Search results for: energy decay
2087 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy
Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan
Abstract:
The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model
Procedia PDF Downloads 1702086 Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls
Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma
Abstract:
An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls.Keywords: steel-plate composite shear wall, safety-related nuclear structure, flexure-critical wall, cyclic loading
Procedia PDF Downloads 3502085 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes
Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak
Abstract:
The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the single-axis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.Keywords: biomass, briquettes, densification, fuel quality, moisture content, density
Procedia PDF Downloads 4282084 Sustainable Supply Chain Management Practices, Challenges, and Opportunities: A Case Study of Small and Medium-Sized Enterprises Within the Oil and Gas Sector
Authors: Igho Ekiugbo, Christos Papanagnou
Abstract:
The energy sector continues to face increased scrutiny due to climate change challenges emanating from the burning of fossil fuels, such as coal, oil, and gas. These climate change challenges have motivated industry practitioners and researchers alike to gain an interest in the way businesses operate. This paper aimed to investigate and assess how small and medium-sized enterprises (SMEs) are reducing the impact of their operations, especially those within their supply chains, by assessing the sustainability practices they have adopted and implemented as well as the benefits and challenges of adopting such practices. Data will be collected from SMEs operating across the downstream oil and gas sector in Nigeria using questionnaire surveys. To analyse the data, confirmatory factor analysis and regression analysis will be performed. This method is deemed more suitable and appropriate for testing predefined measurements of sustainable supply chain practices as contained in the extant literature. Preliminary observations indicate a consensus on the awareness of the sustainability concept amongst the target participants. To the best of our knowledge, this paper is among the first to investigate the sustainability practices of SMEs operating in the Nigerian oil and gas sector and will therefore contribute to the sustainability and circular economic literature.Keywords: small and medium-sized enterprises, sustainability practices, supply chains, sustainable supply chain management, corporate sustainability, oil and gas, business performance
Procedia PDF Downloads 1272083 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study
Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi
Abstract:
The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations
Procedia PDF Downloads 1772082 Reliability Assessment for Tie Line Capacity Assistance of Power Systems Based on Multi-Agent System
Authors: Nadheer A. Shalash, Abu Zaharin Bin Ahmad
Abstract:
Technological developments in industrial innovations have currently been related to interconnected system assistance and distribution networks. This important in order to enable an electrical load to continue receive power in the event of disconnection of load from the main power grid. This paper represents a method for reliability assessment of interconnected power systems based. The multi-agent system consists of four agents. The first agent was the generator agent to using as connected the generator to the grid depending on the state of the reserve margin and the load demand. The second was a load agent is that located at the load. Meanwhile, the third is so-called "the reverse margin agent" that to limit the reserve margin between 0-25% depend on the load and the unit size generator. In the end, calculation reliability Agent can be calculate expected energy not supplied (EENS), loss of load expectation (LOLE) and the effecting of tie line capacity to determine the risk levels Roy Billinton Test System (RBTS) can use to evaluated the reliability indices by using the developed JADE package. The results estimated of the reliability interconnection power systems presented in this paper. The overall reliability of power system can be improved. Thus, the market becomes more concentrated against demand increasing and the generation units were operating in relation to reliability indices.Keywords: reliability indices, load expectation, reserve margin, daily load, probability, multi-agent system
Procedia PDF Downloads 3252081 Design Criteria for Achieving Acceptable Indoor Radon Concentration
Authors: T. Valdbjørn Rasmussen
Abstract:
Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.Keywords: radon, natural radiation, barrier, pressure lowering, ventilation
Procedia PDF Downloads 3542080 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel
Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew
Abstract:
Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD
