Search results for: antibiotic residue
133 Antimicrobial Action and Its Underlying Mechanism by Methanolic Seed Extract of Syzygium cumini on Bacillus subtilis
Authors: Alok Kumar Yadav, Saurabh Saraswat, Preeti Sirohi, Manjoo Rani, Sameer Srivastava, Manish Pratap Singh, Nand K. Singh
Abstract:
The development of antibiotic resistance in bacteria is increasing at an alarming rate, and this is considered as one of the most serious threats in the history of medicine, and an alternative solution should be derived so as to tackle this problem. In many countries, people use the medicinal plants for the treatment of various diseases as these are cheaper, easily available and least toxic. Syzygium cumini is used for the treatment of various kinds of diseases but their mechanism of action is not reported. The antimicrobial activity of Syzygium cumini was tested by the well diffusion assay and zone of inhibition was reported to be 20.06 mm as compared to control with MIC of 0.3 mg/ml. Genomic DNA fragmentation of Bacillus subtilis revealed apoptosis and FE-SEM indicate cell wall cracking on several intervals of time. Propidium iodide staining results showed that few bacterial cells were stained in the control and population of stained cells increase after exposing them for various period of time. Flow cytometric kinetic data analysis on the membrane permeabilization in bacterial cell showed the significant contribution of antimicrobial potential of the seed extract on antimicrobial-induced permeabilization. Two components of Syzygium cumini methanolic seed extract was found to be quite active against four enzymes like PDB ID- 1W5D, 4OX3, 3MFD and 5E2F which have a very crucial role in membrane synthesis in Bacillus subtilis by in silico analysis. Through in silico analysis, lupeol showed highest binding energy for macromolecule 1W5D and 4OX3 whereas stigmasterol showed the highest binding energy for macromolecule 3MFD and 5E2F respectively. It showed that methanolic seed extract of Syzygium cumini can be used for the inhibition of foodborne infections caused by Bacillus subtilis and also as an alternative of prevalent antibiotics.Keywords: antibiotics, Bacillus subtilis, inhibition, Syzygium cumini
Procedia PDF Downloads 199132 Screening for Enterotoxigenic Staphylococcus spp. Strains Isolated From Raw Milk and Dairy Products in R. N. Macedonia
Authors: Marija Ratkova Manovska, Mirko Prodanov, Dean Jankuloski, Katerina Blagoevska
Abstract:
Staphylococci, which are widely found in the environment, animals, humans, and food products, include Staphylococcus aureus (S. aureus), the most significant pathogenic species in this genus. The virulence and toxicity of S. aureus are primarily attributed to the presence of specific genes responsible for producing toxins, biofilms, invasive components, and antibiotic resistance. Staphylococcal food poisoning, caused by the production of staphylococcal enterotoxins (SEs) by these strains in food, is a common occurrence. Globally, S. aureus food intoxications are typically ranked as the third or fourth most prevalent foodborne intoxications. For this study, a total of 333 milk samples and 1160 dairy product samples were analyzed between 2016 and 2020. The strains were isolated and confirmed using the ISO 6888-1:1999 "Horizontal method for enumeration of coagulase-positive staphylococci." Molecular analysis of the isolates, conducted using conventional PCR, involved detecting the 23s gene of S. aureus, the nuc gene, the mecA gene, and 11 genes responsible for producing enterotoxins (sea, seb, sec, sed, see, seg, seh, sei, ser, sej, and sep). The 23s gene was found in 93 (75.6%) out of 123 isolates of Staphylococcus spp. obtained from milk. Among the 76 isolates from dairy products, either S. aureus or the 23s gene was detected in 49 (64.5%) of them. The mecA gene was identified in three isolates from raw milk and five isolates from cheese samples. The nuc gene was present in 98.9% of S. aureus strains from milk and 97.9% from dairy products. Other Staphylococcus strains carried the nuc gene in 26.7% of milk strains and 14.8% of dairy product strains. Genes associated with SEs production were detected in 85 (69.1%) strains from milk and 38 (50%) strains from dairy products. In this study, 10 out of the 11 SEs genes were found, with no isolates carrying the see gene. The most prevalent genes detected were seg and sei, with some isolates containing up to five different SEs genes. These findings indicate the presence of enterotoxigenic staphylococci strains in the tested samples, emphasizing the importance of implementing proper sanitation and hygienic practices, utilizing safe raw materials, and ensuring adequate handling of finished products. Continued monitoring for the presence of SEs is necessary to ensure food safety and prevent intoxication.Keywords: dairy products, milk, Staphylococci, enterotoxins, SE genes
Procedia PDF Downloads 71131 Preparation Nanocapsules of Chitosan Modified With Selenium Extracted From the Lactobacillus Acidophilus and Their Anticancer Properties
Authors: Akbar Esmaeili, Mahnoosh Aliahmadi
Abstract:
This study synthesized a modified imaging of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA). It contains Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Using the impregnation method, Se nanoparticles were then deposited on (Ga@DFA/FA/ CS/PANI/PVA). The modified contrast agents were mixed with M. nigra extract, and investigated their antibacterial activities by applying to L929 cell lines. The influence of variable factors, including 1. surfactant, 2. solvent, 3. aqueous phase, 4. pH, 5. buffer, 6. minimum Inhibitory concentration (MIC), 7. minimum bactericidal concentration (MBC), 8. cytotoxicity on cancer cells., 9. antibiotic, 10. antibiogram, 11. release and loading, 12. the emotional effect, 13. the concentration of nanoparticles, 14. olive oil, and 15. they have investigated thermotical methods. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), energy dispersive X-ray (EDX), ultraviolet–visible (UV–Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM), MTT, MIC, MBC, and cancer cytotoxic conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful and obtained MIC = 2 factors with less harmful effect. All experimental sections confirmed that our synthesized particles have potent antioxidant properties. Antibiogram testing revealed that NPS could kill P. aeruginosa and P. aeruginosa. A variety of synthetic conditions were done by diffusion emulsion method by varying parameters, the optimum state of DFA release Ga@DFA/FA/CS/PANI/PVA NPs (6 ml) with pH = 5.5, time = 3 h, NCs and DFA (3 mg), and achieved buffer (20 ml). DFA in Ga@DFA/FA/ CS/PANI/PVA was released and showed an absorption peak at 378 nm by applying a 300-rpm magnetic rate. In this report, Ga decreased the harmful effect on the human body.Keywords: nanocapsules, technolgy, biology, nano
Procedia PDF Downloads 40130 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains
Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*
Abstract:
Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy
Procedia PDF Downloads 143129 Some Characteristics Based on Literature, for an Ideal Disinfectant
Authors: Saimir Heta, Ilma Robo, Rialda Xhizdari, Kers Kapaj
Abstract:
