainfall, rain-gauge, Turkey

Procedia PDF Downloads 221
3 Rainfall Estimation over Northern Tunisia by Combining Meteosat Second Generation Cloud Top Temperature and Tropical Rainfall Measuring Mission Microwave Imager Rain Rates

Authors: Saoussen Dhib, Chris M. Mannaerts, Zoubeida Bargaoui, Ben H. P. Maathuis, Petra Budde

Abstract:

In this study, a new method to delineate rain areas in northern Tunisia is presented. The proposed approach is based on the blending of the geostationary Meteosat Second Generation (MSG) infrared channel (IR) with the low-earth orbiting passive Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). To blend this two products, we need to apply two main steps. Firstly, we have to identify the rainy pixels. This step is achieved based on a classification using MSG channel IR 10.8 and the water vapor WV 0.62, applying a threshold on the temperature difference of less than 11 Kelvin which is an approximation of the clouds that have a high likelihood of precipitation. The second step consists on fitting the relation between IR cloud top temperature with the TMI rain rates. The correlation coefficient of these two variables has a negative tendency, meaning that with decreasing temperature there is an increase in rainfall intensity. The fitting equation will be applied for the whole day of MSG 15 minutes interval images which will be summed. To validate this combined product, daily extreme rainfall events occurred during the period 2007-2009 were selected, using a threshold criterion for large rainfall depth (> 50 mm/day) occurring at least at one rainfall station. Inverse distance interpolation method was applied to generate rainfall maps for the drier summer season (from May to October) and the wet winter season (from November to April). The evaluation results of the estimated rainfall combining MSG and TMI was very encouraging where all the events were detected rainy and the correlation coefficients were much better than previous evaluated products over the study area such as MSGMPE and PERSIANN products. The combined product showed a better performance during wet season. We notice also an overestimation of the maximal estimated rain for many events.

Keywords: combination, extreme, rainfall, TMI-MSG, Tunisia

Procedia PDF Downloads 99
2 MSG Image Encryption Based on AES and RSA Algorithms "MSG Image Security"

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues meteorological images from Meteosat Second Generation (MSG), which generates 12 images every 15 minutes. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every 15 minutes that will be used to encrypt each frame of the MSG meteorological basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, satellite MSG, encryption, decryption, key, correlation

Procedia PDF Downloads 282
1 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang

Abstract:

Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.

Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI

Procedia PDF Downloads 206