Procedia PDF Downloads 2142079 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices
Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe
Abstract:
An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.Keywords: electricity prices, realized volatility, semivariances, volatility spillovers
Procedia PDF Downloads 1752078 Formulation, Acceptability, and Characteristics of Instant Surabi Based on Composite Rice-Soybean Flour and Supplemented with Torbangun Powder for Attention Deficit Hyperactivity Disorder Children
Authors: Dewi Hapsari Ratna Muninggar, M. Rizal Martua Damanik
Abstract:
The purpose of this study was to develop a formulation of instant Indonesian traditional pancake (Surabi) based on composite rice and soybean flour and supplemented with Torbangun (Coleus amboinicus Lour) powder as an alternative snack for ADHD (Attention Deficit Hyperactivity Disorder) children. Completely randomised factorial design by two factors which were the ratio of composite rice and soybean flour (75:25; 70:30; 65:35) as well as the addition of Torbangun powder (3%; 5%; 7%) was used in this study. This study revealed that the best formula was instant surabi with 65:35 composite rice and soybean flour and 5% addition of Torbangun powder by considering hedonic test result, functional aspect and nutrients contribution. Then, both chemical and physical characteristics from the best formula of instant surabi were measured. Nutrients content of the chosen instant surabi per 100 g wet basis were 62.68 g moisture, 1.30 g ash, 6.81 g protein, 0.75 g fat, 28.47 g carbohydrate, 88.62 mg calcium, 4.14 mg iron, and 144 kcal energy while physical characteristics, such as water activity, cohesiveness, and hardness were 0.97, 0.569, 5582.2 g force consecutively. The results of this research suggested that instant surabi which can be possibly beneficial for ADHD children had 65:35 for rice and soybean flour ratio as well as 5% for the addition of Torbangun powder.Keywords: ADHD children, instant surabi, soybean, torbangun
Procedia PDF Downloads 1502077 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model
Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam
Abstract:
Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.Keywords: COPERT Model, emission estimation, PM10, vehicular emission
Procedia PDF Downloads 2622076 Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas
Authors: Anamarel Medina-Hernandez, Teresa Ponce-Noyola, Ileana Vera-Reyes, Ana C. Ramos-Valdivia
Abstract:
Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes.Keywords: Jatropha curcas, proteomics, somatic embryo, terpenoids
Procedia PDF Downloads 2562075 Synthesis of Mesoporous In₂O₃-TiO₂ Nanocomposites as Efficient Photocatalyst for Treatment Industrial Wastewater under Visible Light and UV Illumination
Authors: Ibrahim Abdelfattah, Adel Ismail, Ahmed Helal, Mohamed Faisal
Abstract:
Advanced oxidation technologies are an environment friendly approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous In₂O₃-TiO₂ nanocomposites at different In₂O₃ contents (0-3 wt%) have been synthesized through a facile sol-gel method to evaluate their photocatalytic performance for the degradation of the imazapyr herbicide and phenol under visible light and UV illumination compared with commercially available either Degussa P-25 or UV-100 Hombikat. The prepared mesoporous In₂O₃-TiO₂ nanocomposites were characterized by TEM, STEM, XRD, Raman FT-IR, Raman spectra and diffuse reflectance UV-visible. The bandgap energy of the prepared photocatalysts was derived from the diffuse reflectance spectra. XRD Raman's spectra confirmed that highly crystalline anatase TiO₂ phase was formed. TEM images show TiO₂ particles are quite uniform with 10±2 nm sizes with mesoporous structure. The mesoporous TiO₂ exhibits large pore volumes of 0.267 cm³g⁻¹ and high surface areas of 178 m²g⁻¹, but they become reduced to 0.211 cm³g⁻¹ and 112 m²g⁻¹, respectively upon In₂O₃ incorporation, with tunable mesopore diameter in the range of 5 - 7 nm. The 0.5% In₂O₃-TiO₂ nanocomposite is considered to be the optimum photocatalyst which is able to degrade 90% of imazapyr herbicide and phenol along 180 min and 60 min respectively. The proposed mechanism of this system and the role of In₂O₃ are explained by details.Keywords: In₂O₃-TiO₂ nanocomposites, sol-gel method, visible light illumination, UV illumination, herbicide and phenol wastewater, removal
Procedia PDF Downloads 2972074 Evaluating Viability of Solar Tubewell Irrigation Technology
Authors: Junaid N. Chauhdary, Bernard A. Engel, Allah Bakhsh
Abstract:
Solar powered tubewells can be a reliable and affordable source of supplying irrigation water compared with electric or diesel operated tubewells due to frequent load shedding and soaring energy prices. A study was conducted on a solar tubewell installed at the Water Management Research Center (WMRC), University of Agriculture, Faisalabad to investigate the viability of a solar powered tubewell in terms of discharge and benefit cost ratio. The tubewell discharge was 50 m3hr-1 with a total dynamic head of 30 m. The depth of bore was 31 m (14 m blind + 17 m screen) with a casing diameter of 15.2 cm (6 inches). A 3-stage submersible pump of 10.2 cm (4 inch) diameter was lowered in the casing to a depth of 22 m. The pump was powered from 21 solar panels of 200 W capacity each. The tubewell peak discharge was observed as 6 and 7 hr day-1 in winter and summer, respectively. The breakeven analysis of the solar tubewell showed that the payback period of the solar tubewell was 1.5 years of its 10 year usable life with an IRR (internal rate of return) of 69 %. The BCR (benefit cost ratio) of the solar tubewell at 2, 4, 6, and 8 percent discount rate were 3.75, 3.45, 3.19 and 2.96, respectively. The NPV (net present value) of the solar tubewell at 2, 4, 6, and 8 % discount rates were 1.89, 1.65, 1.45 and 1.27 million rupees, respectively. These results indicated that the solar powered tubewells are a viable option as well as environmentally friendly and can be adopted by the farmers due to their affordable payback period.Keywords: benefit cost ratio, internal rate of return (IRR), net present value (NPV), solar tubewell
Procedia PDF Downloads 2082073 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation
Authors: Rui Tu, Yakui Bai, Huailin Li
Abstract:
The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy
Procedia PDF Downloads 1312072 Critical Assessment to the Wastewater Management Sector in Lebanon: Irresponsible Generation, Fragmented Collection, and Limited Treatment
Authors: Nora Fayssal, Lara Altawil, Hrair Danageuzian, Jimmy Romanos
Abstract:
Wastewater management is a global concern and priority, both to protect the natural environment from the consequences of poor disposal, specifically water resources and to harness its potential as an additional water supply through water reuse. Lebanon still lags behind, being at the bottom of the list among the Arab countries in both safely managed sanitation services and wastewater treatment and in achieving the targets of SDG 6.3. This study which relied on a data collection survey targeting the municipalities, provides a critical assessment of the wastewater sector in Lebanon. The results revealed the fragmented sewerage collection systems, where only 13% of the targeted municipalities have complete coverage, leaving most of the urbanized areas at risk of pollution. The results also highlight the limited quantity of wastewater treated and the fragility of the operation of the wastewater treatment plants in light of the recent energy crisis. Ultimately, only 14% of the generated Wastewater is currently treated in Lebanon with primary treatment only. The assessment showed that wastewater management wasn’t a priority on the national level for decades, where the lack of institutional coordination and long-term vision, the absence of deterrent regulations and advanced technology, the influx of Syrian refugees, and the recent economic crisis stand behind the current situation.Keywords: wastewater management, lebanon, wastewater collection, SDG 6.3., governance gaps
Procedia PDF Downloads 22071 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders
Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari
Abstract:
There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame
Procedia PDF Downloads 2322070 Understanding of Corporate Social Responsibility and Non-Governmental Organizations
Authors: Abdul Ghafar, Malini Nair
Abstract:
Non-governmental organizations have been seemed to struggle the battle of balancing many concerns with corporates which may impact on their financial solvency. Some of these concerns relates to uphold the relationship where weighing up the impacts of their involvement with corporates takes priority over the main purpose of creating valuable impacts for communities. To some extent, it can be argued that NGOs are influenced by corporates’ power to tackle contemporary issues rather than eradicating the root causes of such issues and transform the results into more sustainable manner. NGOs spend massive amount of energy, time and resources in order to move some corporates to embrace their social responsibilities. It has become a norm, where an active NGO that is becoming more successful on building partnerships with corporates is perceived to be more socially responsible. In contrast to this, as some researchers argue that the social responsibility for NGOs is not a voluntary act; they must exhibit the core values in all their practices require much attention to address. This article stresses the need of understanding ‘Social Responsibility’ of NGOs that stem from an argument that NGOs tend to act on narrow mandate rather than considering broader outcomes of their CSR initiatives. This paper argues that NGOs must focus on building capabilities of the recipients from CSR initiatives which should serve as a core value of partnerships mandate between NGOs, Corporates and Governments. We argue that SEN’s Capabilities Approach can further enhance the mainstream CSR agenda of NGOs which seems to incline more towards providing palliative solutions to social issues.Keywords: non-profit organization, corporate social responsibility, partnerships, capabilities approach