The stability of an ideal disinfectant should be constant regardless of the change in the atmospheric conditions of the environment where it is kept. If the conditions such as temperature or humidity change, it is understood that it will also be necessary to approach possible changes in the holding materials such as plastic or glass bottles with the aim of protecting, for example, the disinfectant from the excessive lighting of the environment, which can also be translated as an increase in the temperature of disinfectant as a fluid. Material and Methods: In this study, an attempt was made to find the most recent published data about the best possible combination of disinfectants indicated for use after dental procedures. This purpose of the study was realized by comparing the basic literature that is studied in the field of dentistry by students with the most published data in the literature of recent years about this topic. Each disinfectant is represented by a number called the disinfectant count, in which different factors can influence the increase or reduction of variables whose production remains a specific statistic for a specific disinfectant. Results: The changes in the atmospheric conditions where the disinfectant is deposited and stored in the environment are known to affect the stability of the disinfectant as a fluid; this fact is known and even cited in the leaflets accompanying the manufactured boxes of disinfectants. It is these cares, in the form of advice, which are based not only on the preservation of the disinfectant but also on the application in order to have the desired clinical result. Aldehydes have the highest constant among the types of disinfectants, followed by acids. The lowest value of the constant belongs to the class of glycols, the predecessors of which were the halogens, in which class there are some representatives with disinfection applications. The class of phenols and acids have almost the same intervals of constants. Conclusions: If the goal were to find the ideal disinfectant among the large variety of disinfectants produced, a good starting point would be to find something unchanging or a fixed, unchanging element on the basis of which the comparison can be made properties of different disinfectants. Precisely based on the results of this study, the role of the specific constant according to the specific disinfectant is highlighted. Finding an ideal disinfectant, like finding a medication or the ideal antibiotic, is an ongoing but unattainable goal.Keywords: different disinfectants, ideal, specific constant, dental procedures
Procedia PDF Downloads 74128 Clinical and Microbiologic Efficacy and Safety of Imipenem Cilastatin Relebactam in Complicated Infections: A Meta-analysis
Authors: Syeda Sahra, Abdullah Jahangir, Rachelle Hamadi, Ahmad Jahangir, Allison Glaser
Abstract:
Background: Antimicrobial resistance is on the rise. The use of redundant and inappropriate antibiotics is contributing to recurrent infections and resistance. Newer antibiotics with more robust coverage for gram-negative bacteria are in great demand for complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), hospital-acquired bacterial pneumonia (H.A.B.P.), and ventilator-associated bacterial pneumonia (V.A.B.P.). Objective: We performed this meta-analysis to evaluate the efficacy and safety profile of a new antibiotic, Imipenem/cilastatin/relebactam, compared to other broad-spectrum antibiotics for complicated infections. Search Strategy: We conducted a systemic review search on PubMed, Embase, and Central Cochrane Registry. Selection Criteria: We included randomized clinical trials (R.C.T.s) with the standard of care as comparator arm with Imipenem/cilastatin/relebactam as intervention arm. Analysis: For continuous variables, the mean difference was used. For discrete variables, we used the odds ratio. For effect sizes, we used a confidence interval of 95%. A p-value of less than 0.05 was used for statistical significance. Analysis was done using a random-effects model irrespective of heterogeneity. Heterogeneity was evaluated using the I2 statistic. Results: The authors observed similar efficacy at clinical and microbiologic response levels on early follow-up and late follow-up compared to the established standard of care. The incidence of drug-related adverse events, serious adverse events, and drug discontinuation due to adverse events were comparable across both groups. Conclusion: Imipenem/cilastatin/relebactam has a non-inferior safety and efficacy profile compared to peer antibiotics to treat severe bacterial infections (cUTIs, cIAIs, H.A.B.P., V.A.B.P.).Keywords: bacterial pneumonia, complicated intra-abdominal infections, complicated urinary tract infection, Imipenem, cilastatin, relebactam
Procedia PDF Downloads 206127 Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636
Authors: Andrea M. Rivas-Castillo, Marlenne Gómez-Ramirez, Isela Rodríguez-Pozos, Norma G. Rojas-Avelizapa
Abstract:
Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely Acidithiobacillus thiooxidans and Acidithiobacillus ferroxidans, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 °C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by A. thiooxidans DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 ± 2.2 to 439 ± 3.9 mg/kg for Al, and from 7.13 ± 0.31 to 368.4 ± 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 ± 2.2, 6.2±0.07, and 100±2.4, respectively. Hence, the data presented here exhibit the potential of A. thiooxidans DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance.Keywords: bioleaching, metal removal, spent catalysts, Acidithiobacillus thiooxidans
Procedia PDF Downloads 140126 Production Performance, Gut Microbial Count, Antibody Titer and Selected Welfare Indices of Broiler Birds Fed Higher Level of Animal Protein Concentrate With or Without Organic Acids Blend and Microencapsulated Phyto-Essential Oil
Authors: Ziaul Islam, Asad Sultan, Sarzamin Khan
Abstract:
Organic acids and micro encapsulated phyto essential oils have revealed great potential as an antibiotic replacement and as an additive to work tremendously for the health maintenance of broiler chicken. To explore more about organic acids, a total of 600 day-old broiler chicks (Cobb-500) were procured from a local hatchery and distributed into 5 treatment groups having 6 replicates of 20 birds each; the duration of the biological trial was of 35 days. Group T1 served as a control group that were fed on corn soy-based diet only. T2 were fed with a diet having 6% poultry by-product meal (PBM) diet, T3, T4, and T5 were served as the same diet as T2 but supplemented with an organic acid, phyto essential oils alone, and a combination, respectively. The findings declared significant improvement (p<0.05) in body weight gain and FCR in groups T3, T4, and T5 while feed intake was not affected. European broiler performance indicators like production efficiency factor (EPEF) and broiler index (EBI) were improved significantly (p<0.05) by the treatments T3, T4, and T5 compared with T1 and T2. Carcass evaluation depicted significantly better (p<0.05) dressed and eviscerated weight along with carcass yield (T3, T4, T5). Broilers fed organic acid and phyto essential oils supplemented diet had significantly lower (p<0.05) Clostridium perfringens, Escherichia coliand Salmonella and increased Lactobacillus counts. Likewise, antibody titer against ND, IB, and IBD were also significantly (p<0.05) improved by the treatments T3, T4 and T5compared with the T1and T2. Litter moisture content was significantly (p<0.05) reduced by treatmentsT3, T4, and T5 on day 28 and 35 compared with the T1 and T2. These findings of the present study revealed that supplementation of organic acids blend and phyto-essential oils as an as an substitute to improve the performance of broilers without the use of feed antibiotics in broilers fed with 6% poultry by-product meal based diet.Keywords: organic acid, phyto essential oils, growth performance, PBM, gut health, microbiota, immunity
Procedia PDF Downloads 128125 Effect of Whey Proteins and Caffeic Acid Interactions on Antioxidant Activity and Protein Structure
Authors: Tassia Batista Pessato, Francielli Pires Ribeiro Morais, Fernanda Guimaraes Drummond Silva, Flavia Maria Netto
Abstract:
Proteins and phenolic compounds can interact mainly by hydrophobic interactions. Those interactions may lead to structural changes in both molecules, which in turn could affect positively or negatively their functional and nutritional properties. Here, the structural changes of whey proteins (WPI) due to interaction with caffeic acid (CA) were investigated by intrinsic and extrinsic fluorescence. The effects of protein-phenolic compounds interactions on the total phenolic content and antioxidant activity were also assessed. The WPI-CA complexes were obtained by mixture of WPI and CA stock solutions in deionized water. The complexation was carried out at room temperature during 60 min, using 0.1 M NaOH to adjust pH at 7.0. The WPI concentration was fixed at 5 mg/mL, whereas the CA concentration varied in order to obtain four different WPI:CA molar relations (1:1; 2:1; 5:1; 10:1). WPI and phenolic solutions were used as controls. Intrinsic fluorescence spectra of the complexes (mainly due to Trp fluorescence emission) were obtained at λex = 280 nm and the emission intensities were measured from 290 to 500 nm. Extrinsic fluorescence was obtained as the measure of protein surface hydrophobicity (S0) using ANS as a fluorescence probe. Total phenolic content was determined by Folin-Ciocalteau and the antioxidant activity by FRAP and ORAC methods. Increasing