Procedia PDF Downloads 2342069 About the Effect of Temperature and Heating Rate on the Pyrolysis of Lignocellulosic Biomass Waste
Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero
Abstract:
At the present time, conventional fossil fuels show environmental and sustainability disadvantages with regard to renewables energies. Producing energy and chemicals from biomass is an interesting alternative for substitution of conventional fossil sources with a renewable feedstock while enabling zero net greenhouse gases emissions. Pyrolysis is a well-known process to produce fuels and chemicals from biomass. In this work, conventional and fast pyrolysis of different agro-industrial residues (almond shells, hemp hurds, olive stones, and Kraft lignin) was studied. Both processes were carried out in a fixed bed reactor under nitrogen flow and using different operating conditions to analyze the influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/minfor conventional pyrolysis and 50 ºC/s for fast pyrolysis)on the yields, products distribution, and composition of the different fractions. The results showed that for both conventional and fast pyrolysis, the solid fraction yield decreased with temperature, while the liquid and gas fractions increased. In the case of the fast pyrolysis, a higher content of liquid fraction than that obtained in conventional pyrolysis could be observed due to cracking reactions occur at a lesser extent. With respect to the composition of de non-condensable fraction, the main gases obtained were CO, CO₂ (mainly at low temperatures), CH₄, and H₂ (mainly at high temperatures).Keywords: bio-oil, biomass, conventional pyrolysis, fast pyrolysis
Procedia PDF Downloads 1882068 Stability Analysis of DFIG Stator Powers Control Based on Sliding Mode Approach
Authors: Abdelhak Djoudi, Hachemi Chekireb, El Madjid Berkouk
Abstract:
The doubly fed induction generator (DFIG) received recently an important consideration in medium and high power wind energy conversion systems integration, due to its advantages compared to other generators types. The stator power sliding mode control (SPSMC) proves a great efficiency judge against other control laws and schemes. In the SPSMC laws elaborated by several authors, only the slide surface tracking conditions are elaborated using Lyapunov functions, and the boundedness of the DFIG states is never treated. Some works have validated theirs approaches by experiments results in the case of specified machines, but these verifications stay insufficient to generalize to other machines range. Adding to this argument, the DFIG states boundedness demonstration is widely suggested in goal to ensure that in the application of the SPSMC, the states evaluates within theirs tolerable bounds. Our objective in the present paper is to highlight the efficiency of the SPSMC by stability analysis. The boundedness of the DFIG states such as the stator current and rotor flux is discussed. Moreover, the states trajectories are finding using analytical proves taking into consideration the SPSMC gains.Keywords: Doubly Fed Induction Generator (DFIG), Stator Powers Sliding Mode Control (SPSMC), lyapunov function, stability, states boundedness, trajectories mathematical proves
Procedia PDF Downloads 4002067 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier
Authors: Girts Zageris, Vadims Geza, Andris Jakovics
Abstract:
Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling
Procedia PDF Downloads 2862066 Interaction of Hemoglobin with Sodium Dodecyl Sulfate and Ascorbic Acid: A Chemometrics Study
Authors: Radnoosh Mirzajani, Ebrahim Mirzajani, Heshmatollah Ebrahimi-Najafabadi
Abstract:
Introduction: Hydrogen peroxide can be produced over the interaction of sodium dodecyl sulfate (SDS) with hemoglobin which would facilitate the oxidation process of hemoglobin. The presence of ascorbic acid (AA) can hinder the extreme oxidation of oxyhemoglobin. Methods: Hemoglobin was purified from blood samples according to the method of Williams. UV-V is spectra of Hb solutions mixed with different concentrations of SDS and AA were recorded. Chemical components, concentration, and spectral profiles were estimated using MCR-ALS techniques. Results: The intensity of soret band of OxyHb decreased due to the interaction of Hb with SDS. Furthermore, changes were also observed for peaks at 575 and 540. Subspace plots confirm the presence of OxyHb, MetHb, and Hemichrom in each mixture. The resolved concentration profiles using MCR-ALS reveal that the mole fraction of OxyHb increased upon the presence of AA up to a concentration level of 3 mM. The higher concentration of AA shows a reverse effect. AA demonstrated a dual effect on the interaction of hemoglobin with SDS. AA disturbs the interaction of SDS and hemoglobin and exhibits an antioxidative effect. However, it caused a tiny decrease in the mole fraction of OxyHb. Conclusions: H2O2 produces upon the interaction of OxyHb with SDS. Oxidation of OxyHb facilitates due to overproduction of H2O2. Ascorbic acid interacts with H2O2 to form dehydroascorbic acid. Furthermore, the available free SDS was reduced because the Gibbs free energy for micelle production of SDS became more negative in the presence of AA.Keywords: hemoglobin, ascorbic acid, sodium dodecyl sulfate, multivariate curve resolution, antioxidant