concentrations of CA resulted in decreasing of WPI intrinsic fluorescence. The emission band of WPI red shifted from 332 to 354 nm as the phenolic concentration increased, which is related to the exposure of Trp residue to the more hydrophilic environment and unfolding of protein structure. In general, the complexes presented lower S0 values than WPI, suggesting that CA hindered ANS binding to hydrophobic sites of WPI. The total phenolic content in the complexes was lower than the sum of two compounds isolated. WPI showed negligible AA measured by FRAP. However, as the relative concentration of CA increased in the complexes, the FRAP values enhanced, indicating that AA measure by this technique comes mainly from CA. In contrast, the WPI ORAC value (82.3 ± 1.5 µM TE/g) suggest that its AA is related to the capacity of H+ transfer. The complexes exhibited no important improvement of AA measured by ORAC in relation to the isolated components, suggesting complexation partially suppressed AA of the compounds. The results hereby presented indicate that interaction of WPI and CA occurred, and this interaction caused a structural change in the proteins. The complexation can either hide or expose antioxidant sites of both components. In conclusion, although the CA can undergo an AA suppression due to the interaction with proteins, the AA of WPI could be enhanced due to protein unfolding and exposure of antioxidant sites.Keywords: bioactive properties, milk proteins, phenolic acids, protein-phenolic compounds complexation
Procedia PDF Downloads 549124 Comparison of Methods for the Detection of Biofilm Formation in Yeast and Lactic Acid Bacteria Species Isolated from Dairy Products
Authors: Goksen Arik, Mihriban Korukluoglu
Abstract:
Lactic acid bacteria (LAB) and some yeast species are common microorganisms found in dairy products and most of them are responsible for the fermentation of foods. Such cultures are isolated and used as a starter culture in the food industry because of providing standardisation of the final product during the food processing. Choice of starter culture is the most important step for the production of fermented food. Isolated LAB and yeast cultures which have the ability to create a biofilm layer can be preferred as a starter in the food industry. The biofilm formation could be beneficial to extend the period of usage time of microorganisms as a starter. On the other hand, it is an undesirable property in pathogens, since biofilm structure allows a microorganism become more resistant to stress conditions such as antibiotic presence. It is thought that the resistance mechanism could be turned into an advantage by promoting the effective microorganisms which are used in the food industry as starter culture and also which have potential to stimulate the gastrointestinal system. Development of the biofilm layer is observed in some LAB and yeast strains. The resistance could make LAB and yeast strains dominant microflora in the human gastrointestinal system; thus, competition against pathogen microorganisms can be provided more easily. Based on this circumstance, in the study, 10 LAB and 10 yeast strains were isolated from various dairy products, such as cheese, yoghurt, kefir, and cream. Samples were obtained from farmer markets and bazaars in Bursa, Turkey. As a part of this research, all isolated strains were identified and their ability of biofilm formation was detected with two different methods and compared with each other. The first goal of this research was to determine whether isolates have the potential for biofilm production, and the second was to compare the validity of two different methods, which are known as “Tube method” and “96-well plate-based method”. This study may offer an insight into developing a point of view about biofilm formation and its beneficial properties in LAB and yeast cultures used as a starter in the food industry.Keywords: biofilm, dairy products, lactic acid bacteria, yeast
Procedia PDF Downloads 263123 Mitigating Biofouling on Reverse Osmosis Membranes: Applying Greener Preservatives to Biofilm Treatment
Authors: Anna Curtin, Matthew Thibodeau, Heather Buckley
Abstract:
Water scarcity is characterized by a lack of access to clean and affordable drinking water, as well as water for hygienic and economic needs. The amount of people effected by water scarcity is expected to increase in the coming years due to climate change, population growth, and pollution, amongst other things. In response, scientists are pursuing cost effective drinking water treatment methods, often with a focus on alternative water sources. Desalination of seawater via reverse osmosis is one promising alternative method. Desalination of seawater via reverse osmosis, however, is limited significantly by biofouling of the filtration membrane. Biofouling is the buildup of microorganisms in a biofilm at the water-membrane interface. It clogs the membrane, decreasing the efficiency of filtration, consequently increasing operational and maintenance costs. Although effective, existing chemical treatment methods can damage the membrane, decreasing the lifespan of the membrane; create antibiotic resistance; and cause harm to humans and the environment if they pass through the membrane into the permeate. The current project focuses on applying safer preservatives used in home and personal care products to RO membranes to investigate the biofouling treatment efficacy. Currently, many of these safer preservatives have only been tested on cells in planktonic phase in suspension cultures, not on cells in biofilms. The results of suspension culture tests are not applicable to biofouling scenarios because organisms in planktonic phase in suspension cultures exhibit different morphological, chemical, and metabolic characteristics than those in a biofilm. Testing antifoulant efficacy of safer preservatives on biofilms will provide more applicable results to biofouling on RO membranes. To do this, biofilms will be grown on 96-well-plates and minimum inhibitory concentrations (MIC90) and log-reductions will be calculated for various safer preservatives. Results from these tests will be used to guide doses for tests of safer preservatives in a bench-scale RO system.Keywords: reverse osmosis, biofouling, preservatives, antimicrobial, safer alternative, green chemistry
Procedia PDF Downloads 144122 Effects of Potential Chloride-Free Admixtures on Selected Mechanical Properties of Kenya Clay-Based Cement Mortars
Authors: Joseph Mwiti Marangu, Joseph Karanja Thiong'o, Jackson Muthengia Wachira
Abstract:
The mechanical performance of hydrated cements mortars mainly depends on its compressive strength and setting time. These properties are crucial in the construction industry. Pozzolana based cements are mostly characterized by low 28 day compressive strength and long setting times. These are some of the major impediments to their production and diverse uses despite numerous technological and environmental benefits associated with them. The study investigated the effects of potential chemical activators on calcined clay- Portland cement blends with an aim to achieve high early compressive strength and shorter setting times in cement mortar. In addition, standard consistency, soundness and insoluble residue of all cement categories was determined. The test cement was made by blending calcined clays with Ordinary Portland Cement (OPC) at replacement levels from 35 to 50 percent by mass of the OPC to make test cement labeled PCC for the purposes of this study. Mortar prisms measuring 40mmx40mmx160mm were prepared and cured in accordance with KS EAS 148-3:2000 standard. Solutions of Na2SO4, NaOH, Na2SiO3 and Na2CO3 containing 0.5- 2.5M were separately added during casting. Compressive strength was determined at 2rd, 7th, 28th and 90th day of curing. For comparison purposes, commercial Portland Pozzolana cement (PPC) and Ordinary Portland Cement (OPC) were also investigated without activators under similar conditions. X-Ray Florescence (XRF) was used for chemical analysis while X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used for mineralogical analysis of the test samples. The results indicated that addition of activators significantly increased the 2nd and 7th day compressive strength but minimal increase on the 28th and 90th day compressive strength. A relatively linear relationship was observed between compressive strength and concentration of activator solutions up to 28th of curing. Addition of the said activators significantly reduced both initial and final setting time. Standard consistency and soundness varied with increased amount of clay in the test cement and concentration of activators. Amount of insoluble residues increased with increased replacement of OPC with calcined clays. Mineralogical studies showed that N-A-S-H is formed in addition to C-S-H. In conclusion, the concentration of 2 molar for all activator solutions produced the optimum compressive strength and greatly reduced the setting times for all cement mortars.Keywords: activators, admixture, cement, clay, pozzolana
Procedia PDF Downloads 261121 Hydration of Three-Piece K Peptide Fragments Studied by Means of Fourier Transform Infrared Spectroscopy
Authors: Marcin Stasiulewicz, Sebastian Filipkowski, Aneta Panuszko
Abstract:
Background: The hallmark of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, is an aggregation of the abnormal forms of peptides and proteins. Water is essential to functioning biomolecules, and it is one of the key factors influencing protein folding and misfolding. However, the hydration studies of proteins are complicated due to the complexity of protein systems. The use of model compounds can facilitate the interpretation of results involving larger systems. Objectives: The goal of the research was to characterize the properties of the hydration water surrounding the two three-residue K peptide fragments INS (Isoleucine - Asparagine - Serine) and NSR (Asparagine - Serine - Arginine). Methods: Fourier-transform infrared spectra of aqueous solutions of the tripeptides were recorded on Nicolet 8700 spectrometer (Thermo Electron Co.) Measurements were carried out at 25°C for varying molality of solute. To remove oscillation couplings from water spectra and, consequently, obtain narrow O-D semi-heavy water bands (HDO), the isotopic dilution method of HDO in H₂O was used. The difference spectra method allowed us to isolate the tripeptide-affected HDO spectrum. Results: The structural and energetic properties of water affected by the tripeptides were compared to the properties of pure water. The shift of the values of the gravity center of bands (related to the mean energy of water hydrogen bonds) towards lower values with respect to the ones corresponding to pure water suggests that the energy of hydrogen bonds between water molecules surrounding tripeptides is higher than in pure water. A comparison of the values of the mean oxygen-oxygen distances in water affected by tripeptides and pure water indicates that water-water hydrogen bonds are shorter in the presence of these tripeptides. The analysis of differences in oxygen-oxygen distance distributions between the tripeptide-affected water and pure water indicates that around the tripeptides, the contribution of water molecules with the mean energy of hydrogen bonds decreases, and simultaneously the contribution of strong hydrogen bonds increases. Conclusions: It was found that hydrogen bonds between water molecules in the hydration sphere of tripeptides are shorter and stronger than in pure water. It means that in the presence of the tested tripeptides, the structure of water is strengthened compared to pure water. Moreover, it has been shown that in the vicinity of the Asparagine - Serine - Arginine, water forms stronger and shorter hydrogen bonds. Acknowledgments: This work was funded by the National Science Centre, Poland (grant 2017/26/D/NZ1/00497).Keywords: amyloids, K-peptide, hydration, FTIR spectroscopy
Procedia PDF Downloads 178120 Evaluating Antimicrobial Activity of Selenium Nanoparticles Against Food-Borne Bacteria
Authors: Qunying Yuan, Manjula Bomma, Adrian Rhoden, Zhigang Xiao
Abstract:
Selenium is an essential micronutrient for all mammals and plays an important role in maintaining human physiological functions. The potential applications of selenium as food supplements, cancer-prevention, antimicrobial and anti-inflammatory agents have been investigated in biomedicine and food sciences. Nanoscale of selenium is of particular interest due to its better biocompatibility, higher bioavailability, lower toxicity, more homogeneous distribution, and presumptive controlled release of substances. The objective of this study is to explore whether selenium nanoparticle (SeNP) has the potential to be used as a food preservative to reduce food spoilage. SeNPs were synthesized through ascorbic acid reduction of sodium selenite using the bovine serum albumin (BSA) as capping and stabilizing agent. The chemically synthesized SeNPs had a spherical conformation and a size of 22.8 ± 4.7 nm. FTIR analysis confirmed that the nanoparticles were covered with BSA. We further tested the antimicrobial activity of these SeNPs against common food-borne bacteria. Colony forming unit assay showed that SeNPs exhibited good inhibition on the growth of Listeria Monocytogens (ATCC15313), Staphylococcus epidermidis (ATCC 700583) starting at 0.5µg/mL, but only a moderate inhibitory effect on the growth of Staphylococcus aureus (ATCC12600) and Vibrio alginolyticus (ATCC 33787) at a concentration higher than 10µg/mL and 2.5µg/mL, respectively. There was a mild effect against the growth Salmonella enterica (ATCC19585) when the concentration reached 15µg/mL. No inhibition was observed in the growth of Enterococcus faecalis (ATCC 19433). Surprisingly, SeNPs appeared to promote the growth of Vibrio parahaemolyticus (ATCC43996) and Salmonella enterica (ATCC49284) at 30 µg/mL and above. Our preliminary data suggested that the chemically synthesized SeNPs may be able to inhibit some food-borne bacteria, and SeNP as a food preservative should be used with caution. We will explore the mechanisms of the inhibitory action of chemically synthesized SeNPs on bacterial growth and whether the SeNPs are able to inhibit the development of biofilm and antibiotic resistance.Keywords: antimicrobial, food-borne bacteria, nanoparticles, selenium
Procedia PDF Downloads 93119 Hydrogeophysical Investigations And Mapping of Ingress Channels Along The Blesbokspruit Stream In The East Rand Basin Of The Witwatersrand, South Africa
Authors: Melvin Sethobya, Sithule Xanga, Sechaba Lenong, Lunga Nolakana, Gbenga Adesola
Abstract:
Mining has been the cornerstone of the South African economy for the last century. Most of the gold mining in South Africa was conducted within the Witwatersrand basin, which contributed to the rapid growth of the city of Johannesburg and capitulated the city to becoming the business and wealth capital of the country. But with gradual depletion of resources, a stoppage in the extraction of underground water from mines and other factors relating to survival of the mining operations over a lengthy period, most of the mines were abandoned and left to pollute the local waterways and groundwater with toxins, heavy metal residue and increased acid mine drainage ensued. The Department of Mineral Resources and Energy commissioned a project whose aim is to monitor, maintain, and mitigate the adverse environmental impacts of polluted water mine water flowing into local streams affecting local ecosystems and livelihoods downstream. As part of mitigation efforts, the diagnosis and monitoring of groundwater or surface water polluted sites has become important. Geophysical surveys, in particular, Resistivity and Magnetics surveys, were selected as some of most suitable techniques for investigation of local ingress points along of one the major streams cutting through the Witwatersrand basin, namely the Blesbokspruit, which is found in the eastern part of the basin. The aim of the surveys was to provide information that could be used to assist in determining possible water loss/ ingress from the Blesbokspriut stream. Modelling of geophysical surveys results offered an in-depth insight into the interaction and pathways of polluted water through mapping of possible ingress channels near the Blesbokspruit. The resistivity - depth profile of the surveyed site exhibit a three(3) layered model with low resistivity values (10 to 200 Ω.m) overburden, which is underlain by a moderate resistivity weathered layer (>300 Ω.m), which sits on a more resistive crystalline bedrock (>500 Ω.m). Two locations of potential ingress channels were mapped across the two traverses at the site. The magnetic survey conducted at the site mapped a major NE-SW trending regional linearment with a strong magnetic signature, which was modeled to depth beyond 100m, with the potential to act as a conduit for dispersion of stream water away from the stream, as it shared a similar orientation with the potential ingress channels as mapped using the resistivity method.Keywords: eletrictrical resistivity, magnetics survey, blesbokspruit, ingress