Procedia PDF Downloads 1192065 Sea Cucumber (Stichopus chloronotus) to Expedite Healing of Minor Wounds
Authors: Isa Naina Mohamed, Mazliadiyana Mazlan, Ahmad Nazrun Shuid
Abstract:
Stichopus chloronotus (Black Knobby or green fish) is a sea cucumber species commonly found along Malaysia’s coastline. In Malaysia, it is believed that sea cucumber can expedite healing of wounds, provide extra energy and used as an ointment to relieve pain. The aim of this study is to determine the best concentration of Stichopus chlronotus extract to promote wound healing. 12 male Sprague-Dawley rats with wounds created using 6mm disposable punch biopsy were divided into 6 treatment groups. The normal control group (untreated), positive control group (flavin treated only), negative control group (emulsifying ointment only), and group 0.1, group 0.5, group 1 were each treated with 0.1%, 0.5% and 1% of Stichopus chlronotus water extract mixed in emulsifying ointment, respectively. Treatments were administered topically for 10 days. Changes in wound area were measured using caliper and photographs were taken on day 2, 4, 6, 8, and 10 after index wound. Results showed that wound reduction of group 0.5 on day 4, 6, and 8 was significantly higher compared to normal control group and positive control group. Group 0.5 also had higher wound reduction from day 6 until day 10 compared to all other groups. In conclusion, Sea Cucumber (Stichopus chloronotus) extract demonstrated the best minor wound healing properties at concentration 0.5%. The potential of Stichopus chlronotus extract ointment for wound healing shall be investigated further.Keywords: minor wound healing, expedite wound healing, sea cucumber, Stichopus chloronotus
Procedia PDF Downloads 3942064 Impact of Mid-Day Meal on Nutritional Status of Primary School Children in Haryana, India
Authors: Vinti Davar
Abstract:
India is one among the many countries where child malnutrition is severe and also a major underlying cause of child mortality. The Mid Day Meal (MDM) program was launched to improve the nutritional status of children, attendance, and retention in schools. It was based on one meal provided to the children, who are attending elementary school (primary school). The objective of present study was to evaluate the impact of mid-day meal on the nutritional status of primary school children in Haryana, India. The present work was carried out on 1200 children between 6-11years of age, studying in primary schools in Haryana, India. Out of these 960 students as, the experimental group was selected from schools where mid-day meal is supplied by the government, and 240 students as control group where mid-day meal is not supplied. The mean height, weight, and BMI of children of both the groups were found to be significantly low as compared to NCHS standards. Stunting was found in 56.40% MDMB (Mid-day meal beneficiaries) and 62.50 % NMDMC (non- mid-day meal children).The weight of almost all subjects were low according to age indicating thinness. Anemia was more prevalent in MDMB as compared to NMDMC may be because school meals did not include vegetables. The consumption of energy, proteins, fat, calcium, iron, vitamins was significantly low (P ≤ .01) in both groups especially in girls of NMDM. The consumption of various food groups except vegetables was better in MDMB compared to NMDMC. It is concluded that with certain improvements, mid-meal can be beneficial in meeting everyday requirements of school going children.Keywords: foods, meals, nutritional status, school going children
Procedia PDF Downloads 3072063 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore
Authors: Almas Rajguru, Archana Kamath, Rachana Singh
Abstract:
The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore
Procedia PDF Downloads 772062 Supercomputer Simulation of Magnetic Multilayers Films
Authors: Vitalii Yu. Kapitan, Aleksandr V. Perzhu, Konstantin V. Nefedev
Abstract:
The necessity of studying magnetic multilayer structures is explained by the prospects of their practical application as a technological base for creating new storages medium. Magnetic multilayer films have many unique features that contribute to increasing the density of information recording and the speed of storage devices. Multilayer structures are structures of alternating magnetic and nonmagnetic layers. In frame of the classical Heisenberg model, lattice spin systems with direct short- and long-range exchange interactions were investigated by Monte Carlo methods. The thermodynamic characteristics of multilayer structures, such as the temperature behavior of magnetization, energy, and heat capacity, were investigated. The processes of magnetization reversal of multilayer structures in external magnetic fields were investigated. The developed software is based on the new, promising programming language Rust. Rust is a new experimental programming language developed by Mozilla. The language is positioned as an alternative to C and C++. For the Monte Carlo simulation, the Metropolis algorithm and its parallel implementation using MPI and the Wang-Landau algorithm were used. We are planning to study of magnetic multilayer films with asymmetric Dzyaloshinskii–Moriya (DM) interaction, interfacing effects and skyrmions textures. This work was supported by the state task of the Ministry of Education and Science of the Russia # 3.7383.2017/8.9Keywords: The Monte Carlo methods, Heisenberg model, multilayer structures, magnetic skyrmion
Procedia PDF Downloads 1662061 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment
Authors: Jana Petru, Marie Kudrnova
Abstract:
The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.Keywords: corrosion, experimental device, molten salt, steel
Procedia PDF Downloads 1192060 'Freud and Jung: Dissenting Friends'; An Analysis of the Foundations of the Psychoanalytical Theory in Theirs Letters
Authors: Laurence Doremus
Abstract:
Freud as the builder of psychoanalysis as a discipline had created the science with Carl Gustav Jung (1875-1961), a psychiatry specialist from Zurich who was very important in the Freudian theory. The knowledge about the foundation of psychoanalysis is often focused on the influence of the works from Breuer or Charcot in the Freudian praxis, at least at the beginning of his career, and Jung's influence is often under-estimated. The paper focuses on the importance of the Jungian contributions in Freud's theories at the beginning of the creation of the discipline in the 1910s. We often meet Jungian schools on the first hand and Freudian schools, on the other hand in the academic field, but the Freudian field has to admit the importance of the Jungian theories in Freudian science. And also, the dialectical energy which appears in the letters exchanged between both of the fathers of psychoanalysis is important to understand the foundations of Freud Theory. That's why the paper will analyze in detail the correspondence between them in an epistemological and historical approach. Effectively the letters were translated and published (in French but also in English and other languages) lately in history and are still not well knew by the researchers in the psychoanalytical field. We well explain how Freud was helped by Jung despite his desire to build the theory. We analyze how the second topic named 'unconscious, preconscious, and conscious', is the result of the first topic that Jung built with Freud. The paper is a contribution to the knowledge we should have about the intense friendship between the two protagonists.Keywords: Carl Gustav Jung, correspondence, Freud's letters, psychoanalytic theory
Procedia PDF Downloads 1492059 NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach
Authors: Ammar Maziz, Prateek Gupta, Thiago Vasconcellos Birro, Benoit Gely
Abstract:
Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries.Keywords: composite overwrapped pressure vessels, carbon fiber, geodesic trajectory approach, dome design, stress analysis, plugin python
Procedia PDF Downloads 922058 Three-Dimensional CFD Modeling of Flow Field and Scouring around Bridge Piers
Authors: P. Deepak Kumar, P. R. Maiti
Abstract:
In recent years, sediment scour near bridge piers and abutment is a serious problem which causes nationwide concern because it has resulted in more bridge failures than other causes. Scour is the formation of scour hole around the structure mounted on and embedded in erodible channel bed due to the erosion of soil by flowing water. The formation of scour hole around the structures depends upon shape and size of the pier, depth of flow as well as angle of attack of flow and sediment characteristics. The flow characteristics around these structures change due to man-made obstruction in the natural flow path which changes the kinetic energy of the flow around these structures. Excessive scour affects the stability of the foundation of the structure by the removal of the bed material. The accurate estimation of scour depth around bridge pier is very difficult. The foundation of bridge piers have to be taken deeper and to provide sufficient anchorage length required for stability of the foundation. In this study, computational model simulations using a 3D Computational Fluid Dynamics (CFD) model were conducted to examine the mechanism of scour around a cylindrical pier. Subsequently, the flow characteristics around these structures are presented for different flow conditions. Mechanism of scouring phenomenon, the formation of vortex and its consequent effect is discussed for a straight channel. Effort was made towards estimation of scour depth around bridge piers under different flow conditions.Keywords: bridge pier, computational fluid dynamics, multigrid, pier shape, scour
Procedia PDF Downloads 296