Procedia PDF Downloads 63118 Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy
Authors: Fuad Abdullah Alatawi
Abstract:
Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans.Keywords: ficus microcarpa, iron oxide, antibacterial activity, cytotoxicity
Procedia PDF Downloads 121117 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass
Authors: Xiang Zheng, Zhaoping Zhong
Abstract:
In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.Keywords: biomass conversion, biofuel, process optimization, life cycle assessment
Procedia PDF Downloads 70116 Excavation of Phylogenetically Diverse Bioactive Actinobacteria from Unexplored Regions of Sundarbans Mangrove Ecosystem for Mining of Economically Important Antimicrobial Compounds
Authors: Sohan Sengupta, Arnab Pramanik, Abhrajyoti Ghosh, Maitree Bhattacharyya
Abstract:
Newly emerged phyto-pathogens and multi drug resistance have been threating the world for last few decades. Actinomycetes, the most endowed group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to these problems. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study. 16s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305T. Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. PCR base whole genome screen for PKS and NRPS genes, confirmed the occurrence of bio-synthetic gene cluster in some of the isolates for novel antibiotic production. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml-1and antioxidant activity with IC50 value of 0.242±0.33 mg ml-1 was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified and characterized. Rare bioactive actinomycetes were isolated from unexplored heritage site. Diversity of the biosynthetic gene cluster for antimicrobial compound production has also been evaluated. Antimicrobial compound SU21-C has been identified and purified which is active against a broad range of pathogens.Keywords: actinomycetes, sundarbans, antimicrobial, pks nrps, phyto-pathogens, GC-MS
Procedia PDF Downloads 505115 Industrial Wastewater from Paper Mills Used for Biofuel Production and Soil Improvement
Authors: Karin M. Granstrom
Abstract:
Paper mills produce wastewater with a high content of organic substances. Treatment usually consists of sedimentation, biological treatment of activated sludge basins, and chemical precipitation. The resulting sludges are currently a waste problem, deposited in landfills or used as low-grade fuels for incineration. There is a growing awareness of the need for energy efficiency and environmentally sound management of sludge. A resource-efficient method would be to digest the wastewater sludges anaerobically to produce biogas, refine the biogas to biomethane for use in the transportation sector, and utilize the resulting digestate for soil improvement. The biomethane yield of pulp and paper wastewater sludge is comparable to that of straw or manure. As a bonus, the digestate has an improved dewaterability compared to the feedstock biosludge. Limitations of this process are predominantly a weak economic viability - necessitating both sufficiently large-scale paper production for the necessary large amounts of produced wastewater sludge, and the resolving of remaining questions on the certifiability of the digestate and thus its sales price. A way to improve the practical and economical feasibility of using paper mill wastewater for biomethane production and soil improvement is to co-digest it with other feedstocks. In this study, pulp and paper sludge were co-digested with (1) silage and manure, (2) municipal sewage sludge, (3) food waste, or (4) microalgae. Biomethane yield analysis was performed in 500 ml batch reactors, using an Automatic Methane Potential Test System at thermophilic temperature, with a 20 days test duration. The results show that (1) the harvesting season of grass silage and manure collection was an important factor for methane production, with spring feedstocks producing much more than autumn feedstock, and pulp mill sludge benefitting the most from co-digestion; (2) pulp and paper mill sludge is a suitable co-substrate to add when a high nitrogen content cause impaired biogas production due to ammonia inhibition; (3) the combination of food waste and paper sludge gave higher methane yield than either of the substrates digested separately; (4) pure microalgae gave the highest methane yield. In conclusion, although pulp and paper mills are an almost untapped resource for biomethane production, their wastewater is a suitable feedstock for such a process. Furthermore, through co-digestion, the pulp and paper mill wastewater and mill sludges can aid biogas production from more nutrient-rich waste streams from other industries. Such co-digestion also enhances the soil improvement properties of the residue digestate.Keywords: anaerobic, biogas, biomethane, paper, sludge, soil
Procedia PDF Downloads 259114 Currently Use Pesticides: Fate, Availability, and Effects in Soils
Authors: Lucie Bielská, Lucia Škulcová, Martina Hvězdová, Jakub Hofman, Zdeněk Šimek
Abstract:
The currently used pesticides represent a broad group of chemicals with various physicochemical and environmental properties which input has reached 2×106 tons/year and is expected to even increases. From that amount, only 1% directly interacts with the target organism while the rest represents a potential risk to the environment and human health. Despite being authorized and approved for field applications, the effects of pesticides in the environment can differ from the model scenarios due to the various pesticide-soil interactions and resulting modified fate and behavior. As such, a direct monitoring of pesticide residues and evaluation of their impact on soil biota, aquatic environment, food contamination, and human health should be performed to prevent environmental and economic damages. The present project focuses on fluvisols as they are intensively used in the agriculture but face to several environmental stressors. Fluvisols develop in the vicinity of rivers by the periodic settling of alluvial sediments and periodic interruptions to pedogenesis by flooding. As a result, fluvisols exhibit very high yields per area unit, are intensively used and loaded by pesticides. Regarding the floods, their regular contacts with surface water arise from serious concerns about the surface water contamination. In order to monitor pesticide residues and assess their environmental and biological impact within this project, 70 fluvisols were sampled over the Czech Republic and analyzed for the total and bioaccessible amounts of 40 various pesticides. For that purpose, methodologies for the pesticide extraction and analysis with liquid chromatography-mass spectrometry technique were developed and optimized. To assess the biological risks, both the earthworm bioaccumulation tests and various types of passive sampling techniques (XAD resin, Chemcatcher, and silicon rubber) were optimized and applied. These data on chemical analysis and bioavailability were combined with the results of soil analysis, including the measurement of basic physicochemical soil properties as well detailed characterization of soil organic matter with the advanced method of diffuse reflectance infrared spectrometry. The results provide unique data on the residual levels of pesticides in the Czech Republic and on the factors responsible for increased pesticide residue levels that should be included in the modeling of pesticide fate and effects.Keywords: currently used pesticides, fluvisoils, bioavailability, Quechers, liquid-chromatography-mass spectrometry, soil properties, DRIFT analysis, pesticides
Procedia PDF Downloads 463113 Compression-Extrusion Test to Assess Texture of Thickened Liquids for Dysphagia
Authors: Jesus Salmeron, Carmen De Vega, Maria Soledad Vicente, Mireia Olabarria, Olaia Martinez
Abstract:
Dysphagia or difficulty in swallowing affects mostly elder people: 56-78% of the institutionalized and 44% of the hospitalized. Liquid food thickening is a necessary measure in this situation because it reduces the risk of penetration-aspiration. Until now, and as proposed by the American Dietetic Association in 2002, possible consistencies have been categorized in three groups attending to their viscosity: nectar (50-350 mPa•s), honey (350-1750 mPa•s) and pudding (>1750 mPa•s). The adequate viscosity level should be identified for every patient, according to her/his impairment. Nevertheless, a systematic review on dysphagia diet performed recently indicated that there is no evidence to suggest that there is any transition of clinical relevance between the three levels proposed. It was also stated that other physical properties of the bolus (slipperiness, density or cohesiveness, among others) could influence swallowing in affected patients and could contribute to the amount of remaining residue. Texture parameters need to be evaluated as possible alternative to viscosity. The aim of this study was to evaluate the instrumental extrusion-compression test as a possible tool to characterize changes along time in water thickened with various products and in the three theoretical consistencies. Six commercial thickeners were used: NM® (NM), Multi-thick® (M), Nutilis Powder® (Nut), Resource® (R), Thick&Easy® (TE) and Vegenat® (V). All of them with a modified starch base. Only one of them, Nut, also had a 6,4% of gum (guar, tara and xanthan). They were prepared as indicated in the instructions of each product and dispensing the correspondent amount for nectar, honey and pudding consistencies in 300 mL of tap water at 18ºC-20ºC. The mixture was stirred for about 30 s. Once it was homogeneously spread, it was dispensed in 30 mL plastic glasses; always to the same height. Each of these glasses was used as a measuring point. Viscosity was measured using a rotational viscometer (ST-2001, Selecta, Barcelona). Extrusion-compression test was performed using a TA.XT2i texture analyzer (Stable Micro Systems, UK) with a 25 mm diameter cylindrical probe (SMSP/25). Penetration distance was set at 10 mm and a speed of 3 mm/s. Measurements were made at 1, 5, 10, 20, 30, 40, 50 and 60 minutes from the moment samples were mixed. From the force (g)–time (s) curves obtained in the instrumental assays, maximum force peak (F) was chosen a reference parameter. Viscosity (mPa•s) and F (g) showed to be highly correlated and had similar development along time, following time-dependent quadratic models. It was possible to predict viscosity using F as an independent variable, as they were linearly correlated. In conclusion, compression-extrusion test could be an alternative and a useful tool to assess physical characteristics of thickened liquids.Keywords: compression-extrusion test, dysphagia, texture analyzer, thickener
Procedia PDF Downloads 368112 Antimicrobial Effects and Phytochemical Analysis of Chrysophyllum Albidum Plant Parts (Leaves, Roots and Seeds) Extracts on Bacterial Isolates from Urinary Catheters
Authors: Ebere Christian Ugochukwu, Okafor Josephine, Oyawoye Tomisin
Abstract:
The occurrence of multidrug resistance patterns that have been developed by bacteria has made it difficult to properly treat infections using standard clinical medications. Hence, the use of herbs as an alternative source of therapy is considered cheap and easily accessible to locals. This research explored the antimicrobial effects of aqueous and ethanolic extracts obtained from Chrysophyllum albidum (commonly called ‘Agbalumo’ in southwest Nigeria and ‘Udara’ in the eastern and southern parts of Nigeria) plant parts (leaves, roots and seeds) against bacteria isolated from urinary catheter tips. The following isolates were obtained; Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella aerogenes. The agar well diffusion method was used. The average percentages of antimicrobial resistance of the isolates to gentamycin were 45.5% for P. aeruginosa, 42.1% for E. coli, 46.9% for K. aerogenes, and ˃90% for other isolates. Qualitative phytochemical screening of the plant parts extracts was done using chemical test for the screening and identification of bioactive chemical constituents. The ethanolic extract mixtures (leaf, root and seed) had the greatest effect on all the isolates, with inhibition zones (IZs) ranging from 8-26 mm and MICs ranging from <16-32 mg/ml. The Potencies of the C. albidum extracts based on the IZ and MIC values were greater in the extract mixtures, followed by those in the roots. Phytochemical screening revealed that all the extracts contained phenol except for the seeds while tannins were present in all the extracts except the leaves. The activity of the ethanolic extracts of each part at high and low concentrations was greater than that of the aqueous extracts at the same concentrations (p<0.05). The acute toxicity results showed that the LD50 of the extracts was ˃5000 mg/body weight, indicating no toxicity. The antibacterial activities of the extract mixtures and roots on the isolates confirmed the use of C. albidum in folk medicine for the treatment of CAUTIs, hence indicating its antibacterial potential for use in novel antibiotic production.Keywords: antimicrobials, susceptibility, minimum inhibitory concentration, extracts
Procedia PDF Downloads 29111 Incidence of Lymphoma and Gonorrhea Infection: A Retrospective Study
Authors: Diya Kohli, Amalia Ardeljan, Lexi Frankel, Jose Garcia, Lokesh Manjani, Omar Rashid
Abstract:
Gonorrhea is the second most common sexually transmitted disease (STDs) in the United States of America. Gonorrhea affects the urethra, rectum, or throat and the cervix in females. Lymphoma is a cancer of the immune network called the lymphatic system that includes the lymph nodes/glands, spleen, thymus gland, and bone marrow. Lymphoma can affect many organs in the body. When a lymphocyte develops a genetic mutation, it signals other cells into rapid proliferation that causes many mutated lymphocytes. Multiple studies have explored the incidence of cancer in people infected with STDs such as Gonorrhea. For instance, the studies conducted by Wang Y-C and Co., as well as Caini, S and Co. established a direct co-relationship between Gonorrhea infection and incidence of prostate cancer. We hypothesize that Gonorrhea infection also increases the incidence of Lymphoma in patients. This research study aimed to evaluate the correlation between Gonorrhea infection and the incidence of Lymphoma. The data for the research was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database. This database was utilized to evaluate patients infected with Gonorrhea versus the ones who were not infected to establish a correlation with the prevalence of Lymphoma using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale for academic research. Standard statistical methods were applied throughout. Between January 2010 and December 2019, the query was analyzed and resulted in 254 and 808 patients in both the infected and control group, respectively. The two groups were matched by Age Range and CCI score. The incidence of Lymphoma was 0.998% (254 patients out of 25455) in the Gonorrhea group (patients infected with Gonorrhea that was Lymphoma Positive) compared to 3.174% and 808 patients in the control group (Patients negative for Gonorrhea but with Lymphoma). This was statistically significant by a p-value < 2.210-16 with an OR= 0.431 (95% CI 0.381-0.487). The patients were then matched by antibiotic treatment to avoid treatment bias. The incidence of Lymphoma was 1.215% (82 patients out of 6,748) in the Gonorrhea group compared to 2.949% (199 patients out of 6748) in the control group. This was statistically significant by a p-value <5.410-10 with an OR= 0.468 (95% CI 0.367-0.596). The study shows a statistically significant correlation between Gonorrhea and a reduced incidence of Lymphoma. Further evaluation is recommended to assess the potential of Gonorrhea in reducing Lymphoma.Keywords: gonorrhea, lymphoma, STDs, cancer, ICD
Procedia PDF Downloads 195110 Early Onset Neonatal Sepsis Pathogens in Malaysian Hospitals: Determining Empiric Antibiotic
Authors: Nazedah Ain Ibrahim, Mohamed Mansor Manan
Abstract:
Treatment of suspected early onset neonatal sepsis (EONS) in Neonatal Intensive Care Unit (NICU) is essential. However, information regarding EONS pathogens may vary between regions. Global perspectives showed Group B Streptococcal (GBS) as the most common causative pathogens, but the widespread use of intrapartum antibiotics has changed the pathogens pattern towards gram negative microorganisms, especially E. coli. Objective of this study is to describe the pathogens isolated, to assess current treatment and risk of EONS. Records of 899 neonates born in three General Hospitals between 2009 until 2012 were retrospectively reviewed. The inclusion criteria were neonates with blood culture taken prior to empiric antibiotics administration and within 72 hours of life. Of the study group, a total of 734 (82%) cases had documented blood culture that met the inclusion criteria. Proven EONS (as confirmed by positive blood culture) was found in 22 (3%) neonates. The majority was isolated with gram positive organisms, 17 (2.3%). In addition, other common gram positive organism isolated were Coagulase negative staphylococci (7) followed by Bacillus sp. (5) and Streptococcus pneumonia (2), and only one case isolated with GBS, Streptococcus spp. and Enterococcus sp. Meanwhile, only five cases of gram negative organisms [Stenotropomonas (xantho) maltophi (1), Haemophilus influenza (1), Spingomonas paucimobilis (1), Enterobacter gergoviae (1) and E. coli (1)] were isolated. A total of 286 (39%) cases were exposed to intrapartum antibiotics and of those, 157 (21.4%) were administered prior to delivery. All grams positive and most gram negative organisms showed sensitivity to the tested antibiotics. Only two rare gram negative organisms showed total resistant. Male, surfactant, caesarean delivery and prolonged rapture of membrane >18hours were a possible risk of proven EONS. Although proven EONS remains uncommon in Malaysia, nonetheless, the effect of intrapartum antibiotics still required continuous surveillance. However, by analyzing isolated pathogens it can be used as treatment guidance in managing suspected EONS.Keywords: early onset neonatal sepsis, neonates, pathogens, gram positive, gram negative
Procedia PDF Downloads 316109 Orange Leaves and Rice Straw on Methane Emission and Milk Production in Murciano-Granadina Dairy Goat Diet
Authors: Tamara Romero, Manuel Romero-Huelva, Jose V. Segarra, Jose Castro, Carlos Fernandez
Abstract:
Many foods resulting from processing and manufacturing end up as waste, most of which is burned, dumped into landfills or used as compost, which leads to wasted resources, and environmental problems due to unsuitable disposal. Using residues of the crop and food processing industries to feed livestock has the advantage to obviating the need for costly waste management programs. The main residue generated in citrus cultivations and rice crop are pruning waste and rice straw, respectively. Within Spain, the Valencian Community is one of the world's oldest citrus and rice production areas. The objective of this experiment found out the effects of including orange leaves and rice straw as ingredients in the concentrate diets of goats, on milk production and methane (CH₄) emissions. Ten Murciano-Granadina dairy goats (45 kg of body weight, on average) in mid-lactation were selected in a crossover design experiment, where each goat received two treatments in 2 periods. Both groups were fed with 1.7 kg pelleted mixed ration; one group (n= 5) was a control (C) and the other group (n= 5) used orange leaves and rice straw (OR). The forage was alfalfa hay, and it was the same for the two groups (1 kg of alfalfa was offered by goat and day). The diets employed to achieve the requirements during lactation period for caprine livestock. The goats were allocated to individual metabolism cages. After 14 days of adaptation, feed intake and milk yield were recorded daily over a 5 days period. Physico-chemical parameters and somatic cell count in milk samples were determined. Then, gas exchange measurements were recorded individually by an open-circuit indirect calorimetry system using a head box. The data were analyzed by mixed model with diet and digestibility as fixed effect and goat as random effect. No differences were found for dry matter intake (2.23 kg/d, on average). Higher milk yield was found for C diet than OR (2.3 vs. 2.1 kg/goat and day, respectively) and, greater milk fat content was observed for OR than C (6.5 vs. 5.5%, respectively). The cheese extract was also greater in OR than C (10.7 vs. 9.6%). Goats fed OR diet produced significantly fewer CH₄ emissions than C diet (27 vs. 30 g/d, respectively). These preliminary results (LIFE Project LOWCARBON FEED LIFE/CCM/ES/000088) suggested that the use of these waste by-products was effective in reducing CH₄ emission without detrimental effect on milk yield.Keywords: agricultural waste, goat, milk production, methane emission
Procedia PDF Downloads 148108 Anticancer Study of Copper and Zinc Complexes with Doxorubicin
Authors: Grzegorz Swiderski, Agata Jablonska-Trypuc, Natalia Popow, Renata Swislocka, Wlodzimierz Lewandowski
Abstract:
Doxorubicin belongs to the group of anthracycline antitumor antibiotics. Because of the wide spectrum of actions, it is one of the most widely used anthracycline antibiotics, including the treatment of breast, ovary, bladder, lung cancers as well as neuroblastoma, lymphoma, leukemia and myeloid leukemia. Antitumor activity of doxorubicin is based on the same mechanisms as for most anthracyclines. Like the metal ions affect the nucleic acids on many biological processes, so the environment of the metal chelates of antibiotics can have a significant effect on the pharmacological properties of drugs. Complexation of anthracyclines with metal ions may contribute to the production of less toxic compounds. In the framework of this study, the composition of complexes obtained in aqueous solutions of doxorubicin with metal ions (Cu2+ and Zn2+). Complexation was analyzed by spectrophotometric titration in aqueous solution at pH 7.0. The pH was adjusted with 0.02M Tris-HCl buffer. The composition of the complexes found was Cu: doxorubicin (1: 2) and a Zn: doxorubicin (1: 1). The effect of Dox, Dox-Cu and Dox-Zn was examined in MCF-7 breast cancer cell line, which were obtained from American Type Culture Collection (ATCC). The compounds were added to the cultured cells for a final concentration in the range of 0,01µM to 0,5µM. The number of MCF-7 cells with division into living and dead, was determined by direct counts of cells with the use of trypan blue dye using LUNA Logos Biosystems cell counter. ApoTox-Glo Triplex Assay (Promega, Madison, Wisconsin, USA) was used according to the manufacturer’s instructions to measure the MCF-7 cells’ viability, cytotoxicity and apoptosis. We observed a decrease in cells proliferation in a dose-dependent manner. An increase in cytotoxicity and decrease in viability in the ApoTox Triplex assay was also showed for all tested compounds. Apoptosis, showed as caspase 3/7 activation, was observed only in Dox treatment. In Dox-Zn and Dox-Cu caspase 3/7 activation was not observed. This work was financially supported by National Science Centre, Poland, under the research project number 2014/13/B/NZ7/02 352.Keywords: anticancer properties, anthracycline antibiotic, doxorubicine, metal complexes
Procedia PDF Downloads 280107 Characteristics of Wood Plastics Nano-Composites Made of Agricultural Residues and Urban Recycled Polymer Materials
Authors: Amir Nourbakhsh Habibabadi, Alireza Ashori
Abstract:
Context: The growing concern over the management of plastic waste and the high demand for wood-based products have led to the development of wood-plastic composites. Agricultural residues, which are abundantly available, can be used as a source of lignocellulosic fibers in the production of these composites. The use of recycled polymers and nanomaterials is also a promising approach to enhance the mechanical and physical properties of the composites. Research Aim: The aim of this study was to investigate the feasibility of using recycled high-density polyethylene (rHDPE), polypropylene (rPP), and agricultural residues fibers for manufacturing wood-plastic nano-composites. The effects of these materials on the mechanical properties of the composites, specifically tensile and flexural strength, were studied. Methodology: The study utilized an experimental approach where extruders and hot presses were used to fabricate the composites. Five types of cellulosic residues fibers (bagasse, corn stalk, rice straw, sunflower, and canola stem), three levels of nanomaterials (carbon nanotubes, nano silica, and nanoclay), and coupling agent were used to chemically bind the wood/polymer fibers, chemicals, and reinforcement. The mechanical properties of the composites were then analyzed. Findings: The study found that composites made with rHDPE provided moderately superior tensile and flexural properties compared to rPP samples. The addition of agricultural residues in several types of wood-plastic nano-composites significantly improved their bending and tensile properties, with bagasse having the most significant advantage over other lignocellulosic materials. The use of recycled polymers, agricultural residues, and nano-silica resulted in composites with the best strength properties. Theoretical Importance: The study's findings suggest that using agricultural fiber residues as reinforcement in wood/plastic nanocomposites is a viable approach to improve the mechanical properties of the composites. Additionally, the study highlights the potential of using recycled polymers in the development of value-added products without compromising the product's properties. Data Collection and Analysis Procedures: The study collected data on the mechanical properties of the composites using tensile and flexural tests. Statistical analyses were performed to determine the significant effects of the various materials used. Question addressed: Can agricultural residues and recycled polymers be used to manufacture wood-plastic nano-composites with enhanced mechanical properties? Conclusion: The study demonstrates the feasibility of using agricultural residues and recycled polymers in the production of wood-plastic nano-composites. The addition of these materials significantly improved the mechanical properties of the composites, with bagasse being the most effective agricultural residue. The study's findings suggest that composites made from recycled materials can offer value-added products without sacrificing performance.Keywords: polymer, composites, wood, nano
Procedia PDF Downloads 70106 An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds
Authors: Karol Rodriguez-Peña, Martha L. Macias-Rubalcava, Leticia Rocha-Zavaleta, Sergio Sanchez
Abstract:
A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization.Keywords: amphipterygium adstringens, cytotoxicity, streptomyces scabrisporus, steffimycin
Procedia PDF Downloads 364105 Analytical Tools for Multi-Residue Analysis of Some Oxygenated Metabolites of PAHs (Hydroxylated, Quinones) in Sediments
Authors: I. Berger, N. Machour, F. Portet-Koltalo
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) are toxic and carcinogenic pollutants produced in majority by incomplete combustion processes in industrialized and urbanized areas. After being emitted in atmosphere, these persistent contaminants are deposited to soils or sediments. Even if persistent, some can be partially degraded (photodegradation, biodegradation, chemical oxidation) and they lead to oxygenated metabolites (oxy-PAHs) which can be more toxic than their parent PAH. Oxy-PAHs are less measured than PAHs in sediments and this study aims to compare different analytical tools in order to extract and quantify a mixture of four hydroxylated PAHs (OH-PAHs) and four carbonyl PAHs (quinones) in sediments. Methodologies: Two analytical systems – HPLC with on-line UV and fluorescence detectors (HPLC-UV-FLD) and GC coupled to a mass spectrometer (GC-MS) – were compared to separate and quantify oxy-PAHs. Microwave assisted extraction (MAE) was optimized to extract oxy-PAHs from sediments. Results: First OH-PAHs and quinones were analyzed in HPLC with on-line UV and fluorimetric detectors. OH-PAHs were detected with the sensitive FLD, but the non-fluorescent quinones were detected with UV. The limits of detection (LOD)s obtained were in the range (2-3)×10-4 mg/L for OH-PAHs and (2-3)×10-3 mg/L for quinones. Second, even if GC-MS is not well adapted to the analysis of the thermodegradable OH-PAHs and quinones without any derivatization step, it was used because of the advantages of the detector in terms of identification and of GC in terms of efficiency. Without derivatization, only two of the four quinones were detected in the range 1-10 mg/L (LODs=0.3-1.2 mg/L) and LODs were neither very satisfying for the four OH-PAHs (0.18-0.6 mg/L). So two derivatization processes were optimized, comparing to literature: one for silylation of OH-PAHs, one for acetylation of quinones. Silylation using BSTFA/TCMS 99/1 was enhanced using a mixture of catalyst solvents (pyridine/ethyle acetate) and finding the appropriate reaction duration (5-60 minutes). Acetylation was optimized at different steps of the process, including the initial volume of compounds to derivatize, the added amounts of Zn (0.1-0.25 g), the nature of the derivatization product (acetic anhydride, heptafluorobutyric acid…) and the liquid/liquid extraction at the end of the process. After derivatization, LODs were decreased by a factor 3 for OH-PAHs and by a factor 4 for quinones, all the quinones being now detected. Thereafter, quinones and OH-PAHs were extracted from spiked sediments using microwave assisted extraction (MAE) followed by GC-MS analysis. Several mixtures of solvents of different volumes (10-25 mL) and using different extraction temperatures (80-120°C) were tested to obtain the best recovery yields. Satisfactory recoveries could be obtained for quinones (70-96%) and for OH-PAHs (70-104%). Temperature was a critical factor which had to be controlled to avoid oxy-PAHs degradation during the MAE extraction process. Conclusion: Even if MAE-GC-MS was satisfactory to analyze these oxy-PAHs, MAE optimization has to be carried on to obtain a most appropriate extraction solvent mixture, allowing a direct injection in the HPLC-UV-FLD system, which is more sensitive than GC-MS and does not necessitate a previous long derivatization step.Keywords: derivatizations for GC-MS, microwave assisted extraction, on-line HPLC-UV-FLD, oxygenated PAHs, polluted sediments
Procedia PDF Downloads 287104 Biorefinery as Extension to Sugar Mills: Sustainability and Social Upliftment in the Green Economy
Authors: Asfaw Gezae Daful, Mohsen Alimandagari, Kathleen Haigh, Somayeh Farzad, Eugene Van Rensburg, Johann F. Görgens
Abstract:
The sugar industry has to 're-invent' itself to ensure long-term economic survival and opportunities for job creation and enhanced community-level impacts, given increasing pressure from fluctuating and low global sugar prices, increasing energy prices and sustainability demands. We propose biorefineries for re-vitalisation of the sugar industry using low value lignocellulosic biomass (sugarcane bagasse, leaves, and tops) annexed to existing sugar mills, producing a spectrum of high value platform chemicals along with biofuel, bioenergy, and electricity. Opportunity is presented for greener products, to mitigate climate change and overcome economic challenges. Xylose from labile hemicellulose remains largely underutilized and the conversion to value-add products a major challenge. Insight is required on pretreatment and/or extraction to optimize production of cellulosic ethanol together with lactic acid, furfural or biopolymers from sugarcane bagasse, leaves, and tops. Experimental conditions for alkaline and pressurized hot water extraction dilute acid and steam explosion pretreatment of sugarcane bagasse and harvest residues were investigated to serve as a basis for developing various process scenarios under a sugarcane biorefinery scheme. Dilute acid and steam explosion pretreatment were optimized for maximum hemicellulose recovery, combined sugar yield and solids digestibility. An optimal range of conditions for alkaline and liquid hot water extraction of hemicellulosic biopolymers, as well as conditions for acceptable enzymatic digestibility of the solid residue, after such extraction was established. Using data from the above, a series of energy efficient biorefinery scenarios are under development and modeled using Aspen Plus® software, to simulate potential factories to better understand the biorefinery processes and estimate the CAPEX and OPEX, environmental impacts, and overall viability. Rigorous and detailed sustainability assessment methodology was formulated to address all pillars of sustainability. This work is ongoing and to date, models have been developed for some of the processes which can ultimately be combined into biorefinery scenarios. This will allow systematic comparison of a series of biorefinery scenarios to assess the potential to reduce negative impacts on and maximize the benefits of social, economic, and environmental factors on a lifecycle basis.Keywords: biomass, biorefinery, green economy, sustainability
Procedia PDF Downloads 514